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ABSTRACT

Context. We consider a Volterra integral equation of the first kind which may be applied to the data filtration and forecast of
fractal random processes, for example, in information-telecommunication systems and in control of complex technological processes.

Objective. The aim of the work is to obtain an exact analytical solution to a Volterra integral equation of the first kind. The
kernel of the corresponding integral equation is the correlation function of a fractal random process with a power-law structure
function.

Method. The Volterra integral equation of the first kind is solved with the help of the standard Laplace transform method. The
inverse Laplace transform leads to the calculation of the line integral of the function of complex variable. This integral is calculated
as a sum of a residue part and integrals over the banks of cut. The corresponding integrals are obtained on the basis of the known
expansions of special functions.

Results. We obtained an exact analytical solution of the Volterra integral equation the kernel of which is the correlation function
of a fractal random process. The paper is based on a model where the structure function of the corresponding process is a power-law
function. It is shown that the part of the solution that does not contain delta-function is convergent at any point if the Hurst exponent
is larger than 0.5, i.e. if the process has fractal properties. It is shown that the obtained solution is a real-valued function. The
obtained solution is verified numerically; it is also shown that our solution gives the correct asymptotic behavior. Although the
solution contains an exponentially growing function of time, at large times the integral of the obtained solution asymptotically
behaves as a power-law function.

Conclusions. It is important to stress that we obtained an exact solution of the Volterra integral equation under consideration
rather than an approximate one. The obtained solution may be applied to the data filtration and forecast of fractal random processes.
As is known, fractal processes take place in a huge variety of different systems, so the results of this paper may have a wide field of
application.

KEYWORDS: Volterra equation of the first kind, Hurst exponent, Laplace transform, fractal process, exact analytical solution.

NOMENCLATURE X(t) is a fractal random process under consideration;

c(t) is a structure function of the fractal random I'(c, z) is a incomplete Gamma function;

process;

. . . . I'(z) is a Gamma function;
h(t,k) is a unknown function for which the solution

2 . .
. . . o~ is a process variance;
of the integral equation is obtained, t >0 ; p
H is a Hurst exponent;
i is a complex unity; H(p,k) is a Laplace transform of the function

R(t) is a correlation function of the fractal random  ht, k);

<a(t)>l is a time average of a random process a(t);

process;
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r(p,k)
R(t+k);
r(p) is a Laplace transform of the function R(t);

is a Laplace transform of the function

F.(a,B, z) is a confluent hypergeometric function;
B(u,v) is a Beta-function.

INTRODUCTION
This paper is devoted to the obtaining of an analytical
solution to a Volterra equation of the first kind which may
be applied to the data filtration and forecast of fractal
random processes. The kernel of the corresponding
integral equation is the correlation function of a fractal
random process with a power-law structure function.

The model of the power-law structure function is a
very popular model for the description of fractal
processes. For example, it is used in the description of
plasma fluctuations [1], in the description of the financial
market data on the basis of the statistical physics methods
[2—4], etc.

Self-similar processes take place in a huge variety of
different systems: industry applications, control systems
(see, for example, [5, 6]), information-telecommunication
systems, financial markets, physical systems (Brownian
motion, non-equilibrium fluctuations, etc.), geophysical
time series, etc., see [7] and references therein.

In this paper we consider only continuous random
processes. The problem of the solution of the Volterra
integral equation under consideration was discussed in [8]
where this problem was investigated in the framework of
the Kolmogorov-Wiener filter. We should stress that, to
obtain the weight function and the output of the
Kolmogorov-Wiener filter, a Fredholm integral equation
of the first kind should be solved rather than the Voterra
one (see, for example, [9]). But the Volterra integral
equation is of mathematical interest by itself. As is also
known, the Volterra integral equation is a special case of
the Fredholm integral equation, so it may be applied to
practical investigations of fractal processes.

In this paper the idea of the solution of the Volterra
integral equation is similar to that of [8], but the results of
paper [8] should be refined in some places, see the
corresponding discussion in Sec. 2.

The object of study is the Volterra integral equation
of the first kind, the kernel of which is the correlation
function of a fractal random process with a power-law
structure function.

