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SIMULATION OF 3D TRANSIENT FLOW PASSING THROUGH AN
INTESTINAL ANASTOMOSIS BY LATTICE-BOLTZMANN METHOD

Context. Recently, the number of reconstructive operations on the digestive tract has significantly increased. Such operations have
predictable negative consequences associated with disruptions of hydrodynamic processes in the anastomosis area. These negative conse-
quences can be partially avoided by choosing anastomosis anatomical form based on mathematical modeling. Known mathematical models
are cumbersome and do not allow to obtain results in real time. The proposed approach using lattice Boltzmann method allows solving this
problem.

Objective. The purpose of the work is to develop a three-dimensional mathematical model of anastomosis for research of hydrody-
namic parameters of fluids with complex structure in real time.

Method. The method of constructing and analyzing the mathematical model of anastomosis of the digestive tract based on lattice
Boltzmann method is proposed. The method differs in that it provides simultaneous analysis of hydrodynamic parameters of the liquid and
determines the nature of movement of fine-grained inclusions in the anastomosis area. The main stages of the method are the development
of technology for determining the modeling area, discretization of the three-dimensional Boltzmann equation with the choice of lattice and
the nature of the collision operator, taking into account the complex structure of the liquid; development of the technology of transition
from the density distribution function to the distribution of pressure at the mesoscopic level, taking into account the properties of the liquid,
the creation of the process of transforming the set of mesoscopic parameters into the macroscopic parameters of the liquid.

Results include determining the distribution of the velocity field in the anastomosis area to modify its geometry. The study of the
influence of gravity on the nature of motion of fine-grained inclusions has been carried out. The quantitative characteristics of the delay
of particles in the area of anastomosis, depending on the dynamic viscosity of the liquid, are determined.

Conclusions. The three-dimensional mathematical model discussed in this paper is based on the application of the lattice Boltzmann
method for calculating the hydrodynamic parameters of the motion of fluid in the study area. The distinctive feature of the model is that
it accounts for the complex nature of the liquid having fine-grained inclusions. The model allows determining the behavior of these
inclusions and the field of speed with sufficient accuracy in real time.

Keywords: mathematical model, lattice method of Boltzmann, anastomosis simulation.

n— number of fine-grained inclusions in the simulation
area;

NOMENCLATURE

X,¥,z — continuous Cartesian coordinates of three-
dimensional space;
¢t — time of simulation; p p- density of fine-grained inclusions;

d — diameter of the fine-grained inclusion;

v — elocity of the elemental volume of liquid at the
mesoscopic level;

v,, — vector of velocity of the elemental fluid volume in
the node ®; At, Ax, Ay, Az— steps in time and space.

INTRODUCTION
Life science nowadays is a rapidly developing area of
research. The urgent need for obtaining new results in this

field of knowledge arose long ago but was constrained by
the considerable complexity of research objects. Biological

u — vector of macroscopic velocity;
W,,— weight ratio in the node ®;

f (x: sz VJ) — density distribution function;

Jf, — density distribution function at node ®;

f(eq) (x, .z, V,t) — equilibrium density distribution

function; processes, which, as a rule, are the main objects of the study
of life sciences, are characterized by variability, which is

7 — relaxation factor in the direction f (eq) (x, V,z, v,t); caused by the dependence on many parameters. However,

) ) ) the complexity of measuring these parameters is another

8 — parameter of fine-grained inclusions; important challenge that impedes progress in this area. In

¢, — speed of sound propagation in the studied area; most cases, this complexity is due to the fact that there are

difficulties with direct access to the object of measurement.
Another negative factor is that the measuring instruments
significantly affect the investigated process. Therefore, in
P, — liquid density; this area, simulation has been and remains one of the most
P — pressure at the outlet; effective methods of research.

