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ABSTRACT

Context. The task of automation of feature set informativeness estimation process in multi robot teams control is solved. The
object of the research is the process of multi robot teams control. The subject of the research is the criterion of feature set
informativeness estimation.

Obijective. The research objective is to develop the criterion for feature set informativeness estimation in multi robot teams
control.

Method. The criterion for feature set informativeness estimation is proposed. The developed criterion is based on the idea that
feature set informativeness is computed according to values of the prior probabilities of finding features in the descriptions of the
environment states. The use of the proposed criterion allows to efficiently solve the problem of feature set informativeness
estimation, leading to effective solution of the multi robots control task. The developed criterion is based on the maximizing mutual
information criterion and can be applicable when measurements are interdepended and environment has a variable number of states.
The criterion doesn’t require to construct models based on the estimated feature combinations, in such a way considerably reducing
time and computing costs for multi robot teams control. Application of the proposed criterion for feature set informativeness
estimation allows to make a decision how much a new observation will increase the certainty of the robots’ beliefs about the
environment state which is observed.

Results. The software which implements the proposed criterion for feature set informativeness estimation and allows to manage
multi robot teams has been developed.

Conclusions. The conducted experiments have confirmed operability of the proposed criterion for feature set informativeness
estimation and allow to recommend it for multi robot teams control in practice. The prospects for further researches may include the
modification of the known multi robot teams control methods and the development of new ones based on the proposed criterion for
feature set informativeness estimation.

KEYWORDS: multi robot teams control, mutual information, informativeness criterion, feature set informativeness.

NOMENCLATURE
p(Li) is a prior probability of the environment state

Li

p(ij ) is the prior probability of the situation when a
feature K has value j;

p(xkj / Li) is a probability of the situation when a fea-
ture k has value jon condition that output parameter has

value L ;
N is a number of possible environment states

i=1N;
p(Li / ij) is a probability of the situation when the
environment state has value L; on condition that feature

has value Xy ;

J is a number of feature values | = I,_J ;

n is a number of features k =1,n;
a. 1s a possible robots action;

D is a number of possible robots actions ¢=1,D ;
H O(L) is a prior entropy of the environment state;

Iy (L) is a informativeness of the k -th feature;
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I(L) is a informativeness of the feature set;
E(L) is a relative informativeness of the feature set;
I B(L) is a informativeness of the 3 feature;

Up (L))
the B feature;
Ykp 1s a coefficient characterizing the statistical con-

is a maximum possible informativeness of

nection between k and [ -th features;

pe(L) is a classification error of the environment
state;

ps is a required classification error of the environ-
ment state;

M (qu), M¢(Xl ;) are the frequencies of the values

of the features;
W is a sum of all measured frequencies of the consis-
tent occurrence of the feature values;

IM (J-)¢J are hypothetical frequencies;

Hr(L) is the required entropy of the environment

state;
I, (L) is the required amount of mutual information of

the environment state;
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I*(L) is an amount of mutual information which
multi robot teams receive from action;

I; and | are amounts of information that can be

determined based on the value of the required probability
of the clasification error.

INTRODUCTION

Multi robot teams that intelligently gather information
have the potential to transform industries as diverse as
agriculture, space exploration, mining, environmental
monitoring, search and rescue, and construction. Despite
large amounts of research effort on active perception
problems, there still remain significant challenges.

The ultimate goal of an active perception problem is to
estimate some unknown quantity of interest. Most modern
perception approaches are probabilistic [1]; instead of
forming a single concrete guess of what something is,
they determine a probability distribution over possible
values that it could be. Consequently, the goal of an active
perception strategy is to reduce the uncertainty of the
probabilistic estimate as quickly as possible. To formally
define this goal of “uncertainty reduction,” a lot of mod-
ern approaches use information theory. According to them
the robots are controlled to seek informative observations
by moving along the gradient of mutual information at
each time step. Mutual information is a quantity from
information theory that predicts how much a new obser-
vation will increase the certainty of the robots’ beliefs
about the environment state. Thus by moving along the
mutual information gradient, the robots maximally in-
crease the informativeness of their next observation.

To control this complex process we have to use fea-
ture set informativeness estimation methods that allows us
to make a decision how much a new observation will in-
crease the certainty of the robots’ beliefs about the envi-
ronment state.