The subject of study is the analytic solution of the
system under consideration.

The aim of the work is to obtain an exact analytical
solution to the integral equation under consideration and
to investigate its asymptotic behavior.

1 PROBLEM STATEMENT
We consider the following Volterra integral equation
of the first kind
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R(T+k)=j.drh(r,k)R(T—r), (1)

where k <T is a finite positive constant,

o

R(t)=o -5t )

and h(t,k) is the unknown function. The problem is to
obtain an analytical solution to eq. (1) .

2 REVIEW OF THE LITERATURE
The models with a power-law structure function are
widely used to describe fractal processes (see, for
example, [1-4]). Fractal processes are widely used in
investigations of different systems (see [5-7] and
references therein).
In paper [8] a continuous random process X(t) is

given for te[0,T]. The process is assumed to be a
stationary and ergodic one. The structure function c(t) is
assumed to be a power-law function:
C(t)z<(x(t)—x(t—r))2> —o-T", 3)
t
where o is a positive constant, and H is the Hurst
exponent.

In the model (3) the corresponding correlation
function is

R(7) = ((x(t+)—(x(®), ) (xO) - (xV), )) =
“)

The Voterra integral equation of the first kind (1) is
considered in [8] in the framework of the Kolmogorov—
Wiener filter. Of course, it should be stressed that, in
order to obtain the Kolmogorov—Wiener filter output, the
Fredholm integral equation should be solved rather than
the Volterra one. Nevertheless, the Volterra integral
equation discussed in [8] is of mathematical interest by
itself. The Volterra integral equation is also a special case
of the Fredholm integral equation, so it may be applied to
data filtration and forecast in some cases (maybe even not
necessarily in the framework of the Kolmogorov-Wiener
problem).

The problem of the solution of the integral equation
under consideration is investigated in [8] with the help of
the standard Laplace transform method [10]. The authors
of [8] carefully divided the solution into two parts, one of
which contains the Dirac delta-function. However, the
results of paper [8] should be significantly refined. First
of all, eq. (19) in [8] contains a complex function as a
result because the incomplete Gamma-function
I'2H +1,-Ax) is complex-valued (see eq. (19) in [8]).
Besides, a pole residue is not taken into account in [§]
either.
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In this paper the integral equation (1) is analytically
solved and the results of paper [8] are refined.

3 MATERIALS AND METHODS
Let us introduce the following Laplace transforms:

r(p,k):deR(T +k)e P
0

r(p):deR(T)e”T, (5)

H (p,k)=[dTh(T k)™ .
0

Substituting &=T —1 into the right-hand side of (1),
multiplying the both sides of (1) by exp(-—p(t+k)) and
taking the integral over T , with account for (5) we obtain

0 T

[dT[dee "™ On(T e k)R(g)=r(p.k).  (6)
0 0

Multiplying the integrand on the left-hand side of (6)

by exp(—p&)exp(pg) and substituting x=T -&, y=§
into (6), with account for (5) we obtain

e H (p.k)r(p)=r(p.k). ()
which with account for (5) leads to
[dTR(T+K)e ™
H(p.k) == ®)

j dTR(T)e ™
0

The standard definitions and tabulated integrals for
The Gamma and incomplete Gamma functions are [11]:

[(a,x)=[de't"", T(a)=[de't"",
X 0

J' dxx''e™ = p™T (v, pu), 9)

‘J‘dxxv’le’“X =pT(v).
0

On the basis of (9) and (2) the integrals in the
numerator and the denominator of (8) are calculated:

TdTR(T)e’pT _o® al(2H+1)
0

10
5 2p (10)

2H+1 >
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o’ 0e™T(2H +1, pk)
?_ 2p

[dTR(T +k)e ™ =
0

With account for (10) and (8) the following expression
for H(p,k) can be obtained:

2p*"o’ —ae™ I (2H +1, pk)
H(p’k): 2 o2 :
p*o’ —al'(2H +1)

)

Let us investigate the behavior of H(p,k) when
p — . As is known [11], if X —> oo, then I'(a, X) can
be represented as a series:

-1)" ' (1-a+m)

(o, X =x*"'e™* - ( 12
(@) 2 o (ima) (2

On the basis of (12) and (11) we obtain

ak" _
H(p,k)|w=1— . +o(p1). (13)
According to (13), let us split (11) into two parts:
akZH

H(p,k)=1- +H'(p,k),

(pk)=1- 2t H (k) "
H '(p,k)|p% =0.