A — kinematic viscosity;

N — dynamic viscosity;
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This work describes the mathematical modeling of fluid
motion with fine-grained inclusions through anastomoses
in the lower section of the human digestive tract. The
importance of this study is based on the fact that this section
of the digestive tract is characterized by high peristaltic
activity and, accordingly, high sensitivity to surgical
intervention. A traditional approach, in this case, is to solve
a boundary value problem based on a system of equations
containing the Navier-Stokes equation and the flow
continuity equation. The process of solving this non-
stationary nonlinear boundary-value problem is cumbersome
and requires a large amount of computational resources since
rapid change in parameters requires a high degree of
discretization and imposes additional conditions on the
convergence of computational methods. Therefore, in recent
years, alternative approaches have been developing rapidly
using neural networks, cellular automata and other means
of description for complex processes. Among the above-
mentioned methods, the method based on solving the lattice
Boltzmann equation in each node of the discrete area is
important and is called the lattice Boltzmann method.

1 PROBLEM STATEMENT

This work describes the development and research of a
mathematical model of fluid motion with fine-grained
inclusions through the anastomosis area of the lower part
of the digestive tract. The objective functions of such a
model are to determine the velocity field, the pressure
distribution and the characteristics of sticking of fine-
grained inclusions in the anastomosis area. To simplify the
simulation process and achieve the possibility of
mathematical modeling in real time, the lattice Boltzmann
method is applied. The Boltzmann equation for 3D simulation
describes the probability of the fact that the elemental
volume of a liquid at a time ¢ will be in a cube with a center at

the point with the coordinates (x, Wz ) and the lengths of

the edges dx,dy, dz, and the velocity of the motion of this
elemental volume will be in the range from v to gy [1].
In general, the equation is represented by the expression:

6]‘(x,y,z7 v,t) . af(x,y,z, v,t) . af(x,y,z, v,t) .
ot Y ox Y

of (x, y,z,v,t)

.|-T =Q(f(x,y,z,v,t)), @))]

The function of the right-hand side of the equation (1) is

called the collision operator. The operator Q2 ( f (x, V,Z,V, t))

describes the nature of the collisions of elemental volumes
during the movement of the fluid. In general, the operator of
collisions is given by the following expression:

o (rznt)) = 2 (zne) -1 (s |

where T — a constant that determines the time scale required
to establish a local equilibrium, § —a parameter whose value
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depends on the presence and the compacted location of the
fine-grained inclusions in the node at the moment of

collision, f (eq> (x, ¥, 2z, VJ) — equilibrium function of the

Maxwell-Boltzmann density distribution.

Equations (1) and (2) describe the fluid behavior at each
point of the investigated area at mesoscopic level. Therefore,
there is a problem of transition from mesoscopic to
macroscopic level, on which the fluid parameters are
represented by the velocity field and the pressure
distribution.

For such a transition, we will apply a Chapman-Enskog
expansion [2] adapted to the conditions of this model, which
forms the connection between the kinematic viscosity and
the Boltzmann equation parameters:

(21 - At8) cz
25 '

The Chapman-Enskog expansion allows replacing the
solution of a boundary-value problem based on the Navier-
Stokes equation by solving a set of Boltzmann equations,
each of which describes the dynamics of the movement of
elementary fluid volumes in the nodes of a discrete lattice
covering the study area.

2 LITERATURE REVIEW

There are two main approaches for simulating the flow
of fluid, which use the macroscopic and mesoscopic level
of process description. A traditional approach to obtaining
fluid flow parameters is involves applying numerical methods
for solving a boundary value problem on the basis of the
Navier-Stokes equation [3]. Methods of finite differences
[4], methods of finite elements [5] and methods of finite
volumes are widely used [6]. These methods have common
disadvantages related to stability and convergence, since
through discretization of the corresponding equations these
methods are reduced to the solution of the system of linear
algebraic equations by iterative methods. Despite the
possibility of achieving high accuracy of the solution, it is
often difficult to achieve the convergence of the iterative
process, provided the variability of the input data and in
areas of complex geometry. Unfortunately, multiple physical
processes, including those processes occurring in biological
objects, have precisely such characteristics [7]. The
disadvantages of numerical methods also include the
complexity of parallelizing the process of solving the
boundary value problem. To overcome these and some other
disadvantages, alternative approaches were explored. The
lattice Boltzmann method, which describes the movement
of elemental volumes of liquid at the mesoscopic level, is
one of the most popular approaches. The first publications
on the lattice Boltzmann method have a nearly 30-year
history [8]. During this time, the method received a significant
theoretical basis and became one of the popular methods of
simulating fluid motion in biological objects [9]. The reason
for the high popularity of lattice Boltzmann method is the
fact that the calculations of fluid flow parameters are
performed locally for each discrete point, which allows the
use of parallel algorithms [10]. The method can also be
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effectively applied to simulate three dimensional areas with
complex geometry [11] and to take into account the complex
structure of the liquid [12]. These properties of the lattice
Boltzmann method are the basis for choosing tools to study
of anastomosis of the digestive tract [13, 14].

