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INTRODUCTION

Unsupervised classification, or clustering, is one of
the fundamental problems of computational intelli-
gence. Nowadays, there are various means for its solv-
ing, among them the significant place is occupied by
artificial neural networks (self-organizing maps, ART
neural networks, ‘Brain-State-in-a-Box’ neuromodels,
etc.) [1], fuzzy clustering systems (fuzzy c-means, algo-
rithms of Gustafson — Kessel, Yager — Filev, Klawonn —
Hoeppner, etc) [2, 3], and hybrid systems based on the
combination of both of them [4]. While the mentioned
computational intelligence means for unsupervised data
processing are well developed and rather powerful, they
often appear to be inapplicable for real life problems
solving due to their time-consuming run time. The
present requires data processing systems to be not only
powerful from computational point of view, but also to
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be sufficiently rapid to handle instantaneous changes in
real world environment. New generation of artificia
neural networks, commonly known as spiking neural
networks [5, 6], challenged to overcome this drawback
of the classical computational intelligence means. Being
highly realistic models of biological neurons, spiking
neural networks also inherited capability of rapid infor-
mation processing from them [5, 7, 8]. Moreover, hybrid
computational intelligence systems based on self-learn-
ing spiking neural network made it possible to extend
capabilities of latter for efficient data clustering even un-
der uncertainty [9-12]. Anyway, the highest efficiency
of spiking neural networks can be achieved in the case
of their hardware implementation only [8]. One can run
into a difficulty, however, in this direction. Although
spiking neural networks are becoming a popular compu-
tational intelligence tool for various technical problems
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solving that is confirmed by constant growing of the
number of scientific and research works on that subject,
their architecture and functioning are treated in terms of
neurophysiology rather than in terms of any technical
sciences apparatus. None technically plausible descrip-
tion of spiking neurons functioning has been proposed
yet. Spiking neural network descriptions lack for general
technical ground.

This work presents self-learning spiking neural net-
work as a data processing system of classical control
theory. Neuron synapse is shown to be a second-order
critically damped response unit, and neuron soma is
treated as a threshold-detection unit. Description of spik-
ing neuron functioning in terms of the Laplace trans-
form makes it possible to state spiking neural network
architecture on a general technical ground that can be
used in the following for constructing various hardware
implementations of self-learning spiking neural net-
works.

SELF-LEARNING FUZZY SPIKING NEURAL
NETWORK

Self-learning fuzzy spiking neural network architec-
ture is heterogeneous three-layered feed-forward neural
network with lateral connections in the second hidden
layer [9].

The first hidden layer is constructed to perform popu-
lation coding of input signal [7]. It acts in such a man-
ner that each dimensional component x(k), i = 1, n, of
input signal x(K) is processed by a pool of h receptive
neurons RN;;, | = 1, h. Obviously, there can be different
number of receptive neurons h, in a pool for each di-
mensional component in the general case. For the sake
of simplicity, we will consider here that the number of
neurons is equal for al pools.

As a rule, activation functions of receptive neurons
within a pool are bell-shaped (Gaussians usually), shift-
ed, overlapped, of different width, and have dead zone.
Generally firing time of a spike emitted by a receptive
neuron RN,;; upon incoming signal x(k) lies in a certain

interval {—1} U [0, t'% ] referred to as coding interval
and is described by the following expression:
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where | o] is the floor function, y(s,e), ¢!, o, and 6, ,
are the receptive neuron’s activation function, center,
width and dead zone, respectively (r.n. in the last param-
eter means ‘receptive neuron’), —1 indicates that the
neuron does not fire.
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In this work, we used Gaussian as activation function
of receptive neurons:
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There can be several ways to set widths and centers of
receptive neurons within a pool. As a rule, activation
functions can be of two types — either ‘narrow’ or ‘wide'.
Centers of each width type of activation function are cal-
culated in different ways but in either case they cover
date range uniformly. More details can be found in [7].

