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EVALUATION METHODS OF IMAGE SEGMENTATION QUALITY

Context. The basic methods of quantitative evaluation of image segmentation quality are explored. They are used to select segmentation
algorithms for specific image classes. The object of the study is cytological and histological images that are used in diagnosing the pathological
processes in oncology. The subject of the study is quantitative methods for segmentation algorithms’ quality evaluation.

Objective. The purpose of the work is to introduce the Gromov-Fr échet metric and develop a metric-based method for quantitative
evaluation of segmentation quality for image segmentation algorithms’ comparison.

Method. The quantitative evaluation criteria, which are based on comparison with etalon image and without the comparison with etalon
image, are analyzed. The algorithms for measuring the distances between images based on the Fi#& chet, Hausdorff, and Gromov-Hausdorff
metrics are analyzed.

To calculate the distance between the contours of images, the Gromov-Fréchet distance was introduced. The condition of identity,
symmetry and triangle is proved, and it is shown that the Gromov-Fr échet distance is a metric.

The metric-based method of quantitative evaluation of segmentation quality is developed. It is based on the use of the Gromov-Hausdorff
and Gromov-Fr échet metrics. The method is based on the algorithms for non-convex-into-convex polygon transformation, weighted chord
algorithm, and algorithms for calculating the Fréchet and Hausdorff distances. To calculate the Hausdorff distance between convex regions, the
Atalah’s algorithm was used. The Thierry and Manillo algorithm was used to find the discrete Fréchet distance. These algorithms have the
lowest computational complexity among their class of algorithms.

Results. The Gromov-Fr échet metric was introduced and the metric-based method of quantitative evaluation of segmentation quality was
developed.

Conclusions. The conducted experiments on the basis of cytological images confirmed the performance of software for evaluation the
distances between images. The developed method showed a high accuracy of estimation the distances between images. The developed software
module was used in intelligence systems for diagnosing the breast precancerous and cancerous conditions. The software can be used in various
software systems of computer vision. Promising areas for further research are search for new metrics to evaluate the distances between images.

Keywords: segmentation, quantitative segmentation evaluation, Fréchet metric, Hausdorff metric, Gromov-Hausdorff metric, Gromov-
Fr chet metric, polygon, cytological images.

NOMENCLATURE f, & — continuous curves;
AMS — automated microscopy system; o, B — arbitrary continuous non-decreasing function;
AR —area relation; (X ,d) —metric space X with metric d ;

FOM - figure of merit; . . .
NR FOM — number relation figure of merit; ¥; — parameterized curves in metric spaces,

AUMA - absolute ultimate measurement accuracy; f, & — isometric embeddings into a space;

RUMA - relative ultimate measurement accuracy, 7 — a set of isometric transformations;

FOC - figure of certainty; ' )

FRAG- fragmentation; P, Q. F, O - polygons;

CSP — correctly selected pixels; C P, — a contour (external boundary) of convex polygon

PDE - pixel distance error; P;
1 ; a predeﬁnrft:d( itmlagi;' OPi — an internal boundary of convex polygon P;
J ¢ — an expert (etalon) image;

I 4 j — an image, segmented by algorithm 4 s (N, M) —.a dlst.ance between regions;
D — a combined distance;

Aj — a segmentation algorithm,; @, )\ — weighted coefficients;

d(I°,1 4 )=d; — a distance between etalon image I € V' — initial set of polygon vertices;
n — a number of vertices in polygon;
and segmented image /4 by algorithm A ; m — a number of vertices corresponding to condition
d(x,y) — an Euclidean distance between points x andy; a; <180°
dp — a Hausdorff distance; B — a set of polygon vertices after convex regions
d,(V,,W,) — a distance between contours; formation;
o; — interior angles of the polygon;

dp — a Friichet distance;
O - algorithm computational complexity.

INTRODUCTION

Image processing and analysis have been widely used
in computed tomography, magnetic resonance tomography,

dgy — a Gromov-Hausdorff distance;
dGF — a Gromov-Fr échet distance;

A, B — compact sets;
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X-ray imaging (digital radiography), histology and cytology,
etc. [1]. For diagnostics in oncology, automated microscopic
system (AMS) are used to process and analyze cytological
and histological images.

The object of this research is cytological and histological
image segmentation.

Cytological image is a microscopic image of preparations
containing cells and their components (nucleus, cytoplasm)
[2]. Histological image is a microscopic image of preparation
thin sections of fixed tissues that reflect their structure [3].

The main disadvantages of most histological and
cytological images are low quality, non-uniform illumination
of areas, presence of noise, lack of clear contours between
the microscopic objects and the background. It is known
that image segmentation is crucial for the average computer
vision. There are many algorithms for image segmentation,
such as threshold, watershed distribution, k-means, and
others. Therefore, the choice of segmentation algorithms
and their parameters is of great significance. To select the
optimal parameters for segmentation algorithms, it is
necessary to evaluate the results of segmentation.

The subject of the research is methods of segmentation
quality evaluation.

There are the following segmentation evaluation criteria:
non-standard segmentation criteria that do not require
standard (etalon) segmentation and standard (etalon-based)
segmentation criteria.

One of the main criteria of the first group is homogeneity
of segments. This approach is based on calculation of value
dispersion of a certain image feature used for segmentation
[4]. Another criterion for evaluating segmentation is contrast
between segments. Besides, a shape of a segment is also a
criterion that can help evaluate segmentation quality. This
criterion can be effectively used for a specific image analysis.
The advantage of using non-standard criteria is simplicity
and speed.