3 MATERIALS AND METHODS

The mathematical model of ileum anastomosis of the human
digestive tract is considered in this paper. The shape of a three-
dimensional area has the form of a rectangular parallelepiped
with an internal cavity that corresponds to the investigated
fragment of the ileum. The geometry of this anastomosis is
based on the experience of practicing surgeons. The general
view of the study area is shown in fig. 1.

Through the inner cavity flows a fluid that has a complex
structure. Parameters of this fluid vary during the
computational experiment in the following ranges: liquid
density p, [ kg/m’]: 100 +1000; dynamic viscosity of the
liquid M [ Pa s]: 102+ 100; speed of the fluid through the
inlet ¢ [m/s]: 0 + 0.09; outlet pressure P [Pa]: 103 number
of fine-grained inclusions in the field of simulation [Pcs]:
1-+1000; diameter of the fine-grained inclusion ¢ [m]:
10+ 107; density of fine-grained inclusions p, [kg/m’]:
1000 + 1500 [ kg/m?].

Parameters of the mathematical model vary in the

following range: maximum number of time steps m
1-100;

max max max

time layer [s]: 0.01.
The first step in the implementation of the mathematical
model of fluid motion in the area, shown in fig. 1, is to

max:
number of nodes in the discretizing grid

:2000500000; maximum step in the

Jo (xm +Ax, Y, A2, +Az(D,t+At)—f(D (xm + Ax

discretize the area. In this case, the rectangular parallelepiped
G is covered by a three-dimensional lattice (), the nodes

(O(x,-a Vs xk) of which are elements of the set:

Q- {u)(xi,yj,zk)‘i =0i =) —Lk=0k —1},

Each of the nodes belongs to one or three types: “wet”
nodes or nodes in the fluid area, “dry” nodes or nodes of
the environment and boundary nodes constituting the
limiting surface.

We describe the evolution of elementary fluid volumes
in the nodes of the area by a system of equations:

o, 1 e
28y, =;(fw 4 q)], ©=012..]0-1,03)

where f - density distribution function in the direction of

the mesoscopic velocity vector v, fo()eq) — an equilibrium

density distribution function corresponding to the vector v .

We discretize the system of equations (3) over time and
spatial variables for numerical solutions. Let us represent
the vector of the mesoscopic velocity of the elementary
volume of a liquid at the point ® by the tuple

Vo = (Vm Vo Vo j of its projections on the axis X, ), Z .
X y z

Marking the time step as Ay, and spatial steps for each
coordinate as Axw = wa At, AyOJ = V“Jv At, Azw = vwz At

we can produce the discrete version of the Boltzmann
equation:

o Ve T Aym,zm +Azm,t) .

X

Figure 1 — General view and geometric dimensions of “side-to-side” anastomosis
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+

fOJ (Xw +Axm7ym)zwat) _fm (xmvywazmat) + fm (xmvyw + Aym,Zw,f)—fm (xmvywaymvt) n

Ax

()

+

Jo (xwxw,zw + Azwt)—fw (xwywzw,t) ~

Ay

()

_fo) (xwywzwt)_fk(eq) (xco’yco’zcwt).