As is known [10], the inverse Laplace transform can
be calculated as

C+iono

h(t,k)=% [ dpH (p.k)e” =

C—ioo

=(1—0‘;2: Jé(t)+h’(t,k)

(¢

(15)

(here we use the fact that the inverse Laplace transform of
a constant is the delta-function).

The function h’(t,k) in (15) is the inverse Laplace
transform of the function H'(p,k):

C+ioo

h’(t,k):% [ dpH"(p.k) e

i

(16)

c—ioo

and in what follows we calculate it. It should be stressed that
up to this point all the results coincide with [8], but the
following result for h'(t, k) significantly differs from [8].

The singular points of the function H'(p,k)are the
branch point p=0 and the poles. The function H'(p,k)
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satisfies the conditions of the Jordan lemma (see (13)), so
the integral (16) is

h(t.k) =1 (tk)+J (LK), (17)
where |(t,k) is the sum of the integrals over the banks of

cut and J(t,k) is the pole residue part (see, for example,
[12]).

The following banks of cut should be chosen:
p=xe"and p=xe '™, so

L(tk)=1,(t.k)+

L (LK)

1 (t.k)= e deH xe'™ k)exp(xe‘“t), as)
I, (t.k) e j‘dXH e, k)exp(xe’i“t) .

As can be seen from (14) and (11), the function
H'(p,k) contains the functions p*", exp(pk) and

I'(2H +1, pk) . Obviously,

et =1, exp(xe““t) =exp(—xt),

2H 19
(xeii“) =x*" (cos(ZnH )+isin(2nH )) ) (12

1], the function I'(2H +1, pk) can be
expanded into a series:

As is known [1

. _l)” Xon
r 20
(ct nZ:; n!(a+n) 20)
With account for (20) and (19) one can obtain
Re(T(2H +1,ke™)) =T (2H +1)+
w (kX)H-n
+(k 2 H _—
() cos(2m nzn'(ZH +1+n)’
m(T(2H +1,kxe™)) =
(k) N

:(kx) s1n ZT[H i (kx)“"

= nl(2H +1+n)’

Re(T'(2H +1,kee ™)) = Re(I(2H +1, kxe"™)),

m(F(ZH +1 ke ") ):—Im(r (2H +1,kxe™ ))
It should be noticed that we consider processes with

fractal properties, i.e. we consider cases where
H €(0.5;1). In this range of parameters we have
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sin(2rH) <0, Im(T'(2H +1,kxe ™)) >0 . On the basis of
(18)—(21) the following result for I(t,k) is obtained:

I (t,k) :ljdxe-‘x f(x,k),
T

Y(X)O (X, Kk)=A(Xx)Q(x,k
O (x,k)=26"x""" cos(2nH )—ae ™ A(x,k),
Q(x,k)=20"x"" sin(2nH ) +ae *B(x,k),  (22)
A(x)=20"x"" cos(2nH )—al (2H +1),

¥ (x)=20"x"" sin(27H),
A(xk)=Re(T(2H +1,xke ")),
B(xk)=1m(T'(2H +1,xke ™)} >0,

We should stress that in contrast to [8] our result (22)
is a real-valued function. Let us investigate the
convergence of the integral in (22). On the basis of (22),
(20) and the property I'(at+1) = al'(a) one can obtain

ol (2H +1)sin (27H)
= X
X—>0 464

><(2($2 —ak?" ).X‘ZH +O(X—2H-1)

so f(x, k)|Hw

is convergent if

f(x.k)

(23)

~x" from which it follows that 1(0,k)
H e(0.5:1). I(t,k) is

convergent for t>0. So I(t,k) is convergent for any

Obviously,

t > 0 if the process has fractal properties.
Let us calculate the poles of the function H'(p,k)e™ .

