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ABSTRACT
Context. Traditionally a large number of pilot carriers are utilized to acquire channel state information in OFDM based systems.
A larger number of pilot carriers gives better channel state estimation but leads to lower spectrum efficiency of the system.
Obijective. Primary objective of this paper is to look at the practical aspects of the application of novel CS-based channel
estimation technique, that can achieve estimation quality on reduced training data, in context of real pilot aided OFDM systems.
Method. A novel technique CS enables representation of sparse signals using fewer samples as compared to its original size.
Exploiting the sparse nature of channel impulse response of multipath channels, we apply the CS technique for channel estimation in

pilot aided OFDM system based on ISDB-T standard.

Results. In this paper, we consider two the most popular CS-based recovery algorithms — OMP and CoSaMP. The MSE
performance metrics are given for both CS-based channel estimation algorithms. Simulations results demonstrate that CoSaMP
provides more stable results while requires more pilot carriers than OMP to achieve good estimation quality. Both algorithms require
a priori knowledge of channel sparsity level but CoSaMP is much more sensitive to a correctness of this information.

Conclusions. The compressed sampling approach shows the impressive capability of channel impulse response recovery from a
significantly smaller amount of pilot carriers than traditional linear methods require. However, the need of sparsity knowledge by the
most popular CS recovery methods seriously limits the applicability of these algorithms in real OFDM receivers. Nevertheless, CS-
based channel estimation is a promising technique which worth further investigation to overcome this limitation.

KEYWORDS: OFDM, multipath channel, channel estimation, compressed sampling.

ABBREVIATIONS

OFDM - orthogonal frequency division multiplexing;

LS — least squares;

ML — maximum likelihood;

CS — compressed sampling;

OMP — orthogonal matching pursuit;

CoSaMP — compressive sampling matching pursuit;

MSE — mean square error;

CNR - carrier to noise ratio;

FFT — fast Fourier transform;

ISDB-T — integrated services digital broadcasting-
terrestrial;

SFN - single frequency network;

ADC — analog to digital converter;

SP — scatter pilots;

TMCC - transmission and multiplexing configuration
control.

NOMENCLATURE
® e CM*N _ sampling matrix;
H eCN - channel frequency response;
heCN - channel impulse response;
t; — delay of i-th distinguishable channel tap;

K — channel sparsity;
N — number of carriers in one OFDM symbol;
w — white Gaussian noise with unknown statistics

02;

X e CN*N' _ transmitted carriers in one OFDM
symbol;
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Y eCN —received carriers in one OFDM symbol;
Np —number of pilot carriers in one OFDM symbol;

decNeN _ partial DFT sampling matrix for pilot
carriers;

XpeC Ne _ transmitter pilot carriers in one OFDM
symbol;

YpeC Ne _ received pilot carriers in one OFDM
symbol;

heCN — estimated / recovered channel impulse
response.

INTRODUCTION

OFDM is the most popular modulation technique
widely applied in modern wireless communication
systems. Channel estimation is an integral part of high
data rate wireless communication systems. It is essentially
a process of recovery of channel state information, which
is required for data decoding. The accuracy of channel
estimation has great importance for high data rate
decoding and is one of the key challenges in OFDM based
wireless communication systems.

Most of the OFDM based systems employ pilot
subcarriers for channel estimation. Traditional linear
channel estimation techniques [1-5], like the ML and LS,
require a large number of pilots to achieve a proper
accuracy of channel state information recovery. A higher
number of pilots, that do not carry data, seriously reduce
spectral utilization efficiency of the system.
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But these traditional methods do not exploit the fact
that the impulse response of the wireless channels is often
sparse [6]. Sparse channel means there are a few strong
distinguishable signal paths in it due to reflection,
refraction, and scattering of the signal on its way from the
transmitter to the receiver. Channel estimation method
that uses the advantage of the channel sparsity allows
reduction of the number of pilot carriers per OFDM
symbol and in such way improves the efficiency of
channel bandwidth utilization. It also achieves higher
channel estimation accuracy in mobile reception scenario
compared to traditional methods. The methods best suited
for sparse channel estimation are developed in CS theory.