Az

()

Let’s set Ax, = At =1. Then equation (4) will look
like:

S (x(D + A, Yy T A2, +Azw,t+At)—fm (xm,ym,zm,t) =

— —%(fm (Xm,y(,)a vat) - fo()eq) (xm’ym’ Zm’t)j )

The simulation of the process of solving equation (5) is
carried out in two stages.
1. Collision at the node :

fw( Yo Vo 2 UJ’t+At) f ( O)’yo)VZm’t)_

_%(fm<xm’ym72m’t)_fo()eq) (xm’yw’zo)’t)j~ (6)

2. Distribution of the obtained value of the distribution

function fm (xw,yw,zw,l‘+At) for the moment of time

t + At to the neighboring nodes of the grid:

fm (xw ALY Az, Azt At) = fk (xw,yw,

Zw,t+At),(7)

Neighborhood relationship identifies those nodes for
which the interaction with the current node ® is given. For
this model, the nature of such connections is unified and is
called D3Q19 (fig. 2).

Equation (6) includes an equilibrium density distribution
function for anode .

We apply an expression for this function, which was first
proposed in the work [15].

10 3 13 4

17

18

14

Figure 2 — The structure of the connections for an arbitrary node
on the grid D3Q19
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A Zpgp| 142 vm~u+i4(vm'u)2—%(“'“) , (8)

Ax .
where ¢ = v constant that determines the speed of
’ t

the activity in the lattice.

We will determine scaling factors w_ using the

expression

1/3, ®=0,
o =11/18, ®=1,2,3,4,5,6,
1/36, ©=17,8,9,...,18,

for each node velocity

(0,0,+1)¢,k =1,2,3,4,5,6,

Ve =1(£1,0,0)c, (0,£1,0)c,
,+1)c,(0,£1,%1)c, k=7,8,9,...18.

Considering the fact that the fluid pressure p in each

node o is related to the distribution function through the

expression p = Cssz’ we can write the expression for

pressure in the equilibrium state:

s S S

2 Ve ' U
P =2 75 = wo {p+ 1o [3 3

where Py = cfp — average pressure.
Let’s modify equation (5), replacing f with p

2 (xm +Axm,ym +Ayw,zm +Azm,t + A),‘)—p(D (xw,ym,zw,t) =

= _%(pm (xmaymazmvt) - p((;q)

(xw’ym’zm’t)j: (9)

Having solved the equation according to the scheme
(6), (7), we can determine the macroscopic parameters of the
pressure distribution and velocity fields from the equations:

p:zp(n,
o

4 EXPERIMENTS

The main results of the simulations were obtained on
the example of the classical spatial form of anastomosis,

1
u :_Z"mpm. 10
Po o (10)
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which is shown in fig. 1. During the simulation one of the
important tasks was to determine the distribution of pressure
and velocity fields in the study area, depending on the fluid
parameters. Such research allows to determine areas with
extreme values of measured parameters and, based on this
information, formulate recommendations for choosing the
geometric form of anastomosis, which would allow to
critically reduce the risk of the so-called “blind bags” or
unwanted additional cavities.

The second group of experiments aimed to determine
the trajectories and the behavior of fine-grained inclusions
in the fluid under study. The main parameters of the variation
during these experiments were the size and number of
particles, which can simultaneously be in the area we are
investigating. To simplify the calculations, it is assumed
that all the fine-grained inclusions have the same shape,
size and density. The tasks of this group of studies were to
determine the areas of accumulation of particles, which
indicate the possibility of occurrence of stagnant phenomena
in the application of a particular form of anastomosis.

The study used self-created software written in the
algorithmic programming language Python in the
environment PyCharm. Third-party software in the form of
additional modules pyLBM-0.2.1, numpy-1.12.1, Cython-
0.25.2, mpidpy-2.0.0, matplotlib-2.0.2 and others was also
used. To prepare geometric forms of anastomosis, the
package for creating 3D computer graphics Blender-2.78 was
used.