Spiking neurons form the second hidden layer of the
network. Spiking neuron is considered to be formed of
two constituents, they are: synapse and soma. Synapses
between receptive neurons and spiking neurons are mul-
tiple structures. A multiple synapse MS;; consists of a

set of q subsynapses with different time delays d”,
d?-d"*>0, d'-d"> th,, and adjustable weights wf,
(here p = 1, q). It should be noted that number of subs-
ynapses within a multiple synapse are fixed for the

whole network. Having a spike t{'(x;(k)) from the li-th
receptive neuron, the p-th subsynapse of the j-th spiking
neuron produces delayed weighted postsynaptic potential

Ui = whehi = whet -t x(k) +d”), 3)

where () is a spike-response function usually de-
scribed by the expression [13]

= oak) +d)

e(t— (1 (x(k)) +d”) =

Tpsp
[0]
X exp(l_t — (b (:L(S:)) + dp)) x
x H(t— (" (x(k)) +d")), )

Tpgp — Membrane potential decay time constant whose
value can be obtained empirically (PSP means ‘ postsyn-
aptic potential’), H(e) —the Heaviside step function.
Output of the multiple synapse MS; forms total postsyn-
aptic potential

Ui = 3 ul(o). (5)
p=1

Each incoming total postsynaptic potential contributes
to membrane potential of spiking neuron S\, as follows:

n h
ui(t) = Z Zujli(t)- (6)

i=1ll=1
Spiking neuron SN, generates at most one outgoing
spike ti*(x(k)) during a simulation interval (the presen-
tation of an input pattern x(k)), and fires at the instant
the membrane potential reaches firing threshold 6,



ISSN 1607-3274. PanioenekTpoHika, inpopmaruka, ynpabrminas. 2010. Ne 1.

(sn. means here ‘spiking neuron’). After neuron has
fired, the membrane potentia is reset to the rest value
U, (O usualy) until the next input pattern is presented.

Number of spiking neurons in the second hidden lay-
er is set to be equal to the number of clusters to be de-
tected. Each spiking neuron corresponds to a certain
cluster. In self-learning spiking neural network, the neu-
ron that has fired first to the input pattern defines cluster
that the pattern belongs to [7]. Firing time of spiking
neuron t”'(x(k)) defines temporal distance of input pat-
tern to center of the corresponding cluster.

The third layer, namely output fuzzy clustering layer,
takes temporal distances of input pattern to centers of all
classes and produces membership level according to
fuzzy probabilistic approach [9]:

2
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where m is the number of classes, £ >0 is the fuzzifier
that determines boundary between clusters and controls
the amount of fuzziness in the fina partition.

LEARNING ALGORITHM

The purpose of an unsupervised learning agorithm of
spiking neural network is to adjust centers of spiking
neurons so as to make each of them to correspond to
centroid of a certain data cluster. Such learning ago-
rithm was introduced on the basis of two learning rules,
namely, ‘Winner-Takes-All’ rule and temporal Hebbain
rule [13]. The first one defines which neuron should be
updated, and the second one defines how it should be
updated. The algorithm adjusts neuron centers through
synaptic weights updating, whereas synaptic time de-
lays always remain constant. The concept here is that
significance of the given time delay can be changed by
varying corresponding synaptic weight.

Each learning epoch consists of two phases. Competi-
tion, the first phase defines a neuron-winner. Being lat-
eraly linked with inhibitory connections, spiking
neurons compete to respond to the pattern. The one wins
(and fires) whose center is the closest to the pattern.
After competition, weights adjusting takes place. The
learning algorithm adjusts synaptic weights of the neu-
ron-winner to move it closer to the input pattern. It
strengthens weights of those subsynapses which contrib-
uted to the neuron-winner’s firing (i.e. the subsynapses
produced delayed spikes right before the neuron firing)
and weakens ones which did not contribute (i. e. the de-
layed spikes appeared right after the neurons firing or

long before it). Generally, the learning algorithm can be
expressed as

wii(K) +nu(KL(At), j = T;

wWhi(K+1) = { ®

ijli(K)! i#],

where K is the current epoch number, n,(¢) >0 is the
learning rate (while it is constant in [13], it can depend-
ed on epoch number in the general case; w means
‘weights'), L(e) is the learning function [7, 13], | is the
number of neuron-winner on the current epoch, At is
the time delay between delayed spike ti'(x(k))+d"
produced by the p-th subsynapse of the li-th synapse and
spiking neuron firing time t/*'(x(k)):

Ath = 67 (x (k) +d° =t (x(K)). ©)

As a rule, the learning function has the following
form [9, 13]:

Atf -
Laath) = 1+ Brep(- =) -B, (0
2
[T R— — (1)
B
2In(1+Bj

where a0 <0, B> 0, v are the shape parameters of the
learning function L(e) that can be obtained empirically
[7, 13]. The learning function and its shape parameters
are depicted on Fig. 1.