Feature set informativeness estimation methods gen-
erally use classification error obtained by the model
which was constructed using estimated data set as crite-
rion of feature set informativeness estimation [2, 3]. Such
approach needs significant computational and time costs
of resources, because it is connected with computationally
complex procedure of model synthesis which should be
performed for every estimated feature set [2, 3].

Informational criteria [2, 4] don’t require to perform
computationally complex procedure of mathematical
model synthesis for estimation of feature set informative-
ness. However, in the known approaches of multi robot
teams control, such criteria suppose that features of initial
data sample are independent. Therefore it is difficult to
use such criteria in practice and it is unsuitable for situ-
ations when features in initial samples are interdependent.

Also, however there is a binding relationship between
mutual information and classification error there is no
functional relationship between these values. This does
not allow us to make precise assessment of the classifica-
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tion error in the known approaches of multi robot teams
control.

The described shortcomings cause actuality of the de-
velopment of the criterion for feature set informativeness
estimation, which is free from these drawbacks.

The research objective is to develop the criterion for
feature set informativeness estimation which enables to
estimate the classification error in the task of multi robot
teams control.

1 PROBLEM STATEMENT
Suppose we have prior probabilities p(xkj/ Li) and

p(Li) for environment states L = {Ll, Ly,..., LN} and
feature set X = {Xl, X2 5eees xn}. Every feature X, is charac-
terized by values of attributes Xy = {Xkl 5 XK2sees XkJ } . Giv-
en a set of possible robots actions A= {al,az,...,aD}.

Then the problem of multi robot teams control strategy
can be ideally stated [1] as driving the team to obtain
measurements which lead to maximize the mutual infor-

mation | *(L) =max | (L) .
acA

2 REVIEW OF THE LITERATURE

Bayesian approaches for estimation have a rich history
in robotics, and mutual information has recently emerged
as a powerful tool for controlling robots to improve the
quality of the Bayesian estimation, particularly in multi
robot systems. As an early example, in [5, 6] was pro-
posed controlling multiple robot platforms so as to in-
crease the mutual information between the robots sensors
and the position of a target in tracking applications. In [7]
was used a similar method for exploring and mapping
uncertain environments. The problem of planning paths
through an environment to optimize mutual information
was investigated in [8—10].

In [11] was used mutual information for control with
highly non Gaussian belief states, achieving scalability by
using a pairwise approximation to mutual information. In
[12] was used the identical gradient of mutual information
to drive a network of robots for general environment state
estimation tasks. In [13] was developed a consensus algo-
rithm to achieve decentralization and a sampling strategy
to reduce complexity.

Information theoretic costs metrics also have been
used to manage sensors [14], and led to algorithms to con-
trol sensor networks for information gathering over an
area by parameterizing the motion of collectives of vehi-
cles [15]. The optimal probing control law to minimize
Shannon entropy for the dual control problem was shown
to be the input that maximizes mutual information [16]. A
property relating probability distributions, the alpha-
divergence, was computed for particle filters and applied
to manage sensors with binary measurements, though
scalability in sensor network size was not addressed, and
Shannon entropy was only found in the limit of the pre-
sented equations [17]. Probability-of-detection was com-
puted using both grid cell and particle filter estimators,
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and experimentally demonstrated [18]. An approximate
method was used to estimate the expected entropy for
particle filters over a finite horizon [19]. Gaussian particle
filtering was used with a mutual information objective
function, though the technique approximates the posterior
probability distribution as Gaussian at every update [20].
The version of mutual information approximation tech-
niques was presented in [21].

For planning approaches that seek to maximize mutual
information, in [22] derived approximation guarantees for
greedy maximizations of mutual information and other
submodular set functions. These results were applied to
mobile robot environmental monitoring problems in [23,
24]. These guarantees only hold in offline settings where
teams do not update their actions based on measurements
they receive. In [25] was developed a sampling based
strategy for maximizing a variety of information metrics
with asymptotic optimality guarantees. However, they
assume that information is additive across multiple meas-
urements (i.e., measurements are independent). This as-
sumption limits cooperation in multi-robot settings [1]
and can lead to overcondence when considering multiple
measurements of the same quantity.

Information-theoretic objectives have also been used
for planning and control in robotics for related informa-
tion rich tasks involving uncertainty such as inspection
[26], environment modeling [27], extrinsic calibration of
LIDAR sensors [28], visual servoing [29], and active ob-
ject modeling [30]. They have also been used for applica-
tions outside of active perception. For example,
Kretzschmar and Stachniss [31] use mutual information
as a criterion for storing a minimal number of laser scans
toward map reconstruction.