5 RESULTS

The main results are obtained through the creation and
study of a mathematical model of fluid motion with fine-
grained inclusions in a three-dimensional complex domain.
To determine the fluid parameters, a technology based on
the application of the Boltzmann lattice method was used.
The created model allows to get parameters of speed of a

liquid with accuracy & < 107" m/s. However, the great
variability of biological processes makes absolute values of
field velocities less informative when evaluating biological
phenomena. The simulation results presented in a graphical
form allow us to qualitatively evaluate the field of fluid
velocities and draw conclusions about the correction of the
form of anastomosis. For example, the velocity field shown
in fig. 3, displays areas that require shape correction.

The trajectory of the motion of fine-grained inclusions
at each time of the modeling time was determined as the
result of the action on the particle of three forces: the
interaction force of the particle with the liquid, the force that
is the result of collision of this particle with the adjacent
particles and the force of gravity. Studies have shown a
significant dependence of the location of anastomosis in
space on the trajectory of fine-grained inclusions. We can
observe on fig. 4 difference of arrangement of particles at
different positions of anastomosis in relation to gravity.
Parameters of this experiment: total simulation time —
fmax = 6005s; moment of time, shown in figure 4 —

m
feur = 325s. Number of particles in the research area
B4 Y
/ e \
z X
Figure 3 — Critical areas of “side-to-side” anastomosis
—
Z
iy |
]
1 2 3 4 Ve nixl0™

Figure 4 — Dependence of the distribution of fine-grained inclusions on the position of the area
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n =100 Pcs; fluid density p; = 1000 kg/m?; particle density
p, =1500 kg/m?; particle size d =102 m. The distribution

of particles at speeds is determined by the tint in m/s.
From the picture, it is obvious that the position of
anastomosis affects the nature of the movement of fine-
grained inclusions, which can lead to stagnant phenomena
in the anastomosis area. The nature of such influence
depends essentially on the relationship between the density
of the liquid and the density of the fine-grained inclusions,
as well as the dynamic viscosity of the liquid, which can
vary in a certain range. Figure 5 shows the dependence of
the percentage of “sticking” of fine-grained inclusions,
depending on the dynamic viscosity of the liquid. This study

used fine-grained inclusions with size d = 1073 m and
density p, =1500 kg/m’.

6 DISCUSSION

Simulations of fluid movement in the digestive tract of a
person have a certain history, both in our country [16] and
abroad [17]. Relevant mathematical models have allowed a
qualitative assessment of the phenomena studied. However,
the high variability of biological processes and the
complexity of geometric shapes did not allow practical
application of simulation results. The current level of
development of computer technology and new methods of
parallel computing have significantly increased the accuracy
and reduced computation time due to the parallel processing
of large data sets. The approach to the simulation of physical
processes proposed in this paper has a number of
advantages, among which is the important fact that the
complexity of the mathematical model does not depend on
the shape of the area. The reason for such an effect is the
locality of the calculations, the nature of which is unified for
each node of the discretized area of the study. In addition,
the local nature of data exchange with neighboring nodes in
the area lies at the heart of creating algorithms that have the
property of natural parallelism. The mentioned factors
allowed to build software with the ability to interact online
in real time. The advantage of this approach is accounting
for the fine-grained inclusions in the liquid. This significantly
increased the adequacy of the mathematical model and made
it possible to estimate the effect of gravity on the processes
associated with undesired accumulation of these inclusions

4 [Pas]
0 02 04 06 08 10 12 14 16 18 20

Figure 5 — The percentage of “sticking” of fine-grained inclusions
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in certain areas of anastomosis. The practical value of this
work is that by applying these research results it was possible
to reduce 10—15% negative consequences of reconstructive
operations on the digestive tract. The further direction of
research includes increasing area of modeling and
accounting for peristaltic oscillations, as the main source of
fluid flow through the area of anastomosis. A separate aspect
of the study is the consideration of possible peristaltic
oscillations of the actual anastomosis area, which has not
yet been used in practice and has not been considered in
mathematical modeling. In the research plan, there is also
the construction and research of models of reconstructive
operations on different parts of the digestive tract.