CS [7] is a novel signal processing technique that
postulates that any signal that can be sparsely represented
in some orthogonal space can be sampled with lower
frequency and accurately reconstructed with much fewer
samples than specified by classic sampling theory by
Nyquist [8, 9]. In the theory of CS, a sampling is a linear
operator applied to a k-sparse signal. The process of
collecting multiple samples is viewed as the action of a
sampling matrix @ on the target signal. For M

compressed measurements of a signal in cV  the
sampling matrix has dimensions M x N . Since sampling

matrix ®**Y must not map two different k-sparse

signals to the same set of compressed measurements, the
minimum number of measurements is M > 2k . Moreover
MxN

each collection of 2k columns of @ must be
nonsingular.
1 PROBLEM STATEMENT
For wireless communications, the transmission

medium is the radio channel between transmitter and
receiver. The signal can get from the transmitter to the
receiver via a number of different propagation paths. Each
of the paths has distinct amplitude, propagation time,
departure and arrival directions. Because of this, the
signal at the receiver side consists of the sum of several
components with different energy and phase shits to each
other and noise. Different phase shifts of signal
components lead to interference, which creates so-called
frequency selective fading — the effect of significant
amplitude changes of frequency components in the signal.

Consider the frequency selective fading channel in
OFDM system, whose coherence time is much larger than
the symbol period. If ADC sampling frequency is Fs, its
discrete sample-time channel model is:

K
1= a;8(t—;Fs),
i=1

()

where K is the number of dominant transmit paths, a; is
the complex amplitude and t; is the delay of i-th

distinguishable channel tap. When there are just a few
none zero elements in 4 = [O,al,a2,0,...,aK,...,0,0,0]e cV R
we say that such channel is K sparse.
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Figure 1 — The sparse impulse response of the multipath
channel

The frequency response of the channel model (1) is
H = ®h , where ® e CV*V is Fourier matrix.

Provided that in the OFDM system, the total number
of subcarriers is N, among them the number of pilot
subcarriers is Np <<N . Carriers x; contain data and pilot
signals in one OFDM symbol. Cyclic prefix length
Ty <ty is greater than the maximum possible path delay
in every OFDM symbol. The frequency domain signal at
the receiver is a vector Y € CV, which can be written as:

Y = XH +w, ©)
where X = diag(x,,x,,...xy) is CY" matrix with

carriers, H € C" is a vector of complex amplitudes of
channel frequency response, w is white Gaussian noise
term with unknown statistics c.

Since H = ®h, (2) can be equivalently rewritten to:

Y = XOh+w, 3)

where h=[O,al,a2,0,...,aK,...,0,0,0]TeCN is  sparse

multipath channel impulse response with only K <N
nonzero entries and ® € CV*V is Fourier matrix.

At the OFDM receiver side, # and w are fully
unknown. Y and X are partially known for only pilot
carriers Xp and Yp, where the number of pilot carriers
Np <N significantly less than a total number of carriers

in the OFDM symbol. In channel estimation context
model (3) for receiver side transforms to:

Yp = X p®h+w, “4)
where P=[p\.py..on, 1€ Z, is pilot positions in the

OFDM symbol and ® e MV is matrix derived from
Fourier matrix in a next way:

1| ORo ©Op,N-1
db=—rof E,
N () ()
PNP’O PNP ,N-1
m-n
,27['7
J N

where ©,,, =e
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The channel estimation process is essentially a
recovery of the original high dimensional /4 e cV from
low dimensional XpeCY? and Ype C"P available at
the receiver side.

2 REVIEW OF THE LITERATURE

The most common channel estimation techniques in
the literature for OFDM systems use repeated blocks of
pilots or training data to formulate ML or LS estimation
algorithms. Both of the methods based on well-
established theory [1-5] and provide identical channel
estimation results. To perform LS estimations, we need to
formulate an overdetermined system of linear equations in
terms of the parameters to be estimated [4]. To perform
ML parameter estimations, we need first to form a log-
likelihood function in terms of the parameters to be
estimated [5].