Obviously, to calculate the poles, we should equate the
denominator of (11) to zero because of (14). The solutions
of the corresponding equations are

1
- .7n

z=[ a2F(2H+1)J2H e", nez. (24)
26

According to [12], only the poles with
arg(z) e[-m,m] contribute to J(t,k) in (17). We

consider the case where H € (0.5;1), so from (24) we can

see that the only pole that contributes to J(t,k) is

D, :(izr(zH +1))2H. (25)
20

Let us investigate the function H'(p,k)e™ in the

vicinity of the point p=p,. Let us introduce the
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parameter &= p—p,. As is known [11], if | y |<| X|, then
the following expansion is true:

(0 %)~

_xal“’ G F(l a+m __ymy_I (26)
mzo{ X"T'(1-a) (l ° .ZO“I!H'

On the basis of (11), (14), (25) and (26) one can
obtain that in the vicinity of the point p=p, (i.e. in the

vicinity of the point £=0)

I'(a,x+y)=T

H'(p.k)e™ =H'(p, +&k)e®
I'(2H +1)-e™ T (2H +1, p, ) .
2HT(2H +1)
[(2H +1)—e™ T (2H +1, pok)X
2HT (2H +1)

= p,e™
27

+0(&’) =
xp,e™ (p—p,)" +O((p— po)o).

As can be seen from (27), the expansion of
H'(p,k)e™ into a Laurent series of p—p, begins with
the minus first term, so p, is a simple pole and

J (t,k):E{:e;)s H'(p,k)e™ =e™p, x

I'(2H +1)-e™ T (2H +1, p,k)
2HL (2H +1)

(28)

>

it should be noticed that J(t,k) is not taken into account
in [8].
So, the following solution is obtained:

akZH

- JS(t)+I(t,k)+J(t,k),

2 29)

h(t,k)= [1 -
where the explicit expressions for I(t,k)and J(t,k) are
given in (22) and (28); the expression for p, from (28) is
given in (25).

4 EXPERIMENTS
Numerical calculations for some parameters are made
in order to verify the solution (29). The integral

(szH

foteion(r-)~[1-5 )

T-1) Idt.] (., k)R(T —1)

+Jd‘t| T, K)R(
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is compared to R(t+K), i.e. the right-hand side of (1) is

compared to the left-hand side of (1). The calculations are
made on the basis of Mathcad 14 package.

The incomplete Gamma function, which is a built-in
Mathcad function, is not defined for a negative second
argument. So the functions A(x,k) and B(X,k) in (22)

are introduced as

I(2H +1,2) '[dxe‘X X" +Idxe xxH

A(x,k)=Re(T (2H+1,—xk)),
B(x,k)=—Im(I'(2H +1,-xk)),

€2))

the sign “=” in B(x,k) in (31) is due to the fact that
Mathcad I'CH +1,-xk) from (31) as
C'(2H +1,xke'™) ; see (21).

We should notice that Mathcad fails to calculate the

interprets

function |(t,K) as the integral from 0 to c©, so I(t,k) is
treated as
1 233 1 +o0
L(tk) == [ dxe™f (xk)+= [ de™—,
T 0 TE233 ?
T (2H +1)sin (25H) .
sin (27
C= - (202 —ok?" ) ,
4c
ie. if x>233, then f(x,k) is replaced with its

asymptotics for X — oo ; see (32) and (23). Mathcad is

able to calculate the first integral on the right-hand side of

(32) in the range of parameters which is given in table 1.
The following results were obtained.

Table 1 — Verification of the obtained solution

k=3,H=08,a=0c=1
R(T + k) the integral (30)
T=4 —10.24934 —10.24935
T=5 —12.92881 —12.92884
T=10 —29.28861 —29.28809
T =30 —133.4598 —133.4534
k=3,H=08, a=n/2,06=08
R(T +k) the integral (30)
T=4 —17.03041 —17.03042
T=10 -46.93724 —46.93725
T=15 —79.43844 —79.44034
T=20 -117.89713 -117.89911
k=3,H=07,a=n/2,0=12
R(T +k) the integral (30)
T=4 —-10.53367 —-10.53367
T=10 —27.04465 —27.04475
T =20 —61.87533 —61.87372
T =30 -103.51651 -103.51531
T =40 —-150.5975 —150.61689
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As can be seen from the table 1, R(T +k) is in good
agreement with the integral (30), so the solution (29) is
true. In our opinion, the slight difference of the second
and the third columns in table 1 is due to machine errors.