CONCLUSIONS

The work involves the development and research of a
mathematical model that describes the parameters of the
functioning of anastomosis in the lower parts of the human
digestive tract. The importance of these studies is due to a
significant increase in such operations and the presence of
negative consequences of surgical intervention. The
proposed approach to the description of the motion of the
fluid in the anastomosis area is based on the use of lattice
Boltzmann method. Due to the use of this method and the
application of modern software development technologies,
the adequacy of the mathematical model in comparison with
the traditional mathematical models based on the solution
of the boundary value problem based on the Navier-Stokes
equation and the flow continuity equation is significantly
increased. Experiments have shown that this method allows
us to calculate the volume velocity in anastomosis zone

with an accuracy of €<10™ m/s for the geometric
parameters of the area and physical parameters of the fluid
given in the work for 2—3 minutes.

A feature of the proposed mathematical model is the fact
that it takes into account the complex nature of the liquid,
which includes fine-grained impurities. The character of the
behavior of these impurities in the field of anastomosis,
depending on the dynamic viscosity of the fluid, is
investigated. The second advantage of the proposed
approach is the possibility to reduce the simulation time by
applying parallel algorithms for calculating local mesoscopic
fluid parameters for each node in the investigated area. Thus,
for the first time it became possible to obtain the results of
model experiments using three-dimensional mathematical
modeling in real time.
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MATEMATUYHE MOJEJIOBAHHS TPUBUMIPHOI'O HECTAIIIOHAPHOI'O NIOTOKY YEPE3 AHACTAMO3 TPABHO-
'O TPAKTY PELHITYACTUM METOAOM BOJIBLIMAHA

AxkTyaapHicTb. OCTaHHIM YaCOM ICTOTHO 3pOCia KUTbKICTh PEKOHCTPYKTUBHUX Ollepalliii Ha TpaBHOMY TPAKTi JIOAWHU. Pe3ynmsraT Takux
orepamniii MaloTh MPOTHO30BAaHI HETaTHBHI HACIHIIKH, IO TTOB’s3aHi 3 MOPYIIEHHSIMH TiIPOIUHAMIYHHX MpOIIEciB y 30HI aHacTomo3y. Lli Hera-
THBHI HACIIZKA MOXKJIMBO YaCTKOBO YCYHYTH IULIXOM BHOOPY ()OPMH aHACTOMO3Yy Ha OCHOBI MaTreMaTHYHOIO MOJETIOBaHH:. Bimomi matema-
THYHI MOJENI € TPOMI3IKHMH 1 HE JO3BOJISIIOTH OTPUMYBATH PE3YNIBTaTH B peaJbHOMY MacIuTadi yacy. 3ampOoroHOBaHHHA B POOOTI miaxin 3
BUKOPHCTaHHSM PELIiTYacToro Meroay bosibpliMaHa 103BOJISE BUPIMIUTH IO TIPOGIEMy.

Merto10 pobotu € po3podka TPUBHMIPHOT MATEMAaTHYHOI MOZENI 00JIACTi aHACTOMO3Y JUISl JOCIIKEHH 3 JOCTATHHOIO TOYHICTIO TiIpOIH-
HaMiYHUX MApaMeTPiB PIOIUHH 31 CKJIAJHOIO CTPYKTYPOIO B pealbHOMY MacmTadi Jacy.

MeToa. 3anponoHOBaHO METOA MOOYIOBU Ta aHAN3y MaTeMaTHYHOI MOJei aHAaCTOMO3y TPABHOIO TPAKTY HAa OCHOBI PELIITYACTOTO
Merony bonmpiMana. Meron Bipi3HSI€ThCS THM, IO 3a0e31euye OJHOYACHHUH aHa3 TIAPOJUHAMIYHAX MTapaMeTpiB PiMHN Ta BU3HAYAE XapaK-
Tep pyXy OpiOHO3EpHUCTUX BKIIIOUEHH y 30HI aHacToMo3y. OCHOBHI €Tali MeTOAy: po3po0Ka TEXHOJOTIi 3aaBaHHs O0IACTi MOJIEIIOBAaHHS,
JIUCKpPETH3allis TPUBUMIPHOTO PIBHSHHS BosbiMaHa 3 BHOOPOM PEILITKH Ta XapaKTepy oneparopa Komi3id, SKHii BpaXoBye CKIAIHY CTPYKTYPY
pinuHN; po3poOKka TEXHOJOTIl mepexoay Bif (YHKIIl po3momilly TYCTHHH A0 PO3MOALTY THCKY HAa ME30CKONIYHOMY PiBHI 3 ypaxyBaHHSIM
0COONMMBOCTEH BIACTUBOCTEH PiIUHU, TEePEXil Bil ME30CKOMIYHIX 10 MAKPOCKOIIYHUX ITapaMeTpiB piIHHU.