According to the theory the only way to improve
estimation quality of ML and LS estimators is to increase
the number of training data in the system. But more
training data means reduction of data throughput in the
system. Moreover, the use of repeated OFDM training
blocks requires that channel fading remains unchanged at
least over the period of the repeated blocks. This implies
that the maximum Doppler frequency must satisfy
fp <lT,where fp=vf./c, cis the speed of light, T is
one complete OFDM block time length in seconds, and f.
is the carrier frequency in Hz. Corresponding maximum

mobile receiver speed in this case is v < <.
c

From the last formula it’s clear that to increase
mobility of the reception we need to reduce training block
time length. In the best case we’d like to be able to
estimate channel state information for every OFDM
symbol independently. But according to the ML and LS
theory this will inevitably degrade estimation quality of
these classical methods [1-5]. This contradiction between
channel estimation quality, data throughput and reception
mobility of classical channel estimation methods force
researchers to look for new techniques that can achieve
estimation quality on reduced training data.

Compared with classical channel estimation methods, CS
[7] reconstruction methods exploit the fact of the channel
sparsity, which can effectively balance the channel
estimation  performance  spectral  efficiency and
computational complexity. Different CS reconstruction
algorithms may have different channel estimation
performance. Majority of CS reconstruction methods are
based on two types — /; norm minimization methods [10].
The second type is greedy pursuit algorithms [11], such as
OMP and CoSaMP. Greedy algorithms are more popular
because of its lower computation complexity [12]. In the
early stages, OMP algorithm was employed to estimate
sparse channel with improved estimation performance [13].
Recently, CoSaMP algorithm gradually replaces OMP to
realize more effective sparse channel estimation [14] in
OFDM system.
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While currently available works are mainly aimed to
proof the ability of CS to recover channel state information
of sparse channels, the primary objective of this paper is to
look at the practical aspects of application of CS-based
channel estimation methods in real pilot aidled OFDM
systems.

3 MATERIALS AND METHODS
The channel estimation process is a recovery of the

original high dimensional % e C" from low dimensional
Xpe c™r and Ype cr available at the receiver side.

Since known part of the considered mathematical model
(4) is significantly less than unknown, due to Np <N,

the recovery of he CV is a classical inverse problem
addressed in CS theory [7-9]. According to the theory,
sparse solution of the undetermined system can be found
with high probability via /; norm minimization process.
Within CS framework sparse channel estimation problem
can be defined in a next way:

h= arg mi]rvlp ||h||l ,

YP ay
AP Y/
2

where ¢ is a predefined noise level proportional to o~

For inverse problem (5) CS theory proposes roughly
two categories of recovery algorithms. One category is
convex optimization algorithms [10], which guarantee
global optimal solution but have high computational
complexity. The other category is greedy algorithms,
which can give a suboptimal solution but are easy to
implement in practice [11-14].

In this paper, we study recovery performance of OMP
and CoSaMP-two the most popular greedy algorithms,
applied to sparse channel estimation in pilot-aided OFDM
systems.

OMP is an iterative algorithm that at every step takes
an atom from the orthonormal dictionary with the highest
correlation to compressed measurements residue [13].
The algorithm is prohibited from taking the same atom
twice and so all resulting components in the recovered
signal are orthogonal to each other. This continues until
some stopping criteria are met. The most common
stopping criteria in all CS greedy algorithms is a number
of recovered nonzero components (i.e. sparsity level).
Pseudocode for OMP is shown in Algorithm 1.

)

subjected to <eg

2

Algorithm 1 OMP

Require: number of channel paths k (sparsity, number of
iterations)
. : o & NpxN
Input: sampling matrix ® e C"#7",
measurement vector y € che v« Yp/Xp
1: Initialize: i <1, hy <0, Ay <0, 1y <y
2: while i <k do
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(O8]

D« argmaxl‘é)Tri,l‘ {find 1 atom in & with max

correlation to the residue}

4: X; <A, U¢; {add atom position to support A }
S: iz; “«— é;. y {re-estimate with new support}
6: 1 «—y— Cf)l;i {update the residue}
Tii—i+1

8: end while

Output: estimated Channel Impulse Response fzk ecV
after k iterations

CoSaMP method [14] is based on OMP idea, but it
incorporates several other ideas to accelerate the
algorithm and to provide strong reconstruction guarantees
that OMP does not provide. Unlike OMP algorithm,
CoSaMP identifies 2k orthogonal dictionary atoms at each
iteration. This allows CoSaMP algorithm to run faster for
many types of signals but requires a priori knowledge of
the sparsity level k£ as part of its input. Pseudocode for
CoSaMP is shown in Algorithm 2.