After learning stage, center of a spiking neuron repre-
sents centroid of a certain data cluster, and spiking neu-
ral network can successfully perform unsupervised
classification of the input set.

The learning algorithm (8) updates only neuron-win-
ner on each epoch and disregards other neurons. It
seems more natural to update not only spiking neuron-

L(AD)
1

At

Fig. 1. Learning function L(e)
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winner, but aso its neighbours. This approach is known
as ‘Winner-Takes-More' rule. It implies that there is a
cooperation phase before weights adjustment. Neuron-
winner determines a local region of topological neigh-
bourhood on each learning epoch. Within this region,
the neuron-winner fires along with its neighbours, and
the closer a neighbour is to the winner, the more its
weights are adjusted. The topological region is repre-
sented by the neighbourhood function o(|At;|) that de-

pends on difference |At;| between the neuron-winner
firing time t'(x(k)) and the neighbour firing time
t*(x(k)) (distance between the neurons in temporal
sense) and a parameter that defines effective width of
the region. As a rule, @(e) is a kernel function that is
symmetric about its maximum at the point where
At; = 0. It reaches unity at that point and monotonical-
ly decreases as At;; tends to infinity. The functions that
are the most frequently used as neighbourhood function
are Gaussian, paraboloid, Mexican Hat, and many others
[14].

For self-learning spiking neural network, the learning
algorithm based on ‘Winner-Takes-More' rule can be
expressed in the following form:

Wﬁi(K +1) = Wﬁi(K) + nw(K)(P(|Atj]‘|)L(Atﬁi)a (12
where temporal distance At;; is

Atz =t (x(k)) — 1 (x(K). (13)

Obviously, expression (12) is a generalization of (8).

Analysis of competitive unsupervised learning con-
vergence showed that width parameter of the neighbour-
hood function should decrease during synaptic weights
adjustment [15]. For Gaussian neighbourhood function

(|At:], K) = ex [—iﬂf—j (14)
MR WIS
width parameter p can be adjusted as follows [16]:
B K
p(K) = p(O)exp(;], (15

where v>0 is a scalar that determines rate of neuron-
winner effect on its neighbours.

Noteworthily that exponential decreasing of width pa-
rameter can be achieved by applying the simpler expres-
sion instead of (15) [14]:

p(K) = yp(K-1), O<y<1. (16)

Learning algorithm (12) requires modification of self-
learning spiking neural architecture. Lateral inhibitory
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connections in the second hidden layer should be re-
placed with excitatory ones during the network learning
stage in order to implement ‘Winner-Takes-More' rule.

In the following sections, it will be shown that the
learning algorithm based on ‘Winner-Takes-More' rule
is more natural than the one based on to ‘Winner-Takes-
All’ rule to learn fuzzy spiking neural network.

FUZZY SPIKING NEURAL NETWORK
AS ANALOG-DIGITAL SYSTEM

Hardware implementations of spiking neural network
demonstrated fast processing ability that made it possi-
ble to apply such systems in real-life applications where
processing speed was a rather critical parameter [5, §].
From theoretical point of view, research works on spik-
ing neurons hardware implementation subject are very
particular, they lack for a technically plausible descrip-
tion on a genera ground. In this section, we consider a
spiking neuron as a processing system of classical auto-
matic control theory. Spiking neuron functioning is de-
scribed in terms of the Laplace transform.

Within a scope of automatic control theory, a spike
t(x(K)) can be represented by the Dirac delta function
S(t—t(x(k))). Its Laplace transform is

L{d(t—t(x(k)))} = &' ¥, (17)

where s is the Laplace operator. Spiking neuron takes
spikes on its input, performs spike — membrane potenti-
al — spike transformation, and produces spikes on its
output. Obvioudly, it is a kind of analog-digital system
that processes information in continuous-time form and
transmits it in pulse-position form. This is the basic con-
cept for designing analog-digital architecture of self-
learning spiking neural network. Overall network archi-
tecture is depicted on Fig. 2.