The most famous algorithms belonging to the second
group are AR, FOM, NR FOM, AUMA, RUMA, FOC,
Baddeley, Average Distance, Variance distance, FRAG [5].
This group of algorithms is based on the use of metrics [6].
The results of etalon-based segmentation are compared with
the results of specific segmentation algorithm. The main
advantage of the second group of algorithms is high
accuracy of evaluation.

There is no single unified theory of image segmentation.
Most algorithms are heuristic in nature. Therefore, the actual
problem is objective quantitative evaluation of segmentation
quality.

The purpose of this article is to analyze and compare the
current evaluation methods of image segmentation, develop
a metric-based method and algorithms for quantitative
evaluation of image segmentation using histological and
cytological images.

1 PROBLEM STATEMENT

Let / be a predefined image (fig. 1). Expert (etalon) image

1€ is obtained after expert’s segmentation. Let image [ 4

be an image segmented by algorithm 4 ;. Then the distance
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Figure 1 — Expert image and image segmented by algorithms

between an etalon image and an image segmented by
algorithms 4; will be equal to d(le,[Af ) i=1,..,1.
It necessary to find out the algorithm 4; that meets the

requirement of distance minimum d ; = min(d,d,.....d;) .
It is necessary to find out the algorithm.
2 LITERATURE REVIEW

Segmentation quality evaluation has become a research
focus of many researchers since the late 80s — early 90s.
Zhang, Mattana, and Huo [5] stated that it is accuracy of
individual objects’ selection that can serve as image
segmentation evaluation. The authors considered individual
characteristics of objects. To evaluate the threshold
segmentation methods, Lee, Chung, and Park introduced
segmentation error probability criterion based on counting
wrongly classified pixels. Yasnoff and Mui [7] introduced
pixel distance error (PDE) to find out the distances between
pixels in the target and segmented images. The longer the
distance is, the higher the segmentation error will be.
Gerbrands [8] introduced FOM criterion to determine the
distance between the segmented pixel and “correct” pixel
location. Criterion RUMA, offered by Zhang [9], uses
geometric object parameters to evaluate segmentation quality.

The analyzed criteria mainly evaluate the distances
between individual objects in etalon and segmented images.
In practice, it is necessary to evaluate the quality of
segmentation for a group of objects.

The algorithms for comparing segmentation results by
means of metrics are based on known Friichet and Hasdorf
metrics.

Thus, Lopez and Reisner [10] developed an algorithm to
reduce a number of vertices of the convex polygon for a

given error & in the Hausdorff metric. The algorithm can be

used only for convex polygons. Alt and Scharfz [11]
calculated the Hausdorff distance between algebraic plane
curves using Voronoi diagrams. The algorithm is used for
partial cases with algebraic curves and has a high
computational complexity. Chew and Kedem [12] developed
an algorithm for finding the minimum Hausdorff distance in

metrics L; and L,,. The resulting computational complexity
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is O(n2 .10g2 n). Knauer and Scherfenberg [13] developed
a search method by a given image pattern, which has the
least distance in the metric of Hausdorff. In this case,
translation of the specified pattern is used to the search
image. The algorithm has a high computational complexity.
Alvarez and Seidel [14] developed a method for finding the
minimum weight spanning tree based on the Hausdorftf metric
for ¢ -dimensional space. The problem of approximation of
such a tree is solved in polynomial time. Atallah [15]
developed an algorithm for finding the Hausdorff distance
between convex polygons. The computational complexity

of this algorithm is O(m-n), where m and n refer to a

number of vertices of the first and second polygons,
respectively.

A number of publications are devoted to the
development of algorithms for finding the Friichet distance
between curves. Alt and Godau [16] developed algorithms
for finding the distance between parametric curves. The
computational complexity is O(mn-logmn). Mosig and
Clausen [17] developed an algorithm for calculating the
Friichet discrete distance for polygonal curves. They used
groups of rigid motion. The computational complexity is

O(m2 -nz), where m and n refer to a number of fragments
on the first and second curves. K. Buchin, M. Buchin, and
Wenk [18] developed an algorithm for calculating the Fritchet
distance for surfaces that are represented by simple
polygons. The algorithm has a polynomial complexity. Rote
[19] developed the algorithm for calculating the Friichet
distance between two curves given by the set of m and
linearly approximated segments. The computational
complexity is O(m-n). Schlesinger, Vodolazskiy, and
Yakovenko [20] obtained the computational complexity
O(m-n) for the Friichet metric for closed polygonal curves.
Ahn et al [21] developed an algorithm for calculating the
Friichet distance with inaccurately given vertices. For
d -dimensional space they obtained the computational
complexity of O(d-m-n). Cook, Driemel, Sherette, and
Wenk [22] developed an algorithm for calculating the Friichet
distance between non-flat surfaces. The authors reached
the polynomial time in the L, metric. Gudmundsson and
Smid [23] developed a fast algorithm for finding the similarity
of polygonal trees in the Friichet metric. The algorithm has
a polynomial complexity.

Eiter and Mannila [24] developed an algorithm for finding
the Friichet discrete distance between polygons. The
computational complexity of the algorithm is O(m-n). The
best algorithms for finding the Friichet distance for plane
closed curves have the computational complexity of
O(m-n). The best algorithms for finding the Hausdorff
distance for convex regions have computational complexity
O(m-n).

The mentioned algorithms calculate the distances
separately between the curves (contours) of the images in
the Fréchet metric and between the regions of the images in
the Hausdorff metric.

Therefore, it is necessary to develop a metric, method,
and software for evaluating segmentation quality for
complex images with many objects.