Of course, Mathcad could not adequately calculate the
integral (30) at large values of T, ie. at T =10, 10*,
etc. In order to verify the solution (29) for large values of
T, we seek the asymptotics of the integrals in (30) if
T>wo.

Let us denote

I'(2H +1)—e™ T (2H +1, p,k)
2HT(2H +1)

Po > (33)

then
T T a
[dwd (1, K)R(T —7) = A[ dte™ [cz -5 ~t)™" j (34)
0 0
As is known [11],

u

Jxv’l (u- x)‘HeBde =

0 (35)
:B(H’V)uvﬂl—l.lFl (V5H+V9Bu)~
On the basis of (35) and (34) we have
T 2
jer (LKR(T-1)= A[G_(em _1)_
0 Py (36)
ooy F(2H +1)
— =T L E(L2H +2,p,T) |.
2 r(2H+2)”(’ +2,p,T)

As is known [13], the function |F, (o,B,z) has the

following asymptotics:
Fl (OC, B’ Z)|\z\—>ao,—z<arg z<3—n -
2 2

rEErt (e, (o),
I(a) = s!

77 %™ = o (o - B+1) s

_ f-a) SZ:(; (-2)°,

a,=a(a+1)(a+2).. (a+s 1), a, =1.

(37)

On the basis on (37) it can be seen that

Fl (1’ B’ Z)|\z\aw,—g<arg z<37n =
_LB)_‘_O(L\]
I (B-1) )

On the basis of (38), (36) and (25) we obtain

(3%)
=T (p)e’z"”

_ G A o
2p

T >0 0

]dtR (T-t)J(t,k) (39)
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It should be noticed that for T — o the integral in (39)
behaves as a power-law rather than an exponent function!
The integral of I(t,k) is as follows:

_T[dtR(T —-t)1(tk)=1,-1,,
T (40)
dtl (t,k), | :%jdn (t,k)(T =)™

||
o'—.—i

After substituting £ =T —t into |, we obtain

g fo (x,k)e’“]d&e%z” : (41)

With the help of the tabulated integral

J.dxxv’le’*lx =py(v,pu),
0 (42)

y(o,x)=T(a)-T(a, )
and egs. (41) and (20) we obtain
ol T f(xk)
===T"|dx——= T),
[x—"=g(xT)
n (43)
= (xT)™
T :e—Tx (
9(xT) Zn'(2H+1+n)

It should be noticed that

so with account for (23) the integral in (43) is convergent;
and the asymptotics of (43) for T — oo is not larger than
aT™" We assume that

where a 1is a constant.

2H
Iz |T o T ’
in what follows.
As for |,, we have

this assumption is confirmed numerically

:
I, =0 [dtl (t,k)=
0
. o (45)
=GZJde ;1-e7 <1,
0
so obviously |, is bounded by a constant and I, =o(1,)
if T >,
Obviously
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-4 i)

20

~ _3(1_ ak”" jTZH
2 2 ’
T 20 (46)

R(T +k)|m -~

So, the asymptotic behavior of the left-hand and right-
hand sides of (1) on the basis of (29) for T — o are

R(T+K),  ~-—T"
A
drh ’E k)R T2H -
I R(T -7) N [DO 47)
k2H
_[1— J T%nj‘dx xT)J,
see also (39), (43) and (46). So if
A ak?" 1%, f(xk)
Al i _lim—{d T)=
o, [ 202] fim 2] o ()= g

:_1,

then our solution (29) is true for T — o .

The validity of (48) is checked numerically with the
help of the Wolfram Mathematica 11 package, which is
able to calculate the integral on the left-hand side of (48).
The following results are obtained.