Algorithm 2 CoSaMP

Require: number of channel paths & (sparsity level)
Input: sampling matrix & e V>V
measurement vector y € C? .y « Y, /X,
1: Initialize: i <1, hy < 0, 1y < ¥
2: while i <k do
3: o« argmax2k‘<i>Tq_l‘ {find 2k atoms in @

with max correlation
to the residue}

4: L« sup(hl-,l )u ¢  {merge with the current

estimation support}

5:a« Cfbg y {LS estimation for support A }

6: iNz, < Qargmax, o {prune LS estimation to k£ max
components }

Tirp < y— (i)fz,- {update the residue}

8:i—i+1

9: end while

Output: estimated Channel Impulse Response Zk ecV
after k iterations

4 EXPERIMENTS

In all the simulation cases the setup is configured
according to Mode 1 of ISDB-T standard [15] with FFT
size N=2048 and the guard interval length of 7,=512. To
reduce the uniformity of sampling, we used SP together
with TMCC as pilot carriers. In such way, the maximal
number of available pilot carriers in each OFDM symbol
is Np=157 for Mode 1 in accordance with the standard.
For multipath channel model we use two groups of six-tap
typical urban channel models [16] with the variable delay
between groups (see table 1 for more details). Such
multipath channel has 2x6 dominant taps, which means
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actual channel sparsity in all the simulation cases is the
same and equals 12. Such structure of the channel model
allows simulation of typical signal propagation in SFN.

5 RESULTS

The simulations are carried out to compare the
performance of the two proposed algorithms in different
channel conditions and input parameters scenarios. At
each simulation step, a recovery of channel impulse
response of the particular multipath channel is performed
by OMP and CoSaMP from the same input data set for
both algorithms. The efficiency of the algorithms is
evaluated via the MSE of the channel impulse response
recovery by the next formula:

MSE = E{%é(ﬁn —hn)z} :

-~ N . .
where & € C"" is recovered channel impulse response,

heC" actual channel impulse response, N length of the
channel impulse response.

6 DISCUSSION

Fig. 2a compares the MSE performance of the two
algorithms against CNR. The channel model parameters
are according to table 1. The number of pilot carriers used
for impulse response recovery is Np=157. It is clear that
MSE from both algorithms is decreasing with the CNR
increase, but CoSaMP has better recovery performance in
low noise conditions than OMP.

Fig. 2b shows the MSE performance of the two
algorithms against channel length (max delay spread of
the channel). The length of the channel model is defined
by the group delay values (see table 1). CNR is fixed at
20dB. The number of pilot carriers used for impulse
response recovery is Np=157. Both algorithms show
similar recovery performance that does not depend on the
channel length. It is noticeable that OMP provides less
stable results than CoSaMP. This can be explained by
OMP’s greedy nature, that does not give reconstruction
guarantees.

Fig.2c presents the MSE performance of the two
algorithms against the value of sparsity parameter K,
which should be equal to a number of signal propagation
paths in the channel (channel sparsity). Both of the
algorithms require this parameter at the input. From the
structure of algorithm 1 it is clear that OMP uses
paramater K only at step 2 for iteration count, while
CoSaMP uses parameter K at steps 2, 3 and 6 for
interation count, support assumption update and pruning
of the recovered components. Because of that CoSaMP is
significantly more sensitive to the correctness of value K
and this clearly visible in the result of simulation.

Fig. 2d compares the MSE performance of the two
algorithms against a number of pilot carriers Np used for
the recovery. All channel model parameters are according
to table 1. CNR is fixed at 20dB. We observe that
CoSaMP requires more pilot carriers to achieve the same
recovery performance level as OMP. This is especially
noticeable when small number of pilot carriers is used.
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Table 1 — SFN channel model parameters