3 MATERIALS AND METHOD

In order to compute distances between images, we use
Hausdorff and Friichet metrics. To compute the shortest
distances between images, we use Gromov-Hausdorff and
Gromov-Fr échet metrics.

We present the basic metrics below.

Friichet metric. Let X be a metric space with a metric 4 .
For two curves f:[a,b]—> X and g:[a’,b'] > X, the
Friichet distance between them is equal to [10]:

dp =inf sup d(f(cu(t)),g(B()))
a,Bref0,1] ’

where o and B are arbitrary non-decreasing continuous
functions from the interval [0,1] on intervals [a,h] and
[a’,b], respectively. The value of function is «(0)=0 and
o (1) =1, and it is similar for function f.

Hausdorff metric. For a metric space (X,d), the
Hausdorftf metric dy will be called a metric on the set 3 of

all non-empty compact subsets X, which is defined by
means of the formula [25]:

di[( (4,B) = max{max min d(x, y), max min d (x, y)}
xeA yeB yeB xeA

Gromov-Hausdorff metric. The distance between two

compact sets 4 and B is equal to [26]:
dgy (4,B):= inf dj} (f(4),2(B)),
X.f.8

where f:4—> X, g:B—> X denote isometric

embeddings into a metric space (X ,d) .

Gromov-Fréchet metric. To measure the distance between
two curves, we use Gromov-Fr échet metric:

dgr (S,0) = XlIng i (f(5),2(0)),

where f:S—> X, g:0 — X — isometric embeddings into
a metric space (X,d). Suppose there are two parameterized
curves in metric spaces y; :[0,1] = X;, i=1,2. (X;.,d;) is
a metric, t —y;(¢) e X; (fig. 2).We embed isometrically
JiX;—>Z,i=12,(Z,d).

Then we take a Fre chet distance between j;y; and j,75,

dp (v Jav2). 1
Finally, infimum of such (1) along all isometric

embeddings jj, j, will be a Gromov-Fréchet distance:

dgr(v1,v2)= inf _dp(jivi,Jj2v2)-
JIJJZ’Z
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Figure 2 — Gromov-Fr échet metric between two parameterized curves

Theorem. The function dgf is a metric.
Proof. First we check if the definition is correct. Having
two spaces X; and X, we consider their bouquet

Z = X, v X, sticking together two arbitrary points x{) and

K
Let us define a metric d in a bouquet by means of the
formula:

d;(x,y),if x,y e X;.

d(x,y)= . U
di(x,x;)+dy(x3,y),if xe X;,ye X,.

Then we check the definition of a metric for dgp .
Obviously, dgr(v1,v2)20.

Besides, dgp(y,y) =0 for each V.
Let us denote that the definition implies that

dgr(Y1,v2) 2 dgr (v1([0,1]), 72 ([0,1])) .

If dgp(y1,v2)=0, then it
dgr(v1([0,1]),y,([0.1])) = 0, therefore, we can assume that
Y1([0,1]) = v2([0,1]).

The last equality in case of embedded curves gives
equality y; =y, exactly to parameterization. The symmetry

implies  that

of function dgp is obvious.

Let us verify the triangle inequality. Let v, :[0,1] = X},
i=1,2,3 be parameterized curves; dgr(y1,y2)=a,
dgr(Y2,v3)=b; and ¢ > 0. There are metric spaces Z;;

and Z,3, and such isometric embeddings
jl' Xl —)le, i:1,2,

lel_)Zz3’ i:2,3,

122

so that

drp(1v1,J2v2)<a+te,

dp(kyya,k3y3)<b+e.

Let Z=Zp 0, i Z,3 . In other words, 7 is derived
2/2

from Z;, U Z,3 by identification of each point j,(x) with
point ky(x), xe X,.
Metric ¢ on Z is defined by the formula:

d'(x,y), if x,yeZ.
d(x,y)=1d"(x,»), if x,y € Zs3.
inf{d'(x, jo(2))+d"(ky(2),») | z€ Xy },if x€ Z)p,y € Z3.

(Here d' is ametric on Zj, , 4" is a metric on Z,3).

Then from the triangle inequality for p it derives that

dor (Yi,¥2) <dp (v, ksv3) <dp (Jivis java) +
+dF(k2'Y2,k3'Y3)< a+b+2e=

=dgr (Y1,Y2) +dgr (v2,v3) + 2¢

Since g > () is arbitrary, we obtain the required inequality.

To evaluate segmentation quality, the researchers
developed quantitative evaluation method of segmentation
quality (QEMSQ), which is built on metric-based measuring
the distance between images.

After segmentation, we obtain a set of segments that we
approximate linearly and get a set of polygons. In general,
they are not convex. Thus, the task is to compare two non-
convex polygons after a specific algorithm segmentation
and expert segmentation.

Let P and Q be two non-convex polygons (fig. 3).
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Figure 3 — Polygons P and Q

Let us divide polygons p and O into sets of convex

polygons, that is,
0=0,v..uQ;U..U0, . Each convex polygon P and

1

P=RuU..UPBU..UPF,

Q; is represented as F; =Cp UOp, where Cp and Op
are contour (external boundary) and internal region of convex
polygon P, respectively. polygon

QQ] :CQ/ UOQ/
Then we receive
Q:(C‘Q1 UOQl)U(CQﬂ UOsz)UU(CQm UOQW)} ‘ w.

Similarly,

Let us represent the latter expressions in the following
form:

P:(Cp1 u...uCE u...uCPn)u(Op1 u...uOg u...uOPM),

Q=(CQ1 u...uCQ/_ u...uCQm)u(OQl u...uOQj u...uOQm).
Denote:

...uCR_ u...uC& =N,

..W0p U...u0p =V,

...uCQj u...uCQm =m,

UOQ/ U...UOQm =W2.