Table 2 — Verification of the obtained assymptotics

k=3,H=07,a=n/2,0=12
xk

T A [ ok™ J Id g(xT)
Py

10° —0.999798

10* —0.9998

10° ~0.999998

k=4,H=08,a=n/2,5=038

A kZH
! p‘[ E ]‘f S
0
10° —0.996715
10* —-0.999671
10° —-0.999967

As can be seen from table 2, eq. (48) is valid, which
justifies our solution.

5 RESULTS
An exact analytical solution to the Volterra integral
equation (1) is obtained, see (29). The kernel of the
corresponding Volterra integral equation is the correlation
function of the continuous fractal process with the power-
law structure function (3). Only the cases where the Hurst
exponent H €(0.5;1) are considered. The obtained

solution (29) is verified numerically. The asymptotic
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behavior of both sides of (1) for T — o is investigated. It
is shown that our solution gives the correct asymptotic
behavior.

6 DISCUSSION

The corresponding Volterra integral equation was
discussed in [8] in the framework of the Kolmogorov—
Wiener filter for the rather popular model with the structure
function (3). It seems that the use of the Volterra integral
equation in the framework of the Kolmogorov-Wiener filter
is in some sense inadequate because the Fredholm integral
equation of the first kind should be solved in order to obtain
the Kolmogorov-Wiener filter output.

Nevertheless, the Volterra integral equation is of
mathematical interest. It should also be noted that the
Volterra integral equation is a special case of the
Fredholm integral equation, which is rather popular in
investigations of fractal processes, so the Volterra integral
equation may be applied to some investigations of fractal
processes.

An exact analytical solution to eq. (1) is obtained. It is
shown that the term 1(t,k) in (29) which comes from the

integrals over the banks of cut is convergent for any t >0
if the Hurst exponent H €(0.5;1). In contrast to [8],

I(t,k) is a real-valued function. Also in contrast to [8],

the residue part of (29) is taken into account. The
obtained solution (29) is verified numerically on the basis
of Mathcad 14 package.

The asymptotic behavior of both sides of (1) for
T —> oo is also investigated on the basis of (29). It is
shown that our solution gives the correct asymptotic
behavior; the corresponding integral in (48) was taken
numerically with the help of Wolfram Mathematica 11
package.

CONCLUSIONS
The Volterra integral equation (1) of the first kind the
kernel of which is the correlation function (4) is solved.

The scientific novelty of the obtained results is that
an exact analytic solution to the corresponding integral
equation is obtained. The solution is verified numerically,
it is also shown that our solution the gives correct
asymptotic behavior. The results of the previous papers
devoted to the integral equation under consideration are
refined.

The practical significance is that the obtained results
may be applied to investigations of fractal random
processes.

Prospects for further research are to apply the
obtained results to practical problems.
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AHOTANIA

AxTyanbHicTh. Po3riaHyTO iHTerpasbHe piBHAHHA BonbTepu mepmoro popy, sike Moxe OyTH 3aCTOCOBHUM 10 (inbTpamii Ta
NIPOTHO3YBAaHHS BHUIIQAKOBHX (PaKTAIbHUX MPOIECIB, HANPUKIAA, y iHPOPMALifHO-TENeKOMYHIKAIMHIX Mepekax Ta MpH
KepyBaHHI CKJIAJHUMH TEXHOJIOTIYHUMH HPOIECaMU.

MeTo10 podOTH € OTpPUMATH TOYHUH AHAJTITUYHUI PO3B’SI30K IHTErpalbHOro piBHsSHHA Bonbrepu meprioro poxy. Sapom
BiJITIOBITHOTO IHTETPAIILHOTO PIBHSAHHS € KOpemsiiiHa QyHKITisI ppaKTaIbHOTO BUIIAIKOBOTO MPOIIECY, CTPYKTYypHA (DYHKIIIS SKOTO €
CTETMEHEBOIO.

Metoa. IHTerpansHe piBHAHHA BombTepu mepuioro pogy po3B’si3aHO 3a JOMOMOIOI0 CTaHIAPTHOTO METOMAY INEPEeTBOPEHHS
Jlammnaca. 3BopoTHe nepeTBopeHHs Jlamnaca mpuBOAUTE 0 KOHTYPHOTO iHTEerpaty Bix QyHKuii KommiekcHoi 3MiHHOI. Llei inTerpan
00YHCIIEHO K CyMy YacTHHH, IIO MIiCTHTh JIMIIOK, Ta 1HTETrpajliB B3AOBX OeperiB po3pily. BinmomiaHi iHTerpany mopaxoBaHO 3a
JIOTIOMOTOIO0 BIJJOMHX PO3BHHEHb CHEIiabHUX (QyHKITIH.