Pe3yabTaTi MOICIIOBAHHS BKIIFOYAIOTh BU3HAYEHHS PO3IIOALLY MOJISI LIBUAKOCTE B 30HI aHACTOMO3Y 3 METOI0 Moaudikail Horo reoMmerpii.
[poBeneHo DoCIiPKEH s BIUIMBY CHJIN TSOKIHHS HA XapaKTep pyXy ApiOHO3EpHUCTHX BKIIOYEHb. BU3HAYEHO KIIBKICHY XapaKTePUCTHKY 3aTPHM-
KH 9YaCTHHOK B 00JIaCTi aHACTOMO3Y B 3aJIGXKHOCTI BiJl AMHAMIYHOI B’SI3KOCTI PiAHHHU.

BucHoBku. Po3nisiHyTa B 1aHiil poOoTi TpUBHMIpHA MaTeMaTHYHA MOZENb 6a3yeThCsi Ha 3aCTOCYBaHHI pelnriryacToro Merony bosbiMana
pHu OOYHMCIICHHI TiIPOANHAMIYHIX MapaMeTpiB pyXy pilHU B o0nacti gociimkeHHs. OcoONMMBICTh MOJIEN MOJIATaE B ypaxyBaHHI CKJIAIHOTO
XapakTepy PiAMHHU, sKa BKIIOYA€E APIOHO3EPHMCTI BKIIOYEHHS. MoJenb J03BOJISE BU3HAYATH XapaKTep MOBEMIHKM IUX BKJIIOYEHb Ta IOJe
LIBUJIKOCTEH 3 JOCTATHBOIO TOYHICTIO B peaibHOMY MaciuTadi yacy.

KuouoBi ciioBa: MatemMaTH4Ha MOJIENb, peIIiTIacTHii MeTo bonbliMaHa, MOJEIOBaHHS aHACTOMO3Y.
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MATEMATHUYECKOE MOJEJIMPOBAHUE TPEXMEPHOI'O HECTAHIUOHAPHOI'O IIOTOKA YEPE3 AHACTOMO3 I1H-
HIEBAPUTEJIbBHOI'O TPAKTA PELIETYACTBIM METO/JIOM BOJIBIIMAHA

AKTyaJIbHOCTB. B nocieHee BpeMsi CyHNIeCTBEHHO BO3POCIIO KOIMYECTBO PEKOHCTPYKTHBHBIX ONEpalMii Ha MUILIEBAPHTENBHOM TPAKTE
4esioBeKa. Pe3ynbTaThl TaKHX onepanyii UIMEIOT IPOrHO3HPYEMBIE HETaTUBHBIE TIOCIIE/ICTBUS, CBA3aHHBIE C HAPYHIICHUAMH THIPOJIUHAMHYECKUX
IPOLIECCOB B 30HE aHACTOMO3a. DTH HEraTUBHbIE IIOCIEACTBUS BO3MOXKHO YACTUYHO YCTPAHUTH ITyTeM BbIOOpa (JOpMBI aHACTOMO3a Ha OCHOBE
MareMaTUY€eCKOro MOJEINpoBaHus. M3BecTHbIE MaTeMaTHYeCKHE MOJEIHU SBJISAIOTCA T'POMO3IAKMMH M HE MO3BOJIAIOT TOMy4aTh PE3yIbTaThl B
peanbHOM Macmtabe BpeMenu. IIpenoxeHHblii B paboTe MOIX0/ ¢ UCIONb30BAHHEM PELIETYaTOro MeToa boibliMaHa 03BOMISET PEIUTh 3Ty
npobemy.