Then the distance between polygons P and Q is equal
to a sum of distances between contours and internal regions

of convex polygons P and Qj. The distance between
regions equals:

&R ) =inf ey > 0| Vi =10, 3j =Lm, dpy (0;,0;) <¢,
and vice versa Vj =1,m,3i=1,n, and dH(Oi,Oj)Sfl]},

d g — a Hausdorff distance.

//

P

a

Similarly, we calculate the distances between contours:
dy (V3 W) =infley >01Vi=1n,3j =L, dp(C,.C) <,
and vice versa Vj=1,m,3i=1,n, and dp(C;,C;)<ey },

dr —aFr chet distance.

Quantitative evaluation method of segmentation quality
is based on a combination of algorithms that ensure finding
the shortest distances between images. This combination
includes a set of algorithms: algorithm for non-convex-into-
convex polygon transformation, weighted chords algorithm,
Hausdorff distance algorithm, and discrete Fréchet distance
algorithm.

Stepwise quantitative evaluation method of
segmentation quality can be represented as follows:

1. Formation of a convex polygons’ set.

2. Conducting isometric transformations for embedding
convex polygons with a maximum cross section.

3. Computing a Fréchet distance for convex polygons.

4. Computing a Hausdorff distance for convex polygons.

5. Finding the shortest distance based on weighted
metrics (Fréchet and Hausdorff metrics) between polygons
P and Q according to D=¢dy +Adp.

Let us describe the basic algorithms that underpin this
method.

Algorithm
transformation:

for non-convex-into-convex polygon

Let P be a non-convex polygon with vertices
V= {vo,vl,...,vn_l}. Algorithm for convex polygon
formation consists of the following steps:

1. Beginning with an upper vertex, we select the vertices
with internal angles Qt; larger than 180°. If such angles do
not exist, then the polygon is convex and the algorithm is
completed. Otherwise, we get an array of vertices

B={by,by,....D, }

2. We connect consistently the received vertices b,
beginning with the top vertex and get a polygon A .

3. We repeat step 1 with a received polygon A

4. We repeat steps 1 and 2 with polygons A until the

angle of each vertex meets the condition o <180°.
The algorithm is graphically demonstrated in fig. 4

/

A

b

Figure 4 — Partitioning non-convex polygon into convex polygons: a — polygon P, with internal angles larger than 180°, b — polygon A,
convex region formation
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Algorithm computational complexity is O(n+ m), where
n is a number of vertices of initial non-convex polygon and
m is a number of vertices of non-convex polygon.

Weighted chords algorithm is described in the article of
Berezsky, Melnyk, Batko, and Pitsun [27] Computational
complexity of the algorithm is O(n-m), where n is a number
of weighted chords of the first polygon and m is a number
of weighted chords of the second polygon. For convex
regions’ comparison, the Atallah’s algorithm [15] was used.
For contour comparison, we used the Fréchet discrete
distance algorithm developed by Eiter and Mannila [25]. So,
the developed QEMSQ algorithms have the least
computational complexity.

4 EXPERIMENTS

For computer experiments, we used cytological images
[28].

To compare segmentation quality of individual micro
objects, we use etalon image shown in fig. 5.

Other images for these experiments were generated
randomly. In this case, we use the following methods to
evaluate segmentation quality: CSP, WSP, PDE, FRAG,
AUMA, and RUMA.

To evaluate segmentation quality of micro objects’ groups,
we use cytological images. Fig. 6 shows the etalon image and
images segmented by means of thresholding, k-means, and
watershed distribution algorithms [29]. We used Hausdorff,
Fré chet, Gromov-Hausdorff, and Gromov-Fr é¢chet metrics.

Figure 5 — Etalon image

Figure 6 — Image segmentation: a — output image, b — etalon image, ¢ — segmentation results by k-means + threshold algorithms, d —
segmentation results by watershed + threshold algorithms, e — segmentation results by threshold algorithm
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5 RESULTS

Comparative analysis of image segmentation is
demonstrated in Table 1.

Thus, the described methods of segmentation quality
evaluation rated the most similar to etalon images and the
most dissimilar images. These methods should be used to
evaluate the segmentation quality of individual microscopic
objects rather than the entire image as a whole. Table 2
shows the results of segmentation quality evaluation of
images illustrated in fig. 6.

Analysis of data in Table 2 demonstrates that Gromov-
Fré chet and Gromov-Hausdorff metrics showed better results
than others. The combination of segmentation algorithms
k-means and threshold optimally suits the segmentation of
cytological images.

6 DISCUSSION

The analyzed methods of quantitative evaluation of
segmentation quality, such as CSP, WSP, PDE, FRAG,
AUMA, RUMA provide evaluation for only individual
microscopic objects.

To evaluate the quality of segmentation of micro objects’
groups, it is necessary to apply metrics. The most common
metrics are the classical metrics of Fré chet and Hausdorff.
At present, the best known algorithms that implement the
Fréchet metric for contours (flat curves) have the
computational complexity of O(m-n). Known algorithms
for calculating the Hausdorff distance between convex
regions (polygons) have the computational complexity of
O(m - n). The Hausdorff and Fréchet metrics allow separately
measuring the distances between regions and contours of
images. To find the shortest distances between regions, the
Gromov-Hausdorff metric is used.