Group A B
Group delay, s 0 typical 80 or varies from 6 to 250
Path Ne 1 2 3 4 5 6 7 8 9 10 11 12
Delay 1;, ps 0 0,2 0,5 1,6 2,3 5 0 0,2 0,5 1,6 2,3 5
Total delay, ps 0 0,2 0,5 1,6 2,3 5 80 80,2 80,5 81,6 82,3 85
Path Loss, dB =3 0 2 -6 -8 -10 -9 -6 -8 —12 -14 -16
10' . . 107 '
f — OMP [ — OMP
= = CoSaMP = = CoSaMP
10 ‘ \ s ‘ \ 107 ‘ . .
5 10 15 20 25 30 35 40 45 50 50 100 150 200
CNR, dB Channel Length, us
a b
10 e - 107 - . w
: 1 —OMP I —OMP
I - = CoSaMP - = CoSaMP
1 4
10] , ; 4
[

5 10 1 20 25 30

5
K
C

CONCLUSIONS

In this paper we have provided comparison of two CS
algorithms in context of channel impulse response
estimation in OFDM based system. Simulation results
based on ISDB-T standard shows that OMP algorithms is
more sensitive to noise and does not guarantee the
recovery performance for every symbol. CoSaMP
algorithm requires more pilot carriers than OMP for the
same level of recovery performance but provides stable
MSE performance of the recovery. Both algorithms
require a priori knowledge of channel sparsity but
CoSaMP is very sensitive to a correctness of this
parameter. Unfortunately, in real life channel sparsity is
not known a priori and moreover is not constant over
time. This significantly limits applicability of these
algorithms in real wireless OFDM receivers.
Nevertheless, CS approach shows impressive capability
of channel impulse response recovery from significantly
smaller amount of pilot carriers than traditional LS based
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Figure 2 — Simulation results of Channel State Information recovery with OMP and CoSaMP algorithms: (a) MSE
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linear methods require. CS-based Channel Estimation is
promising technique which worth of further investigation.
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NPAKTAYHI ACIEKTH 3ACTOCYBAHHS )KAIIBHUX METO/IIB PO3PII)KEHHOI JIMCKPETU3ALILI 1151
OLIHKHA XAPAKTEPUCTUKHU KAHAJIY B CUCTEMAX 3 OFDM

Kotaspos B. B. — acnipant kagenpu pagioTeXHIYHUX IPUCTPOIB Ta CHCTeM HamioHaIbHOTO TEXHIYHOTO yHIBEpCHTETY YKpaiHu
«KuiBcpkuii nonitexHivHud iHCTHTYT M. Iropst Cikopcrkoroy, Kui, Ykpaina.

Mmaaska O. O. — KaHJ. TeXH. HAyK, JOLEHT Kadeapu paaioTeXHIYHMX HPHUCTPOiB Ta cucteM HamioHaJbHOTO TEXHIYHOrOo
yHiBepcutery Ykpainu «KuiBcbkuii moniTexHiunui iHcTutyT iM. Iropst Cikopebkoro», Kuis, YkpaiHa.

AHOTAIIS

AxTyanbHicTb. [[ns otpuManns iHdopmauii npo cTaH KaHaly B CHCTEMaX Ha OCHOBI OPTOTOHAJBHOIO YaCTOTHOTO MOALTY
(OFDM) TpanuuiiiHo BUKOPHCTOBYETHCS BEJMKA KIIBKICTh MIJIOTHUX HECYYMX. 3OUTBIICHHS KITBKOCTI MIJIOTHUX HECYYMX HOKpAIYye
OLIHKY CTaHy KaHaIly, ajie TIPU3BOAUTH 10 3HIKCHHS CIIEKTPaIbHOT e()eKTUBHOCTI CUCTEMH.

Meta. OcHOBHa MeTa JaHOi pOOOTH IOCIIAWTH MPAaKTUYHI aCMEKTH 3aCTOCYBAHHS TEXHIKHA PO3PLIKEHIA AWCKpETH3alii, sKa
JI03BOJISE OLIHIOBATH KaHAIBHY XapaKTEPHCTHKY I10 HEBEJIHKill KITBKOCTI MIJIOTHUX HECYYHX, B KOHTEKCTi peaabHnx OFDM cuctem.