Henabo paboThl sBisieTCs pa3padOTKa TPEXMEPHOH MaTeMaTH4ecKod Mozienu o0JIaCTH aHACTOMO3a Il MCCIENOBaHUS C NOCTaTOYHON
TOYHOCTBIO THIPOAMHAMUYECKUX T1apaMeTPOB JKMAKOCTH CO CIOXKHOM CTPYKTYpOil B peabHOM MacITabe BpEMEHH.

MeTon. [Ipennoxen MeTO IOCTPOEHH U aHATM3a MATEMATHYECKOH MOJIENIM aHACTOMO3a IMIIEBAPUTEILHOIO TPAKTa Ha OCHOBE pelleTya-
Toro Merona bonbimana. Meron omiMyaercs TeM, 4To 0OecreunBaeT aHaJM3 THAPOANHAMUYECKUX NapaMeTPOB >KHIKOCTH U OXHOBPEMEHHO
OIpeJeNsieT XapaKTep JBHKEHUS MEJIKO3EPHUCTIX BKIIFOUEHUH B 30He aHacToM03a. OCHOBHBIE 3Tallbl METO/1A: pa3paboTKa TEXHOIOTUH 3aaHUs
00J1aCTH MOZEIUPOBAHUS, JTUCKPETH3alMs TPEXMEPHOIO ypaBHEHUsl BoibliMaHa ¢ BHIOOPOM peLIEeTKM U XapaKTepa OIepaTopa KOJIM3uii,
YUHMTBIBAIOILETO CIOXKHYIO CTPYKTYPY KHJKOCTH, Pa3paboTKa TEXHOJIOTHHU epexoa oT (GyHKIMU PaclpeieeHus! INIOTHOCTH K Pacpe/eeHHI0
JIABJIEHUSI HA ME30CKOIMYECKOM YPOBHE C Y4ETOM OCOOEHHOCTEH CBOMCTB XMIKOCTH, HEPEXOI OT ME3OCKOINMYECKHX K MAaKPOCKOIUYECKUM
rapamMeTpaM KHUAKOCTH.

Pe3ynabTaThl MOIEIMPOBAaHHS BKIIOUAIOT ONpEJEICHUE PACIPENENeHHs M0 CKOPOCTEH B 30HE aHACTOMO3a C LIENIbI0 MOAU(UKALUY €ro
reomerpuu. IIpoBeieHO HcCe0BaHNE BIMSHUS CHIIbI TSDKECTH Ha XapaKTep JBHXKEHUsS MENIKO3€PHUCTBIX BKIOYeHHH. OnpeseneHsl Koauyue-
CTBEHHbIE XapaKTEPHCTUKH 3aJEPHKKU YaCTHL B 00IACTH aHACTOMO3a B 3aBUCUMOCTHU OT JMHAMHYECKOH BA3KOCTH KU JIKOCTH.

BriBoabl. PaccMoTpenHast B JaHHOH paboTe TpexMepHash MaTeMaTH4ecKas MOJENb 0a3Hpyercs Ha IMPUMEHEHUH PEIeT4YaToro MeToza
BbonbumaHa npu BEIYMCIEHUH M'HAPOIMHAMUYECKHX 1apaMETPOB ABMKEHHUS XKUAKOCTU B 0051acT HccnenoBanust. OCoOEHHOCTh MOJIENHU 3aK/II0ua-
€TCsl B YUYETE CJIOKHOIO XapaKTepa KHKOCTH, COAEpIKaIleH METKO3EpPHUCTHIE BKIIIOYEHHU. Mo/IeNb MO3BOIISIET ONPEAEIATh XapaKTeP MOBEICHUS
9TUX BKIIIOYEHUH U MOJIe CKOPOCTEH ¢ J10CTaTOUHONH TOYHOCTBIO B PEaIbHOM MacITabe BPEMEHH.

Karouesnle c10Ba: MaTeMaTH4YECKas MOJIENb, PEIIETYAThII MeTo/ bonbiMana, MOAETMPOBaHHE aHACTOMO3A.
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