The disadvantages of the known algorithms are the
following:

1. Algorithms based on the Fré chet metric calculate the
distance only between the contours of images;

2. Algorithms based on the Hausdorff metric calculate
the distance only between convex regions of images;

3. There are no algorithms that calculate the shortest
distance between contours.

The advantages of the developed algorithms are the
following:

1. The proposed Gromov-Fréchet metric allows estimating
the shortest distance between the contours of images;

2. The use of a combined metric based on the metrics of
Gromov-Hausdorff and Gromov-Freche provided the
possibility to calculate the shortest distances between
contours and non-convex regions of images.

3. The developed EMISQ, which is based on the best
known algorithms for calculating the Fréchet and Hausdorff
distances, automatically estimates the shortest distances
between groups of micro objects.

CONCLUSIONS

In the article, the authors introduced the Gromov-
Fréchet distance and proved that distance is a metric. The
method of quantitative evaluation of image segmentation
quality is developed, on the basis of which a program module
is designed and implemented, which allows calculating the
shortest distance between images in an automatic mode.

The scientific novelty of the results is the following:

— for the first time, a Gromov-Fréchet metric was proposed
for measuring the shortest distance between the contours
of images;

— for the first time, quantitative evaluation method of
segmentation quality based on the integrated use of Gromov-
Fré¢ chet and Gromov-Hausdorff metrics was applied allowing
to evaluate the shortest distances between images.

The practical significance of the results is in the
development of software to evaluate the shortest distances
between the images. Computer experiments that were
conducted on the example of cytological and histological
images showed high efficiency of software that was used in
image automatic segmentation algorithms.

Table 1 — Comparative analysis of image segmentation

Methods of segmentation quality ‘
evaluation ‘
CSP, % 80.96 93.52 70.5 97.84
WSP, % 53.72 47.9 58.26 44.01
FRAG, % 98 90 70 97
AUMA, -pixels 4347.0 1165.0 5113.0 1105.0
RUMA, % 15.22 4.08 17.9 3.87
Table 2 — Comparative analysis of image segmentation based on metrics
Metrics b) — b) b) —¢) b) — d) b) — e)
Hausdorff 0 19.20 21.37 46.57
Gromov-Hausdorff 0 19.20 21.37 46.57
Fréchet 0 36.76 26.4 52.77
Gromov-Fréchet 0 36.76 24.18 52.77
Weighted metrics 0 27.98 22.78 49.67
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Further areas of research embrace the development of

algorithms of de-paralleling the metric quantitative
evaluation method of segmentation quality, which will help
speed up the process of segmentation quality evaluation
and segmentation algorithm optimization. Besides, a
promising area for further investigations is development of
a metric for evaluation the similarities of non-convex

polygons.

ACKNOWLEDGEMENTS

The proposed research has been developed within the

state budget project “Hybrid Intelligent Information
Technology Diagnosing of Precancerous Breast Cancer
Based on Image Analysis” (state registration number
1016U002500).

10.

1

—

12.

REFERENCES

Yinpeng J. Contrast Enhancement by Multi-scale Adaptive
Histogram Equalization / J. Yinpeng, L.Fayadb, A. Laine //
Proceedings of SPIE. — 2001. — Vol. 4478. — P. 206-213.
DOI: 10.7916/D8QZ2M29

Baron T. H. A Prospective Comparison of Digital Image Analysis
and Routine Cytology for the Identification of Malignancy in
Biliary Tract Strictures / T. H. Baron, G. Harewood, A. Rumalla
/I Clinical Gastroenterology and Hepatology. — 2004. — Vol. 2,
Issue 3. — P. 214-219. DOI: 10.1016/51542-3565(04)00006-0
Petushi S. Large-scale computations on histology images reveal
grade-differentiating parameters for breast cancer / S. Petushi,
F. U. Garcia, M. M. Haber / BMC Medical Imaging. — 2006. —
Vol. 6, Issue 14. — P. 496-499. DOI: 10.1186/1471-2342-6-14
Levine M. D. Dynamic measurement of computer generated
image segmentations /M. D. Levine, A. Nazif// IEEE Transactions
on Pattern Analysis and Machine Intelligence. — 1985. — Vol. 7,
Issue 2. — P. 155-164. DOI: 10.1109/TPAMI.1985.4767640
Zhang Y. J. A review of recent evaluation methods for image
segmentation /Y. J. Zhang// Signal Processing and its Applications
(ISSPA) : Sixth International Symposium, Kuala Lumpur
Malaysia, Aug 13-16, 2001 : proceedings. — Kuala Lumpur,
2001. — P. 148-151.

. Berezsky O. Methods of quantitative evaluation of image

segmentation quality / O. Berezsky // Signal/lmage Processing
and Pattern Recognition (UkrOBRAZ’2014) : XIIIth All-Ukraine
International Conference, Kyiv, 3—7 November 2014 :
proceedings. — Kyiv, 2014. — P. 51-54.

Lee S. U. A comparative performance study of several global
thresholding techniques for segmentation / S. U. Lee, S. Y. Chung,
R. H. Park // Computer Vision, Graphics, and Image Processing. —
1990. — Vol. 52, Issue. 2. — P. 171-190.