It is necessary to admit that classification methods
generally use classification error obtained by the model
which was constructed using estimated data set as crite-
rion of statistic effectiveness estimation [2, 3]. But such
approach needs significant computational and time costs
of resources, because it is connected with computationally
complex procedure of model synthesis which should be
performed for every estimated feature set [2].

Although there is a binding relationship between mu-
tual information and prognostication or classification er-
ror there is no functional relationship between these val-
ues. This does not allow to make reliable assessment of
the classification error [32] and to estimate the ratio of
incorrectly recognized measurements to the total number
of measurements for multi robot teams.

It means that for planning approaches to multi robot
teams control which seek to maximize mutual information
the increasing of the mutual information is not the same
as decreasing the ratio of incorrectly recognized meas-
urements to the total number of measurements.

Thus disadvantages of the known criteria for feature
set informativeness estimation in robotics cause actuality
of the development of criterion which should be free from
the discovered drawbacks.
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The described shortcomings cause actuality of the de-
velopment of the criterion for feature set informativeness
estimation, which is free from these drawbacks.

3 MATERIALS AND METHODS
The entropy of the environment state L on condition
that output parameter Xy has value Xy; can be defined as:

N
(L/ij) z p(LI /ij )IOgN p(LI /ij )
i=1

Use Bayes’ Rule:

(L/ij)=——(—)2p(L. (ij/h)log\lN(L')M:

Xl 1)l /L)
_Zi:p(Li)P(ij/Li)log\l plLs)plxg /)~
—ip(mp(xk,-/u)loguipm)p(xk,-m) |

To obtain an entropy solution, we find the sum of val-
ues H (L/ ij) for all values with weights, proportional to

the probability of occurrence of each values p(xkj ) Then

J N

H(L/x )= i plxg H (L /%)=~ 3 plLi. )<

i=1 j=li=1

I N
xlogy plLi g )+ 2.2.P (Llsxkj)zlogN plLi.xg)
j=li=l i=1

The value of the prior entropy of the solution will be
N

= p(Li)logy p(L;).
i=1

The mutual information of the environment state on
condition that measurements are independent is defined as

|(|_)=ki1|k(L).

However, to estimate the informativeness of a group
of statistically related features using the Shannon measure
is rather difficult. Therefore it is difficult to estimate mu-
tual information for situations when measurements are
interdependent.

To solve this problem we use method which was de-
fined in [33]. According to this method informativeness
for situations when features are interdependent can be
estimated as

found by expression Hg(L)=

O
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The statistical relationships between features in (1) are
taken into account in all of their pair combinations. The
connections of higher orders were not taken into account
because of their non-essentialness for practical calcula-
tions [33]. As can be seen from (1), in order to find the
informativeness of the feature set, it is necessary to esti-
mate the statistical relationships between them, which are
characterized by the coefficient yyg. To do this we use

the criterion, which are based on the measured frequen-
cies differences of the consistent occurrence of the fea-
tures discrete values with a hypothetical distribution of
frequencies, which corresponds to the condition of the
features independence.

First, assume that the features are statistically inde-
pendent. The hypothetical frequency distribution, which
corresponds to this condition, needs to be verified statisti-
cally. To do this, use the Pearson criterion.

Assume that it is necessary to quantify the statistical

relationship between the features X, and X,, which in
general can have several values X;j and Xy (¢=ﬁ, q

— maximum number of values for the feature ¢ ).

In Table 1 shows the distributions of the measured
frequencies M j, of the compatible appearance of the J

value of the X, feature and the ¢ value of the x, feature.

q
In this table (M j(xzq )= >M jo for j=const);
¢=1

J
(My(x13)=D"Mjy mpu ¢ =const).
i=1

i'\"j(xz¢)=§l'\"¢(xu)-
My = M o I 0w

From hypothetical frequencies lM ?¢J we can find

2

The double sum (2) is distributed approximately Xﬁﬁ
with the number of degrees of freedom &=(J —1)q—1)

[33]. Therefore, we will assume that X%B =vZ.