Multiple synapse MS;; of a spiking neuron S\; trans-

forms incoming pulse-position signal B(t—tff’](xi(k))) to
continuous-time signal  u;(t). Spike-response function
(4), the basis of such transformation, has form that is
similar to the one of impulse response of second-order
damped response unit. Transfer function of a second-or-
der damped response unit with unit gain factor is

= 1 1
G(s) = = , (18
8 (T15+1)(T,5+1) 2P +1,5+1 (18)

2
T T . .
where 1, , = Eai /f—ri, T, 2 1T,, T3 2 21,, and its im-

pulse response s
1 ot
T T
(e ‘—e 2].
T1—T2

&(t) = (19)
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Putting T, = T, = Tpe (that corresponds to a second-
order critically damped response unit) and applying
I"Hapital’s rule, one can obtain

_t
() = —e ™. (20)
Tpsp
Comparing spike-response function (4) with the im-
pulse response (20) leads us to the following relation-
ship:

e(t) = TpeplE(1). (1)

Thus, transfer function of the second-order critically
damped response unit whose impulse response corre-
sponds to a spike-response function is

€Tpsp

Gre(S) = (TPSPS+1)2,

(22)
where SRF means * spike-response function’.

Now, we can design multiple synapse in terms of the
Laplace transform. As illustrated on Fig. 2, multiple syn-
apse MS;; is a dynamic system that consists of a set of
subsynapses that are connected in parallel. Each subsy-
napse is formed by a group of time delay, second-order
critically damped response unit, and gain. As a response

[0]

to incoming spike S(t i (X( k))), the subsynapse pro-

duces delayed weighted postsynaptic potential ujj(s),
and the multiple synapse produces total postsynaptic po-
tential uy;(s) that arrives to spiking neuron soma.
Taking into account (22), transfer function of the p-th
subsynapse of MS; takes the following form:

dPs

s W e

UB(s) = whie " Gap(s) = M (o5
(Trse +1)
and its response to a spike S(I —tfio](xi(k))) is
; . W 1= (k) +dP)s
1% sy

]|I(S)_ I ]|I( )_ = . (24)

(TpspS+ 1)

So finally, considering transfer function of multiple
Syhapse Mﬁn

1-dPs
TppWiie

ZUHI(S) - Z ( S +1)21

the Laplace transform of the multiple synapse output
can be expressed in the following form:

Uji(s) = (25)

t“ lx, (k))s

]|I(S) ]|i(S) =
—(tl %% (k) +dP
4 TpspWﬁiel A 0) +dPys
=y - (26)
p=1 (TpepS+ 1)

114

Spiking neuron soma performs transformation that is
opposite to one of the synapse. It takes continuous-time
signals ufj(t) and produces pulse-position signal

S(t—t,-[”(x(k))). In doing so soma responds each time
membrane potential reaches a certain threshold value. In
other words, spiking neuron soma acts as a threshold de-
tection system and consequently it can be designed on
the base of bang-bang control systems concept [17].

Threshold detection behaviour of a neuron soma can
be modelled by an element relay with dead zone 6,
that is defined by the nonlinear function

Sign(uj(t) — es.n.) +1
2 L

q)rday(uj(t)a eshn.) = (27)

where sign(e) is the signum function. Soma firing can
be described by a derivative unit that is connected with
the element relay in series and produces a spike each
time the relay switches. In order to avoid a negative
spike that appears as a response to the relay resetting, a
usual diode is added next to the derivative unit. The di-
ode is defined by the following function:

D ioge( (1 —thgn)) = S(t—tiasy )H(S(t —tigh,)), (28)

where t,ek,Iy is a spike produced by the derivative unit up-
on the relay switching.
Now we can define the Laplace transform of an out-

going spike t"'(x(k)), namely,

L{ (t t[”(x(k)))} Hons _
= L{(Ddiode(SL{(Dre!ay(uj(t)a esn)})}

As it was mentioned above, the leaky integrate-and-
fire model disregards the neuron refractoriness.  Anyway,
the refractory period is implemented in the layer of spik-
ing neurons indirectly. The point is that a spiking neuron
cannot produce another spike after firing and until the
end of the simulation interval since the input pattern is
provided only once within the interval. In the analog-
digital architecture of spiking neuron, the refractoriness
can be modelled by a feedback circuit. As shown on
Fig. 2, it is a group of atime delay, a second-order criti-
cally damped response unit, and a gain that are connect-
ed in series. The time delay defines duration of a spike
generation period Aepike (usually, dg;xe — 0). The second-
order critically damped response unit defines a spike af-
ter-potential. Generally, spike after-potential can be rep-
resented by a second-order damped response unit, but
for the sake of simplicity, we use critically damped re-
sponse unit as it can be defined by one parameter only,
namely, ts,p (SAP means here ‘spike after-potential’).

(29)
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This parameter controls duration of the refractory peri-
od. Finally, the gain unit sets amplitude of the spike af-
ter-potential wg,p Obviously, wg,p should be much

greater than any synaptic weight.
Thus, transfer function of the feedback circuit is

Gre(s) = (30)
where F.B. means ‘feedback circuit’, and transfer func-
tion of the somais

Ger

Caona(S) = 157G oo

(31)
where G is defined by (29) (F.F. means ‘feed forward
circuit’).

It is easily seen that the functioning of spiking neuron
analog-digital architecture introduced above is similar to
the spike-response model [6].

CONCLUSIONS

Spiking neural networks are more realistic models of
real neuronad systems than artificial neura networks of
the previous generations. Nevertheless, they can be de-
scribedin a strict technically plausible way based on the
Laplace transform. Spiking neural network designed in
terms of transfer functions is an analog-digital nonlinear
dynamic system that conveys and processes information
both in pulse-position and continuous-time forms. Such
precise formal description of spiking neural network ar-
chitecture and functioning provides researchers and engi-
neers with a framework to condruct hardware
implementations of various spiking neural networks for
real-time data processing of different levels of complexity.
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Bonstacwkmii €., J{omoTtoB A.

AHAJIOTOBO-LIM®POBA CAMOHABYAJIBHA ®A33I-
CIHAMK-HEMMPOHHA MEPEXA TA AJITOPUTM ii HAB-
YAHHS HA OCHOBI MMPABUJIA «[TEPEMOXELb OTPU-
MY€ BUIBLIE»

VYV wiit poboTi 3ampornoHOBaHO aHAIOroBO-LK(POBY apxi-
TEKTYpy (a33i-crailk-HeHpOHHOT Mepexi, 110 CAMOHABYAETHCS.
CuHanc Ta coMy craiik-HelpoHa pPO3ISIHYTO 3 IO3MLII Kiia-
cH4YHOi Teopii AaBTOMATHYHOTO KEPYyBaHHA.  3aCTOCYBAaHHSIM
MpaBIIa <IEPEeMOXKeEIb OTPHMYy€ OLTbIIe» MOJNIMIIEHO CTaH-
JAPTHHAN alTOPUTM CaMOHABYAHHS CIIAHK-HEHPOHHOI Mepexi.

KurouoBi cioBa: anamoroBo-ndpoBa apxiTekTypa, caMo-
HapyanbHa (ha33i-CralK-HEHpPOHHa MepeXa, Teopis aBTOMa-
TUYHOTO KEpyBaHHS, AJTOPUTM HaBYaHHS Oe3 ydwTens, Ipa-
BUJIO IIEPEMOXELb OTPHUMYE OiIbLIe».

Bonstackuii E., lonoros A.