Zhang Y. J. Segmentation evaluation using ultimate measurement
accuracy / Y. J. Zhang, J. J. Gerbrands // Image Processing
Algorithms and Technique. — 1992. — Vol. 1657. — P. 449-460.
Zhang Y. J. Objective and quantitative segmentation evaluation
and comparison /Y. J. Zhang, J. J. Gerbrands // Signal Processing. —
1994. — Vol. 39, Issue.2. — P. 43-54. DOI:10.1016/0165-
1684(94)90122-8

Lopez M. Hausdorff approximation of convex polygons /
M. A. Lopez, S. Reisner // Computational Geometry. — 2005. —
Vol. 32, Issue 2. — P. 139-158. DOI: 10.1016/
j.comgeo.2005.02.002

. Alt H. Computing the Hausdorff distance between curved objects

/ H. Alt, L. Scharfz // International Journal of Computational
Geometry. — 2008. — Vol. 18. — P. 307-320. DOL: 10.1142/
S0218195908002647

Chew L. P. Getting around a lower bound for the minimum
Hausdorff distance / L. P. Chew, K. Kedem // Computational

126

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Geometry. — 1998. — Vol. 10, Issue 3. — P. 197-202. DOI: S0925-
7721(97)00032-1

Knauer C. Approximate nearest neighbor search under translation
invariant hausdorff distance / C. Knauer, M. Scherfenberg //
International Journal of Computational Geometry. — 2011. —
Vol. 21, Issue 3. — P. 369-381. DOIL: S0218195911003706
Alvarez V. Approximating the minimum weight spanning tree of
a set of points in the Hausdorff metric / V. Alvarez, R. Seidel /
Computational Geometry. — 2010. — Vol. 43. — P. 94-98.
Atallah M. J. Computing Some Distance Functions Between
Polygons / M. J. Atallah, C. Celso / Computer Science Technical
Reports. — 1990. — Vol. 9. — P. 1-10.

Alt H. Computing the Fréchet distance between two polygonal
curves / H. Alt, M. Godau // International Journal of Computational
Geometry and Applications. — 1995. — Vol. 5. — P. 75-91.
Mosig A. Approximately matching polygonal curves with respect
to the Fréchet distance / A. Mosig, M. Clausen // Computational
Geometry. —2005.—Vol. 30, Issue 2. —P. 113—127. DOI: 10.1016/
j.comgeo.2004.05.004

Buchin K. Computing the Fréchet distance between simple
polygons / K. Buchin, M. Buchin, C. Wenk // Computational
Geometry. —2008. — Vol. 441, Issue 1-2. —P. 2-20. DOI: 10.1145/
1137856.1137870

Rote G. Computing the Fréchet distance between piecewise
smooth curves / G. Rote / Computational Geometry. — 2007. —
Vol. 37. — P. 162-174. DOL: 10.1016/j.comgeo.2005.01.004
Schlesinger M. 1. Frechet Similarity of Closed Polygonal Curves
/ M. 1. Schlesinger, E. V. Vodolazskiy, V. M. Yakovenko //
International Journal of Computational Geometry. — 2016. —
Vol. 26. — P. 53—66. DOL: 10.1142/S0218195916500035
Computing the discrete Fréchet distance with imprecise impute
/ [H.-K. Ahn, C. Knauer, M. Scherfenberg et al.] / International
Journal of Computational Geometry. — 2016. — Vol. 22. — P. 27—
44. DOL: 10.1142/S0218195912600023

Computing the Fr échet distance between folded polygons /
[A. F. Cook, Anne Driemel, Jessica Sherette et al.] //
Computational Geometry. — 2015. — Vol. 50. — P. 1-16.
Gudmundsson J. Fast algorithms for approximate Fréchet matching
queries in geometric trees / J. Gudmundsson, M. Smid //
Computational Geometry. — 2015. — Vol. 48. — P. 479-494.
DOI:10.1016/j.comgeo.2015.02.003

Computing discrete Fréchet distance: Technical Report: CD-TR
94/64 / T. Eiter, H. Mannila // Information Systems Department,
Technical University of Vienna. — Vienna, 1994. — 7 p.

Deza M. M. Encyclopedia of Distances / M. M. Deza. — Berlin :
Springer-Verlag, 2009. — 590 p.

Gromov M. Metric Structures for Riemannian and Non-
Riemannian Spaces / M. Gromov. — Boston, MA, Progress in
Mathematics, 1999. — 1041 p.

Regions Matching Algorithms Analysis to Quantify the Image
Segmentation Results / [O. Berezsky, Y. Batko, O. Pitsun et al.]
// Sensors & Transducers. —2017. — Vol. 208, Issue 1. — P. 44-49.
DOI: 10.1109/STC-CSIT.2016.7589862

Fuzzy system diagnosing of precancerous and cancerous conditions
of the breast / [O. Berezsky, S. Verbovyy, L. Dubchak et al.] //
Computer Sciences and Information Technologies (CSIT) : XI th
International Scientific and Technical Conference, Lviv, 6—10
September 2016 : proceedings. — Lviv, 2016. — P. 200-203. DOLI:
10.1109/STC-CSIT.2016.7589906

29.Berezsky O. Automated Processing of Cytological and Histological

Images / Oleh Berezsky, Oleh Pitsun // Perspective Technologies

and Methods in MEMS Design (MEMSTECH’2016) : XII th

International Conference, Lviv-Polyana, 20-24 April 2016 :

proceedings. — Lviv, 2016. — P. 51-53. DOI:10.1109/
MEMSTECH.2016.7507518

Article was submitted 14.06.2017.

After revision 20.08.2017.