The larger the value xﬁﬁ for each pair of feature Xy
and xg, the greater the statistical relationship between
them (for a statistically independent pair of features

Mj¢=[M?¢Jand Tk =0.
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Table 1 — Frequencies of compatible appearance of the j

value of the X, feature and the ¢ value of the X, feature

Value X,
X,
X5 X5 X2q Z
X1 lMloll lMIOZJ lMl%J M (g
M M, Miq
Xz | 3] | M) e
12 MZ MZ Mag M5 (xoq )
[’V'?«t
Mj¢
X1 [MS]IJ \_MJ2J lMS)q MJ(XZq)
M M2 M jq
> Milxg)| Malxy) Mq(xiy) W

When using Pearson’s criterion in expression (1), the

value XﬁB for the pairs of features should be normalized

by dividing them by (xﬁﬁ)

for this pair of features,
max

that is, one has to find yg :Xﬁﬁ /(Xﬁﬁ)max where

(X ﬁﬁ )max =W

However, the value of the mutual information depends
on the number of the investigated system states. However,
when conducting robots measurements we can have dif-
ferent number of the explored environment state. There-
fore, in practical calculations of informative it is expedi-
ent to use the relative mutual information received by the
multi robots team, whose value does not depend on the
number of the environment states.

We can find it as E(L) = H

The required amount of mutual information of the en-
vironment state 1,(L) to provide the required

classification  error pe (L) is  defined as
I,(L)=Ho(L)-H,(L), where H,(L) is the required
entropy of the environment state L .

To provide the required value of the feature set infor-
mativeness for multi robot teams control the condition

pe(L)< pe(L) (3)
have to be met.

However, as noted in [32], there is no functional rela-
tionship between conditional entropy and classification
error.

Therefore, the condition 1(L)>1,(L) is necessary,

but not sufficient to ensure the necessary probability of
making a false decision about the state of environment.
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So, if a decision is taken on one of the two states of the
system, in order to unambiguously guarantee the neces-
sary value of the average probability of making a false

decision, it is enough to fulfill the condition
I(L)-T,(L)> 1" or
H(L)-H(L/x)>17, (4)
where
1" =—H(L/x)1+0,5l0g, 0,5H(L/x))— )

—(1-0,5H(L/x))log,(1-0,5H(L/x))

to ensure compliance with the condition (3).

We prove the sufficiency of the condition (4), for this
we use the well-known expressions for the exact upper
and lower bounds of the mean condition entropy H(L/x)
at a given average probability of error pe(L). These ex-

pressions in accordance with the theorem of Kovalevsky
[32] is presented in this form

supH(L/ %) =—pe(L)logo Pe(L)—(1—pe(L))log (1 pe(L).

e (6)
inf H(L/x)=2pe(L).

®)

On the basis of expression (7), we conclude that for a
given average conditional entropy H(L/ X), for the ave-
rage probability of recognition error pe(L), inequality
holds true

Pe(L)<0,5H(L/x). ()

Inequality (8) is correct, since assuming the opposite;
we find that H(L/x)<2pe(L) this contradicts the condi-
tion (7).

We will proceed from the fact that the condition (4) is
fulfilled, then, taking into account (5), we obtain

H,(L)<—-0,5H(L/x)log, 0,5H(L/x)—

—(1=0,5H(L/x))logy(1-0,5H(L/x)) ©)
Under this condition

pe(L)<0,5H(L/x). (10)

Indeed, let’s assume the opposite, that is

pe(L)>0,5H(L/x). With this assumption, taking into
account that H(L/X)Sl, and supH(L/X) according to
(5) is monotonically increasing function from pe(L)
when pe(L) <0,5, we obtain

H,(L)>-0,5H(L/x)log, 0,5H(L/x)-

—(1-0,5H(L/x))log, (1-0,5H(L/x)).
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However, this inequality contradicts (9). Thus,
inequality is confirmed (10). Comparison (8) and (10)
allow us to conclude that when the condition (4) is
fullfilled so (3) is also fullfilled.

Thus, ensuring the required value of the entropy
solution is a necessary, but not sufficient condition for the
decision on the state of the environment with the required

probability. In order to ensure a condition pg(L)> pg(L),
it is sufficient that the condition (3) is fulfilled.