AHAJIOTOBO-IITU®POBASI CAMOOBYYAIOIIAACA
DA33U-CIIAMK-HEMPOHHAS CETb U AJITOPUTM EE
OBYUYEHNS HA OCHOBE IIPABUJIA «IIOBEJWTEJIb
MMOJIVHAET BOJIBIIE»

B Hacrosiiei paboTe HpeioKeHa apXUTEKTypa aHaJIoroBo-
mudpoBoit camoolyuyaromielics (a33u-craiik-HeHPOHHOU CETH.
CuHaric ¥ coMa CHaiiK-HeWpOHA PACCMOTPEHBI C MO3UIUH
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HEWPOIHOOPMATHKA TA IHTEJIEKTYAJIbHI CUCTEMM

TEOPHH aBTOMATHUYECKOTO yrpaBieHus. [locpeacTBoM mpume-
HEHHS TPaBWIA «IOOCAUTENh IONydaeT OONbIOIe» YyCOBEp-
IICHCTBOBAH CTAHIAPTHBIA AJTOPUTM CaMOOOYUCHHS CIaiK-
HEHUPOHHOH ceTH.

Y/IK 681.51: 622.7

KiioueBble cj0Ba: aHAIOroBO-IM(POBas apXHUTEKTYpa,
camooOyuarorasics ~ (ha33u-Craiik-HeUPOHHAsT CeTh, TEOPHS
ABTOMAaTHYCCKOTO YIPABJICHHs, aJrOpUTM OOydeHHs Oe3 ydu-
TeJIsA, MPABUIIO «ITOOCIUTEINb MOIYYaeT OOJIbIIEY.

Kynin A. I

KaHO. mexH. Hayk, 3asi0yeady kaghedpu Kpueopiabko2o mexHi4Ho20 yHieepcumemy

CTPYKTYPA NPOTOTUMNY TA OBIPYHTYBAHHSA BNPOBAMKEHHA
IHTENEKTYAJIbHOI CUCTEMU KEPYBAHHSA NPOLIECOM 35ATAYEHHSA
3ANI3HOI PYOMU

HaBeneHo CTpYKTYpHY CXeMy HpOTOTHITy iHTEJIEKTyaJdbHOI CHCTEMH KEpyBaHHS CEKIIi€l0
MAarHiTHOTO 30aradeHHs 3aii3Hoi pyau. Ha OCHOBI pe3ynsraTiB MPOMHUCIOBHX BHIIPOOYBaHb 3po0ie-
Ha OLliHKa €KOHOMIYHOi €()eKTHBHOCTI BIIPOBAKCHHS MOAIOHOI CHCTEMU B yMOBaxX 30aradyBajbHO-

ro BUPOOHUIITBA.

KurouoBi ci0Ba: iHTEeNECKTyalbHA CUCTEMa KepyBaHHS, 30araueHHs, 3aii3Ha pyna, e(eKTUBHICTb.

BCTYII

VY Ham Yac JOCTaTHbO AKTYAJILHOIO MPOOIEMOIO IS
BITYM3HSHUX IINPUEMCTB TipHHYO-METaIyprifiHoi ra-
JMy31 TPOMHCIIOBOCTI € TWiJABHUIICHHS KOHKYPEHTOCIPO-
MOXHOCTI BHPOOHHMIITBA 3a PaxyHOK 3MEHIIEHHS coOi-
BapTOCTI TEpemiTy, ONTHUMI3allil eHeproBUTpar, cTaoi-
mizamii ab0 TONIMIIEHHS SKOCTI MPOMYKHii Tommo. 3a-
TalFHOBIIOMO, IO OAHAM 3 HAHOUIBII MEPCIECKTHBHUX
IUIAXIB BHUPIMICHHA Ii€l MPoOJIeMH € KOMIUIEKCHAa aBTO-
Maru3ailis TexHonoriunux mnporecis (TIT) [1, 2].

TexHomnoriyni mpouiecu 30aradeHHs pyJ YOPHUX Me-
TasliB (MArHETUTOBHX KBapLHTIB) € TOCTATHHO CKJIAJHH-
MU 00’ektamu aBromatmzaiii. Lle oOymoBneHo ix Oara-
TOBUMIPHICTIO Ta 0araroctamiiHICTIO,
HENiHIMHOCTI Ta HECTAIllOHAPHOCT], 3HAYHUM 3aIli3HEHHAM

BJIaCTUBOCTAMU

iH(pOpMaLifHUX MOKa3HWKIB Yy Yaci, HasBHICTIO HEUITKOI
Ta HermoBHOI iH(opMaIlii. Y 3B’S3Ky 3 I[MM MOXJIMBOCTI
3aCTOCYBaHHSI KJIACHYHMX ITIIXOAIB TEopii aBTOMAaTH30Ba-
HOTO KEPYBaHHs € JOBOJi oOMexeHumu [3)].