—_

p-ISSN 1607-3274. Panioenekrponika, iHpopmaruka, ynpasiinas. 2018. Ne
e-ISSN 2313-688X. Radio Electronics, Computer Science, Control. 2018. Ne

Ju—
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!JI-p TexH. Hayk, npodyecop, 3aBigyBad Kadenpu KOMII'IOTepHOI irxeHepii, TepHONUIbChKHIT HALIOHAIPHUN €KOHOMIYHHI YHIBEpCHTET,
Tepuominb, Ykpaina

?Acnipant, TepHONUIBCHKUI HAIIOHAIBHUN eKOHOMIYHHI yHiBepcutet, TepHominb, Ykpaina

METO/IU OLIIHKU SIKOCTI CETMEHTAIIIi 306PAYKEHb

AKTyaJ bHiCTh. PO3IIAHYTO OCHOBHI METOIY KUIBKICHOI OIIHKHM SIKOCTI CerMeHTallii 300pakeHb. BOHM BUKOPHCTOBYIOTHCS A1 BHOOpY
aJITOPUTMIB CerMEHTALl Il KOHKPETHUX KJIaciB 300paxeHb. O0’€KTOM JOCIIIPKEHHS € LIUTOJIONYHI Ta IiCTONOTYHI 300paXeHHs], sIKi BUKOPH-
CTOBYIOThCSI IIPH [1arHOCTYBaHHI NaTOJIOTYHUX MPOLECIB B OHKOJIOri. IIpeaMeToM nociifikeHHs € KUIbKICHI METOH OL[IHKH SIKOCTi alrOpUTMiB
cerMeHTairii.

Meta po6oTu — BBesieHH MeTpuku I'pomoBa-Ppele Ta po3poOiaeHHs METPUYHOIO METONY KUIbKICHOI OLIHKM SIKOCTI CerMEHTallii A
MOPIBHSHHS aJIFOPUTMIB CErMeHTaLil 300pakeHb.

Metona. IIpoananizoBani KpuTepil KUIbKICHOI OLIHKH, sIKi 0a3yI0TbCsl Ha MOPIBHSHHI Ta 0€3 IOPIBHAHHS 3 €TAJOHHMM 300pa)KEHHSM.
IpoananizoBaHO alTOPUTMU 3HAXOPKEHHS BiJICTaHI MK 300paskeHHAMU Ha ocHOBI MeTpuk Ppeme, Xaycnopda, ['pomoa-Xaycnopda.

J11s1 3HAXO[PKEHHS BifICTaHi M KOHTypaMH 300pakeHb BBeJIHO Bicranb I'pomoBa-dpeute. JJoBe€HO yMOBY TOTOXHOCTI, CAMETPHYHOCTI
Ta TPUKYTHHKA 1 10Ka3aHO, 10 BincTaHb I poMoBa-Dpellie € METPHKOIO.

Po3pobneno MerpuuHuil MeTO KiIbKICHOI OLIHKH SIKOCTI cerMeHTauii. Bin 6a3yerbcst Ha BUKOpHCTaHHI MeTpuk I'pomosa-Xaycnopda ta
I'pomoBa-Ppewme. Merox nobynoBaHUil Ha OCHOBI aJITOPUTMIB IIEPETBOPEHHS HEOIYKJIMX IOJIIOHIB y OMYKI, alrOpUTMy 3Ba)KEHUX XOpI,
aJropuTMiB obuncieHHs Bigcraneit ®peme Ta Xaycnopda. [t 3HaxomKeHHs BigcTani Xaycnopda MK OIyKIUMHU OOJNACTSAMU BUKOPUCTAHO
anroput™ M. Aranaxa. Jlns 3HaXoIDKeHHs AUCKpeTHOI Bincrani ®peme Bukopuctano anroputm Tomaca Eifrepa i Xeliki Maninmm. [Jlani
aJITOPUTMH MaIOTh HAIHIKUY OOUHCIIOBAIBHY CKIIAJHICTB CEpel] CBOTO KIIACy alrOpUTMIB.

Pe3yabraTn. BeeneHo merpuky I'pomosa-@pere Ta po3poOneHo METPUYHHUIA METOJ| KUIbKICHOI OLIHKH SIKOCTI CErMEHTALil.

BucHoBku. IIpoBesieHi eKCliepMMEHTH HA OCHOBI LIUTONOTIYHMX 300paXKeHb MiATBEPAUIM MPALEe3JaTHICTh MPOrpaMHOro 3a0e3neyeHHs
OLIIHKY BiAICTaHi MDK 300pakeHHAMH. Po3pobnenuii MeTon nokasaB BUCOKY TOYHICTb OLIHKM BiJcTaHel Mik 300pakeHHsMuU. Po3poGueHuit
IIPOrpaMHUM MOJY/Ib BUKOPUCTAHHUH Y IHTEIEKTyallbHIl CHCTEMI 1IarHOCTYBAaHHsI IEPEAPAKOBHX 1 PAKOBUX CTaHiB MOJIOYHOI 3a1034. IIporpamue
3a0e3neyeHHss Moke OyTH BHKOPHCTaHE B PI3HHMX IPOrPAMHMX CHCTEMaX KOMII'IOTepPHOro 30py. IlepcrieKTHBHUMH HampsiMaMu JOCIIIXKEHb €
HOIIYK HOBUX METPUK s OLIHKH BiJICTaH1 MiX 300pa)KeHHAMH.

KuouoBi c1oBa: cermenTalis, KilbKicHa OLIHKA cermeHrauii, merpuka @pee, merpuka Xaycnopda, merpuka ['pomoa-Xaycnopda,
merpuka I'pomoBa-®pelire, MOIIroOH, LUTONOTIUHI 300pakeHHS.