Metoa. CydacHa TexHOJIOTIS po3pimkeHiit mauckpern3anii (CS) mporoHye BiXHOBIIOBAaTH CHTHAIH, SKi MAalOTh PO3piIXKeHe
NOJaHHs y JesKkoMy 0asuci, LUIIXOM MiHiMmi3anii L HOpMH, IO 103BOJIsIE BHKOPHCTOBYBAaTH MEHIIY KUIBKICTH BHOIPOK HIXK
BUMAaraloTh KJIaCH4YHi METOJH. BHKOPHCTOBYIOUM PO3pIIDKEHY NPHPOLY IMITYJILCHOI XapaKTepPUCTUKH OaraTONpPOMEHEBHX KaHAIIIB,
MH 3aCTOCYBaJI TEXHIKY pO3pipKeHiil Auckperusauil 1yt oLiHky kaHaity B cucreMax OFDM 3 minoTHUMH HECY4YMMH Ha HPHKIai
crangapty ISDB-T.

PesyabTaTn. B naniit po6oTi MOPiBHIOIOTECS PE3yNIbTATH OLIHKH KaHATY JUIA JBOX HAHIOMYJSIPHIIINX aJrOPUTMIB BiTHOBICHHS
Ha ocHOBi CS-Orthogonal Matching Pursuit (OMP) i Compressive Sampling Matching Pursuit (CoSaMP). HaBeneHo moxa3sHHKH
cepenubokBanparnyHoi moMmika (MSE) it anroputmiB orinky kanary Ha ocHOBI CS. Pe3ynbraté MonenoBaHHS ITOKA3yIOTh, IO
CoSaMP 3a6e3neuye OuTbII cTaOUTBHI Pe3yIbTaTH, ajie ISl OTPHMAHHS XOPOIIOi SIKOCTI OLIHKY BUMAarae Oijbllle MIOTHIX HECYyUHX,
HDK OMP. O6nzaBa anropuTMy BUMararoTh anpiOpHOrO 3HAHHS PIBHS PO3PIIKEHOCTI KaHaJbHOI Xapakrepuctuku, ane CoSaMP
Habararto OLTBII Yy TJIMBHI IO MPaBMILHOCTI 1i€l iHpopManii.

BucHoBkn. Meton po3pimkeHol AuMCKpeTu3alii MOKa3ye Bpakaroyy 34aTHICTh BiTHOBICHHS IMITYJIbCHOI XapaKTEPUCTHKH
KaHaJly 110 3HAYHO MEHILIH KiJIbKOCTI MIJIOTHUX HECY4nX, HiXK BUMAraloTh TPaAULiiHi JiHiitHI MeToau. OqHak moTpeda MOMmyJIIpHUX
CS MmeToniB BiIHOBIICHHS B alpiOpHO 3HAHHI PiBHS PO3PIIKEHOCTI XapaKTEPUCTUKU CYTTIBO OOMEKY€E MOXKIHMBICTh 3aCTOCYBAaHHS
OUX anropuTMiB B peanbHuX mnpuitmagax OFDM. Ilpore, ominka kaHamy Ha ocHOBI CS € 0araTooOiIsIFOYUM METOAOM, SKHHA
3aCJIyrOBY€ MOAANIBIIOrO BUBUCHHS 3 METOIO YCYHEHHS JAHOTO OOMEXKEHHSI.

KJIIOYOBI CJIOBA: OFDM, GararonpoMeHeBHif KaHall, OL[IHKA XapaKTePHCTHKN KaHAITy, PO3piIKeHa JUCKpeTH3aLis.
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AHHOTALUA

AKTyanbHoOCTB. [[ns nosydeHus uHGOpPMAaLMU O COCTOSIHMM KaHajla B CHCTEMaxX Ha OCHOBE OPTOIOHAJIBHOIO 4YacTOTHOIO
paznenenust (OFDM) TpaANIMOHHO MCIIONB3yeTcs OONBIIOE KOJNYECTBO MIIOTHBIX HECYINUX. YBEIHUCHUE KOINIECTBA MIIOTHBIX
HECYIIHX yTydIIaeT OIEHKY COCTOSHUS KaHala, HO IIPUBOJNT K CHIDKEHHIO CHEKTPAILHON (P (HEeKTUBHOCTH CHCTEMBI.