However, the sufficiency of the condition (3) can be
satisfied not only by the fulfillment of conditions (4), but
also the fulfillment of the condition

H,(L)-H(L/x)>17. (11)

Thus, knowing the lower boundary of the required

conditional entropy H r(L/ X) at the given required prob-

ability of classification error pg, the value I, should be

defined as the difference between the required entropy
Hr(L) and inf H,(L/x) by the expression

IF =H,(L)-inf H(L/x), (12)
where

inf H,(L/x)=2pg. (13)

Substituting the expressions (13) into expression (12)
we obtain:

17 =—p{ log, pL (1 pé)logz(l— pé)—zpé. (14)

Let us prove the condition (11). On the basis of
expression (14), the condition (11) can be represented as

He(L)-H(L/%)> H,(L)-2pg. Or

H(L/x)<2pf. (15)

We will show that under this condition pe < pg . Yes,
in fact, assuming the opposite, that is, that p, > ps on

the basis of expression (7) we obtain inf H (L/ X) >2 pg .

However, this condition contradicts the condition (15).
Consequently, the sufficiency of the condition (11) is
proved.

The value of the lower bound of the required condi-
tional entropy in accordance with [32] can be found tak-
ing into account the a priori probabilities of in terms of
expression

r
ianr(L/x):—polog{ Po r]—perlogz[ Pe r} (16)
Po + Pe Po + Pe

Where pg = min{p(l-l )» p('—z )}
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Therefore, in accordance with (12), and taking into
account (16), the value I
expression

can be determined by

If =—pg log, pg _(1_ p£)1°g2(1_ pg)+
or ). (17)

Po + Pe

+pe log,

+pplog
Po + Pe

4 EXPERIMENTS
Distribution of the entropy H(L/X), depending on

classification error pe, is presented in the Fig. 1.
Distribution of mutual information I: , depending on
the entropy H (L/ X) , is presented in the Fig. 2.
Distribution of I, , depending on p§ with condition
Po = const, is presented in the Fig. 3.

-

H(L]
0.8

0.6

0.4

0 0,1

0,2

0.4

De
Figure 1 — Graph of dependence between H (L / X)

0,3

and pe

Numerical study of the developed software system
application based on the proposed estimation criterion and
the traditional methods of effectiveness estimation shows
that proposed criterion in average by 5% reduces the
informativeness of the feature set.

For example in Tables 2—4 are presented probabilities
of the situation when a features has different values on
condition that output parameters has values Ly and L, .

I*
F 74 N
0,25 / N
L/ N\
01; / \‘
it N\
0,05 / \
0
0 02 04 06 08 1 H([ ;’x)

Figure 2 — Graph of dependence between |, and pj
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Figure 3 — Graph of dependence between | ;k and pg if
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Table 2 — Probabilities p(X1 / Li) of the feature X

state LI )(1 1 X12 X1 3
L, 01 038 01
L, 05 0,1 04

Table 3 — Probabilities p(x, / Li) of the feature x,

state LI X1 1 X12 X1 3
L 0,1 0.8 0,1
L, 0,5 0,1 0.4

Table 4 — Probabilities p(X3 /L ) of the feature X3

state Li )(1 1 X12 X13

L 0,1 0.8 0,1

L, 0,5 0,1 0,4
Further, in accordance with our approach we

determine the values of the informativeness of each fea-
ture. As a result of calculations we obtain the values Ej

that are presented in the Table 5.

Table 5 — The obtained values of the feature relative

informativeness
E =) E;
0,40 0,10 0,15

On the basis of the obtained values of the feature
relative informativeness we determine the relative infor-
mativeness of the feature set. Since the ignoring of the
statistical relationships between the features overestimates
the relative informativeness of the feature set, it leads to
an incorrect definition of its informativeness of the feature
set. Therefore, we will determine the relative
informativeness of the feature set, taking into account the
statistical relationships between the features. To do this
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we will determine the value of the statistical coupling
coefficients for each pair of signs vyg .

Further, we determine the relative informativeness of
the feature set, taking into account the statistical
relationships  between the features E(L)=0.62.

Excluding E(L) =0.65.

From the obtained results it is clear that the inclusion
of statistical links between features by 5% reduces the
informativeness of the feature set, which leads to a more
accurate determination of the possible efficiency
indicator.

6 DISCUSSION
As can be seen from the data shown in the Figure 1,
there is an ambiguous relationship between the probabil-
ity of classification error p, and the entropy of the deci-

sion H(L/x). Thus, ensuring the required value of the
entropy solution is a necessary, but not sufficient
condition for the decision on the state of the environment
with the required probability. In order to ensure a condi-

tion pe(L)> pg(L), it is sufficient that the condition (3).