Bepesckuit O. H.', ITnuyn O. 1.2

!JI-p TexH. Hayk, npodeccop, 3aBenyonmii Kadeapoil KOMIIBIOTEpHOI HHXeHepnH, TepHOIOIBCKHIIT HAlMOHAIBHBIN Y9KOHOMUYECKHI YHHU-
Bepeuret, TepHonons, Ykpauna

?Acnupant, TepHONOIBCKUI HALMOHAIBHBIA YKOHOMHYECKHH yHUBepcuTet, TepHOmons, YkpanuHa

METO/Ibl OLIEHKU KAYECTBA CETMEHTAIIUUA U3OBPAXKEHUI

AKTYaJIbHOCTh. PaccMOTpEeHBI OCHOBHBIE METObI KOJIMUYECTBEHHOH OLIEHKM KayecTBAa CErMEHTaluH u300paxkeHUH. OHM HCIOJIb3YIOTCS
JUIsl BBIOOpPA aIrOpUTMOB CErMEHTALMK [JIsl KOHKPETHBIX KIIACCOB M300paxceHuil. OObEKTOM HCCIeN0BaHUS ABIISIOTCS IUTOJIOTMYECKUE U THCTO-
JIOTHYECKHE M300pakeHuUsl, UCIIONb3YEMblE IIPH JAUArHOCTUPOBAHUM IIATOJOTMYECKHUX IIPOLECCOB B OHKONOruM. IIpeaMeroM mccinenoBaHus
SIBJIAIOTCS KOJIMYECTBEHHBIE METO/IbI OLIEHKH KaueCTBa aJIFOPUTMOB CErMEHTAIMU.

Lean padoTbl — BBeieHUE MeTpUKH I pomoBa-Dpeltie 1 pa3paboTka METPUYECKOTO METO/1a KONMYECTBEHHOH OLIEHKH KauecTBa CErMeHTa-
MM JUIsl CPABHEHHS aJITOPUTMOB CETMEHTALUM M300paskeHUI.

Meton. [Ipoananu3upoBaHbl KpUTEPUH KOJIMYECTBEHHOM OLIEHKM, OCHOBaHHBIE HA CPABHEHHMU 1 0€3 CPaBHEHUsI C STAJIOHHBIM N300paXKeHH-
eM. [IpoaHanu3upoBaHbl aNrOpUTMBbl HAXOXKJIEHHs PAaCCTOSHUS MEXIy M300pakeHHsAMHM Ha ocHoBe MeTpuk Ppeme, Xaycnopda, ['pomosa-
Xaycnopda.

J11s HaXOXKJIEHHsl PACCTOSHUS MEX 1y KOHTypaMu M300paxeHuil BBefieHo paccrosiuue I’ pomosa-Ppeine. JlokazaHo ycioBHE TOXKIECTBEHHO-
CTH, CUIMMETPUYHOCTH M TPEyrobHHUKA M MOKa3aHO, YTO paccTosHue I'pomoBa-Dpeltie sIBIAETCS METPUKOM.

Pa3paboTran MeTpuuecKuii METO/] KOJIMYECTBEHHOM OLEHKH KayecTBa cerMeHTanuu. OH 6a3upyercs Ha MCIONb30BAaHUM MeTpHK ['pomoBa-
Xaycnopda u I'pomosa-Ppere. MeTos IOCTPOEH HA OCHOBE aJTOPUTMOB MPEOOPa30BaHMS HEBBIIYKIBIX TIOJUTOHOB B BBIIYKIIbIE, aITOPUTMA
B3BEIIEHHBIX X0/, aJITOPUTMOB BbIUHCIEH s paccTosiHui @pemte u Xaycnopda. [ HaxoxaeHus paccrosHus Xaycaopda Mex1y BbITYKIBIMU
0071acTsIMH UCHOJIb30BaH anroput™ M. Aranaxa. J{ns HaXoXKIeHUsl AUCKPETHOro paccTosHust Ppelte ucnonp3oBaH anroputM Tomaca Peiitepa
n Xelkky MaHuuibl. JIaHHbIE aArOpUTMBl MMEIOT CaMyI0 HU3KYIO BEIYHCIIMTENBHYIO CIIOKHOCTh CPEIH CBOETO KJIacca alrOpHTMOB.

Pe3yabraTsl. Beeneno merpuky I'pomoBa-®peiite u pazpaboTaHO METPUUECKUH METOJ KOMMYECTBEHHON OLIEHKM KAayeCTBa CErMEHTALUH.

BriBoabl. IIpoBe/ieHHbIE SKCIEPUMEHTH Ha OCHOBE LUTOJOTMUECKUX M300pa’keHHH MOATBEPAMIN PabOTOCIIOCOOHOCT MPOrPaMMHOIO
obecriedeHns OLIEHKH PAacCTOSHHs MeXIy M300pakeHusMuU. PaspaboTaHHBIN MeTOZ MOKa3all BEICOKYIO TOUHOCTh OLIEHKH PACCTOSIHUM MEXKIy
n300paxkeHusMHU. Pa3paboTaHHBIN NpPOrpaMMHBINA MOZAYIb HCHOJIBb30BaH B MHTEIUIEKTyallbHbIE CHCTEME JAMATHOCTUPOBAHUS MPEIPAKOBBIX U
PAKOBBIX COCTOSIHUHM MOJIO4YHOM skenesbl. IIporpamMmmHoe obecrneueHne MOKET OBITh MCIIOJIb30BAHO B PA3IMYHBIX NPOIPAMMHBIX CHCTEMax
KOMIIBIOTEPHOIO 3peHHs. IlepcrieKTHMBHBIMU HAMpPaBIEHUAMH MCCIEOBAHHI SBIIAETCS TOUCK HOBBIX METPUK IS OLIEHKH PACCTOSIHUS MEKIY
HM300paKeHUSIMH.

KuoueBble c10Ba: cerMeHTalus, KOJMYECTBEHHAs OLIEHKa CerMeHTallMu, MeTpuka I'pomoBa-Xaycnopda, merpuka ['pomosa-Operie,
HOJIMTOH, LIUTONIOTUYECKHE N300paKEHUs!.
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