Pe3yasTaTn. Hamu oTpumaHo TOUHMIT aHATITHYHAN PO3B’SI30K IHTETPAIbHOTO PIBHAHHS BoibTepH, sIpOoM SIKOTO € KopelsmiiiHa
GyHKLiS (pakTaTbHOrO BHMIAAKOBOTO Ipouecy. Pobora 6asyerbcss Ha Mojewdi, B sIKilf CTpyKTypHa (YHKILIS BiIIOBIIHOTO
(pakTaILHOTO TPOIIECY € CTereHeBO PyHKIier. [Toka3aHo, 10 Ta YacTHHA PO3B’A3KY, sIKa HE MICTUTh JeIbTa-PyHKIIT, € 301’KHOI0
B OyIb-siKiil To4Li, SKIIO MOKa3HUK Xepcra € OinbumM 3a 0,5, ToOTO sKIIO mporec Mae ¢pakranbHi BracTUBOCTI. [lokazaHo, 1110
OTpHUMaHHi pO3B’sI30K € AificHOI0 QyHKUie0. OTpUMaHUil PO3B’ 30K MEPEBIPEHO YUCENBHO; TAKOX MOKA3aHO, L0 HAIll PO3B’ 30K A€
MPaBUIbHY AaCHUMIITOTHYHY MOBEAIHKY. Xo0ua OTPUMAaHUH PO3B’A30K MICTUTh EKCIIOHEHHIHHO 3pocTarouy (YHKLIIO dYacy, Mpu
BEJIMKHX YacaX iHTerpaj Bil OTPUMAHOTO PO3B’SI3Ky aCHMITOTHYHO BeZie ce0e sK CTerneHeBa (pyHKILiS.

BucnHoBkn. BaximBo migkpecnuTH, m0 HAMH OTPHMAHO TOYHUM, a HE HAONMKEHHI PO3B’S30K IHTETPAIBHOTO DPIBHSIHHS
Bombrepn, sike nmocmimkyerses. OTpHMaHUE PO3B’SI30K MoOXe OyTH 3aCTOCOBHUM 10 (IUIbTpamii Ta MPOrHO3YBaHHS ITaHHX
BHIIAJIKOBOTO (ppakTaybHOro mnporecy. Sk Binomo, (pakraibHi HpoIecH MalOTh MiCLE y BEINYE3HIH KiNBKOCTI Pi3HOMaHITHHX
CHCTEM, TOMY PE3YJIbTATH i€l CTATTI MOXXYTh MaTH LINPOKY 00JIaCTh 3aCTOCYBaHb.

KJKOUYOBI CJIOBA: inTerpaibhe piBHsAHHS BonbTepu mepiuoro pofy, HokasHuk Xepcra, meperBopenHs Jlamaca,
(bpakTanpHUi Mpolec, TOYHUIT aHATITHYHUH PO3B’A30K.
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AHHOTAIUSA

AKTyaJIbHOCTb. PaccMOTpeHO HMHTerpajibHOE ypaBHEHHE BonbTeppbl mepBoro poaa, KOTOpOE MOXKET OBITh NMPUMEHEHO K
(GuUIbTPaLMK ¥ NPOTHO3MPOBAHHUIO CIyYaWHBIX ()PaKTaIbHBIX MPOLECCOB, HAPUMEDP, B HH(POPMALMOHHO-TEIEKOMMYHHKALMOHHbBIX
CeTSX ¥ MPH yNPaBICHUH CIOKHBIMHA TEXHOJIOTMUECKUMU TIPOLIECCAMH.