From the analysis of the data shown in the Figure 2
and 3, it is evident that, with a constant value of the re-

quired probability of classification error per =const, the

value |} determined by the expression (17) is less than

that determined by the expression (5). Therefore, in order
to determine the sufficient condition for the feature set
informativeness when recognizing the environment state,

it is expedient to use value I, which is determined by

expression (5). Since this will provide the required prob-
ability of error to recognize the environment state. It pro-
vides control of the multi robot teams which minimize the
ratio of incorrectly recognized measurements to the total
number of measurements.

Thus the proposed criterion for feature set informa-
tiveness estimation in the task of multi robot teams con-
trol allows to efficiently solve the problem of feature set
informativeness estimation, leading to effective solution
of the multi robots control task. At that in comparison
with traditional feature set informativeness estimation
approaches based on the maximizing mutual information
criterion this process is applicable when measurements
are interdepended, environment has a variable number of
states and allow estimate the ratio of incorrectly
recognized measurements to the total number of
measurements.

CONCLUSIONS

In this paper the actual task of automation of feature
set informativeness estimation process in the task of multi
robot teams control was solved.

The scientific novelty of obtained results is that the
method of feature set informativeness estimation is im-
proved. The improved method enables to estimate feature
set informativeness in classification problems in situations
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when input data samples contain interdependent features
and environment has a variable number of states. The
proposed criterion is based on the idea that feature set
significance is computed according to the mutual infor-
mation of the multi robot teams next observation. The
article defines a sufficient condition for ensuring the re-
quire probability of making a false decision on the envi-
ronment state and proves it. The fulfillment of this condi-
tion guarantees a decision on the environment state with
the required probability.

Application of the proposed criterion of features set
informativeness estimation allows us to make a decision
how much a new observation will increase the certainty of
the robots’ beliefs about the environment state. Practical
significance of the paper consists in the solution of practi-
cal problems of multi robot teams control. Experimental
results showed that the proposed criterion allowed to es-
timate feature set informativeness and it could be used in
practice for solving of practical tasks of multi robot teams
control.
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AHOTAULIA

AKTyaJbHicTb. Bupimeno 3amady aBroMaTH3alii Ipolecy OLiHIOBaHHS iHGOPMATUBHOCTI O3HAK MPH yIPaBIIiHHI TPYTIOI POOO-
TiB. O0’€KT HOCITIPKEHHS — YIPaBIiHHS rpynoo poboTis. [Ipenmer mocmimKeHHS — KpUTepiil OmiHIOBaHHS iHOPMATHBHOCTI O3HAK.
Mera po6oTH noJsirae B po3po011i KpUTEpito OIiHIOBaHHS iHGOPMAaTHBHOCTI O3HAK MPH YNPaBIIiHHI TPYNIOI0 pOOOTIB.

MeTon. 3ampornoHOBaHO KpUTEpiil OIiHIOBaHHS iHGOpMATUBHOCTI O3HAK. Po3polOiieHuii KpuTepiii nependayae BU3HAYCHHS 1H-
(opmaTuBHOCTI HAOOPY O3HAK HA OCHOBI 3HA4YEHb ANPiOPHUX HMOBIPHOCTEH 3HAXO/PKEHHS O3HAK B OIMCAX CTaHIB HABKOJIMIIHBOTO
cepeoBHIIa. BUKOpHCTaHHS 3alIPOIIOHOBAHOTIO KPUTEPIIO 103BOJIsI€ €(heKTUBHO BUPILIyBAaTH 3aBAaHHS 100 OLIHIOBaHHS iHpopMa-
TUBHOCTI 03HaK. {e Hagae 3Mory mpuiiMaTy eeKTHBHI PIlICHHS MPH YIPaBIiHHI Tpynoro poboTiB. Po3pobienuit kpurepiit 6a3yersh-
¢s1 Ha KpUTepil MaKCUMAJIbHOI KUTBKOCTI iHpopMarii Ta Moxe OyTH 3aCTOCOBaHMI B CUTYalifX, KOJIA OTPHMaHHI BUMipIOBaHHS HE €
HE3JIC)KHUMH, 2 HaBKOJUIIHE CEPEeIOBUIIIEC Ma€ 3MiHHY KUTBKICTh CTaHIB. 3allpONIOHOBAaHMI KPUTEPill HE BUMarae moOyIoBH MOJe-
JIel Ha OCHOBI OLIIHIOBAaHMX KOMOiHamilf O3HaK, IIO iCTOTHO 3HIDKY€ YacoBi Ta OOYMCIIIOBAJbHI BUTPATH IPH YIPABIiHHI TPYyIOIO
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po6otiB. BukopucTaHHS 3aIIPOIIOHOBAHOTO KPHUTEPIIO IS OLIHIOBAHHS iHGOPMATHBHOCTI HA0OPY O3HAK J03BOJISIE IPUHMATH PillleH-
HSl HACKIJIBKH HOBE CITOCTEPEIKCHHS 301IBIIUTH 00i3HAHICTH POOOTIB II0/I0 CTaHY JOCIIIKYBAaHOTO HABKOJIMIIIHHOTO CEPEIOBUIIA.