TeopeTnuHi JOCTiHKEHHS, KOMIT IOTEPHE MOJAEITIOBaH-
HS Ta TPOMHUCIOBI BumpoOysanus [3-9] nomemn mo-
TEHI[aJIbHI MOXJINBOCTI 3aCTOCYBaHHS IHTEICKTyaJbHUX
MiAXOMIB IIOMO iAcHTU(IKAIl, KEpyBaHHI Ta ONTHU-
Mizamii TII 30aradeHHss MarHETUTOBHUX KBapILUTIB. Y Tiep-
Iy 4epry IIe CTOCY€ThCS CyYacHUX HaNpsIMiB PO3BHUTKY
HITyYHOTO iHTENEKTYy. HeHpOKepyBaHHS, HEUITKOI JIOTIKH,
Kinacu(ikamiiHOrO KepyBaHHs Ta CBOIIOMIKHOI ONTH-
Mi3armii.

BpaxoByroun, 110 ITOTOYHHUNA CTaH DOCIHIIKEHHS MOX-
JUBOCTEH 3aCTOCYBaHHS MOAIOHMX TEXHOJIOTIH Y TipHH-
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4iif cmpaBi MOKM MICTUTH JOBOJI OOMEXEHY KIBKiCTh
peaJbHUX BIPOBAXKEHb Ha BITYM3HSIHUX MiAIPUEM-
CTBax, IOCTIMHO BWHHUKAIOThL MHUTAHHS IIONO TEXHIKO-
€KOHOMIYHOro OOIPYHTYBaHHS TakuX po3poOok. Tomy
METOIO0 CTaTTi € OMiHKa e(EeKTHBHOCTI BIPOBAKCHHS
IHTEJIEKTyallbHOI CHCTEMH KEpYBaHHS B YMOBaxX TEXHO-
noriunoi miHil (cekuii) pymo3darauyBanbHOi (GaOpUKH
(P3®) ripanuo-36arauysanpHoro kombinary (I'3K).

INOCTAHOBKA 3ABJJAHHA

3rigHO 3 PINICHHAMH, PO3DIAHYTHMH y TONEpPEeaHIiX
poborax asropa [3, 58], po3mIsIacThCs Taka cxema pe-
amzanii ICK (puc. 1).

OcHoBoOI0O cuctemu € anapatHo-nporpamue siapo ICK
(6rmox Ne 1), mio cKIagaeThes 3 I SATH ITiICHCTEM.

1.1. Tarepdeiicna yactuHa, cepBep Ta MoHiTOp SCA-
DA. PeamnizyeTscss Ha MiACTaBi CIEIialli30BaHOTO IPOT-
pamuoro 3abesmeuenHss Tumy. Kontyp, Monitor Pro,
Scantic, Trace Mode [10-14]. 1ls migcucreMa BUKOHYE
¢yukIil Bizyamizamii (Mouitopunry) xomy TII, BBemeH-
HS Ta KOHTPOJIOBaHHS YCTaBOK TEXHOJIOTIUYHHMX Iapa-
MeTpiB, ¢opMmyBaHHA 3BiTiB. Ha amapaTHomy piBHI Taki
MICHCTEMH PEali3yloThCsl Ha IMIACTaBI 3aCTOCYBaHHS
apXITeKTypH «KII€HT — cepBep». B sKOCTi cepBepiB po-
00YMX CTaHIIN 3aCTOCOBYETHCS TIEPEBaXKHO KOMIT FOTEP-
He oOmagHaHHS y MPOMHUCIOBOMY BHUKOHAHHI 3 Tij-
BUILEHUM piBHeM HamiiiHOcTi (ctammapru |P50, |P65-67
[13]). KmienTchki cTanmii peanizyioThCs y BUDISII aBTO-
MaTtu3oBaHuX pobouux Micub (APM) cremiamicriB (Ha-
MpUKIaJ, TexHomora, aucrnerdepa P3®d). s iudop-