Heabio padoThl SBISIETCS TOYHOE AHAIUTHYECKOE PENICHHE HMHTETPAlbHOTO ypaBHEHUs BombTeppsl mepBoro poga. Sapom
COOTBETCTBYIOIIETO HHTETPAIbHOTO YpPaBHEHMS SABIAETCS KOPPEISIHMOHHAs (GYyHKIUS (PaKTANbHOTO CIydaifHOTO Ipomecca,
CTPYKTypHasi pyHKIHS KOTOPOTO SIBISIETCS CTETICHHOM.

Metoa. VurerpansHoe ypaBHeHHE BoibTeppbl IepBOro poja pemeHo C MOMOINBI0 CTaHJAPTHOTO METola NpeoOpa3oBaHUS
Jlarumaca. O6patHoe npeoOpasoBanue Jlamiaca IPUBOJUT K KOHTYPHOMY MHTErpajly OoT (yHKIMM KOMIUICKCHOW NMepeMeHHOi. DToT
HHTErpaJl MIOCYUTaH KaK CyMMa 4acTH, COZepIKalllel BBIUET, U MHTErpaloB BHOJb OeperoB paspesa. COOTBETCTBYIOIINE HHTETPAJIbI
IOJIy4€Hbl Ha OCHOBE M3BECTHBIX PA3JIOKEHUH CHEUAIbHBIX (yHKIMH.

Pe3yabTatel. Hamu nomyueHo TOUHOE aHAIMTHYECKOE PEIIEHUE MHTETPaIbHOTO ypaBHEHHs BonbTeppsl, SApoM KOTOPOro ecTh
KoppensnuoHHass (QyHKIMS (paKTambHOrO CIydalHOro mporecca. Pabora ocHOBBIBaeTCS Ha MOJENH, B KOTOPOH CTPYKTypHas
(YHKINS COOTBETCTBYIOIIETO (hPAKTATBEHOTO Iponecca sBIseTcs cTeneHHol ¢ynkmueil. [Tokasano, 9To Ta 4acTh peIIeHNs, KOTopas
HE COAEPXHT AeNbTa-QYHKIUH, CXOTUTCS B JI00OI TOYke, eciaM IokaszaTenb Xepcra Gombme 0,5, TO ecTh eciaM Ipomecc MMeeT
¢paxraneHble cBoicTBa. [loka3zaHO, YTO MONYyYEeHHOE pEUIEHHE SIBISCTCS AeHCTBHTENbHOH (yHkunued. [lomydeHHoe pemeHue
[IPOBEPEHO YMCJICHHO; TaKXe I0Ka3aHO, YTO Hallle pPelleHUe JaeT MPAaBUIBHOE aCUMITOTHYECKOE IOBEJIeHHE. XOTS IMOJYy4YEHHOE
pelLIeHre COACPIKUT SKCIIOHSHIMAIBEHO BO3PACTAIONIYI0 (DYHKIWIO BPEMEHH, NpU OONBIINX BPEMEHAX HMHTErpal OT IOJIyYeHHOTO
pELICHNS aCUMIITOTHYECKH BeIeT ce0s Kak cTeneHHast QyHKIHA.

BeiBoabl. CiemyeT MOAYEPKHYTh, YTO HAMH TOJYYE€HO TOYHOE, a He MPHUOIIKEHHOE PEIIeHHEe HCCIIeLyeMOro WHTErpalbHOro
ypaBHeHus: Bonbreppel. [lomydeHHOE aHaMMTHYECKOE PEIICHHE MOXKET OBITh MPUMEHEHO K (MIBTPAIMU M IIPOTHO3MPOBAHUIO
JaHHBIX CIydYaiiHoro (pakrampHOrO mpomecca. Kak u3BecTHO, (pakTalbHbIE HMPOIECCH MMEIOT MECTO B OTPOMHOM KOJIHYECTBE
Pa3HBIX CHCTEM, IOATOMY Pe3yJIBTATHI 9TOH CTaTHH MOTYT MMETh IHUPOKYIO 001aCTh IPUMEHEHUS.

KJIIOUEBBIE CJIOBA: unrerpansHoe ypaBHeHHEe BoibTeppsl epBoro poja, mokasareib Xepcra, npeodpasosanue Jlamnaca,
(paxTaNBHBIA IPOIECC, TOYHOE AaHATUTUIECKOE PEIICHUE.
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