PesyabTaT. Po3pobieHo nmporpaMHe 3a0e3neueHHs, M0 peasi3ye 3anpoloHOBAaHMI KpUTEpid OIiHIOBaHHS iH()OpPMaTHBHOCTI
O3HAaK Ta JI03BOJISE€ YIIPABIATH IPYIIOK0 POOOTIB.

BucHoBku. [IpoBeseHi eKCIEpUMEHTH MiATBEPANIN IPALE3aTHICTh 3alPOIOHOBAHOTO KPHUTEPi0 OLiHIOBaHHS iH(OpPMATHB-
HOCTi O3HaK 1 JO3BOJISIOTh PEKOMEHAYBATH HOTO JJIsi BUKOPUCTAHHS Ha MPAKTHUIl PU YIPaBIiHHA TpyIor podotiB. [lepcnexTnBu
MOJANBIINX JOCHIIKEHh MOXKYTh MOJNATaTH B MoAu(]ikamii iCHYI0UMX 1 po3po0Ili HOBHX METOJIB YIPaBIiHHS TPYHOI poOOTiB Ha
OCHOBI 3aIIPOITOHOBAHOTO KPUTEPIIO OLIHIOBAHHS iHYOPMATUBHOCTI O3HAK.

KJIIOYOBI CJIOBA: ympaBiiHHS Ipynoro poOoTiB, B3aeMHa iH(pOpMaIis, KpUTepii iHPOPMATUBHOCTI, iIHPOPMATHBHICTE TPY-
M O3HAaK.

YK 004.93
KPUTEPU OIIEHKU NTH®OPMATHUBHOCTH IPU3ZHAKOB IIPH YIIPABJEHUU I'PYIIIION POBOTOB

I'ymenrok M. A. — xaHJ. TeXH. HayK, JOIEHT Kadeapsl UCIIOIb30BaHMUs OECIMIOTHBIX aBHAIMOHHBIX KOMILIEKCOB, JKuroMup-
ckuil BoeHHbli HHCTUTYT UMeHH C. I1. Koponbosa, XKutomup, Ykpauna.

Camyk U. M. — kaHz. TeXH. HayK, CTapIlUil Hay4HBII COTPYIHUK, 3aMECTUTEIb HayalbHUKA HHCTUTYTA C Y4eOHOH 1 Hay4HOH
pa6otsl, XKutomupckuit BoenHsiit uHcTuTYT uMeHu C. I1. Koponsosa, XKutomup, Ykpauna.

Kypascbkuii F0. B. — 1-p TexH. HayK, cTaplIMii HAyYHbBIH COTPYIHMK, BeIyIIMH HAY4YHbBIH COTPYJHHUK HAy4HOTO LeHTpa, JKu-
ToMupckuii BoenHbi HHCTUTYT nMeHH C. I1. Koponsosa, XKutomup, Ykpanna.

AHHOTAIUA

AKTyanbHOCTB. Pemrena 3agaga aBToMaTH3alMu Iporecca OLUEHKH MH()OPMATHBHOCTH IPH3HAKOB YIPABICHHU IPYHIIOH po-
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TOSHUH OKpyxatomei cpensl. Mcnonbp30BaHne NPEIOKEHHOTO KPUTEpUs Mo3BousieT 3Q(EKTUBHO pelaTh 3a4a4yu 10 OLEHKE MH-
(hOpMAaTUBHOCTU MPU3HAKOB. DTO AAaET BO3MOKHOCTh NPUHUMAThH 3()(HEKTHBHBIEC PEIICHUS NP YIPABICHUN TPYNIIon poOoToB. Paz-
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IMpemnoxxeHHsIil KpuTepHii He TpeOyeT MOCTPOSHUS MOJieIell Ha OCHOBE OLICHWBAEMbIX KOMOMHAIMH IPU3HAKOB, CYIIECTBEHHO CHH-
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