Heab. OcHoBHas menb JaHHOH pabOTHI MCCIENOBAaTh IPAKTHYECKHE AacHeKThl NPUMEHEHHs TEXHUKH pa3peXeHHOH
JUCKPETHU3aINH, KOTOPasi IO3BOJISIET OLIEHUBATh KAHAIBHYIO XapaKTEPUCTUKY 110 HEOOJIBIIOMY KOJNMYECTBY IMIOTHBIX HECYIIHX, B
KoHTeKcTe peasbHbix OFDM cucrtem.

Metoa. CoBpeMeHHas TEXHOIOTUS pa3pexeHHol auckperusanuu (CS) npeanaraeT BOCCTaHABIMBATh CUTHANBI, KOTOPbIE HMEIOT
pa3pekeHHOe IpPEeACTaBICHHE B HEKOTOpOM Oasuce, MyTeM MUHHMMM3AIMU L HOpPMBI, YTO MO3BOJSET HCIONB30BaTh MEHbBIIEE
KOJIMYECTBO BBIOOPOK 4YeM TpPeOYIOT Kiaccuueckue MeTozbl. Vcromnb3yst paspekeHHYI0 MpPHPOAY HMITYJIbCHOW XapaKTepUCTHUKU
MHOTOJYYeBBIX KaHAJIOB, Mbl NPUMEHHIM TEXHUKY Da3peKeHHOH IUCKpeTH3aluy Uil OleHKH KaHama B cucremax OFDM c
MMAJIOTHBIMHU HECYIIMMHU Ha mpuMmepe crangapta [ISDB-T.

PesyabTatel. B nmanHO# paboTe CpaBHMBAIOTCS pe3yibTaThl OIEHKH KaHajda Uil JBYX CaMbIX IIONMYJISIPHBIX aJITOPUTMOB
BoccTaHOBIIeHHST Ha ocHOBe CS-Orthogonal Matching Pursuit (OMP) n Compressive Sampling Matching Pursuit (CoSaMP).
[IpuBenensl mokaszarenu cpenHekBaapaTHuyHod omubku (MSE) mis anropurmoB oueHkn kanana Ha ocHoBe CS. PesynbpraTh
MOJIETMPOBaHUs M0Ka3bIBatoT, uTo CoSaMP obGecrnieunBaer Goiee cTabuUIIbHBIC PE3yJIbTATBI, HO JUIS MOJIYYCHHS XOPOIIEro KauecTsa
olleHKU TpeOyeT Oojblie MWIOTHBIX Hecymux, yeM OMP. O6a anropurMa TpeOyIOT anpHOpHOTO 3HAHUS CTENEHH Pa3peKeHHOCTU
KaHaJbHOM xapaktepucTuku, HoO CoSaMP ropasno 6osiee 4yBCTBUTEINICH K IPABUIIBHOCTH 3TOH HHpOpMAIHH.

BoiBoabl. MeTon pa3peXeHHOH AMCKPETU3ALUM IOKA3bIBACT BIEYATIIAIONIYIO CIIOCOOHOCTh BOCCTAHOBIICHMS HMITYTbCHOM
XapaKTepUCTHKN KaHala 10 3HAYUTEIHHO MEHBIIEMY KOJIMYECTBY MHIJIOTHBIX HECYIIHX, YeM TPeOyIOT TPaAWIMOHHBIC JIMHEIHBIE
Meronsl. OxHako moTpeGHOCTH momyssipHbIX CS METONOB BOCCTAHOBJICHHS B AIPHOPHOM 3HAHHU CTEICHH Pa3peKeHHOCTH
XapaKTepUCTHKU CEPhe3HO OTPaHMYMBACT NPHMEHUMOCTh 3THX AJITOPHUTMOB B peanbHbIXx npuemHnkax OFDM. Tem He Menee,
OLICHKa KaHala Ha ocHOBe CS sBIseTCS MHOrOOOCIIAIOIIUM METOIOM, KOTOPBIH 3acCiy’KMBAaeT NAJIbHEHIIEro M3YYeHHUs C LIEJIbIO
yCTpaHEHHMs TAaHHOTO OTPaHUYCHUSL.

KJ/IFOYEBBIE CJIOBA: OFDM, MHOroy4eBoii kaHall, OLIEHKa XapaKTepUCTUKHU KaHaNa, pa3pe)keHHask AUCKPETH3aLusL.
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