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ABSTRACT

Context. The problem of automated processing and analysis of microscopy image data is of high relevance due to its extreme
impact on the research and recent developments in the field of biology and medicine. Efficient image processing algorithms facilitate
the development of new medical diagnostic tools and therapy processes. They help us to broaden our knowledge of underlying
mechanisms and processes inside living organisms. The primal focus of this paper is the processing of the microscopy images of the
biological neural network. This aims to facilitate further studies of biological neural network that would lead to the development of
better methods for diagnosis, prevention and cure of the related deceases.

Objective. The goal of the work is to development of an efficient image processing algorithm for segmenting the network of bio-
logical neurons based on the fluorescent microscopy image data.

Method. The introduced algorithm for segmenting the network of biological neurons comprises several steps. Firstly, we apply
image processing routines, which aim to enhance the quality of the image data and extract the contours of the biological neural net-
work. Then we construct the skeleton of the network applying the Voronoi diagram for line segments extracted from the object’s
contours. We employ Voronoi skeleton to identify the cellular somas and differentiate them from axons and dendrites.

Results. The developed Voronoi-based algorithm allows us to segment individual neurons, localize their somas, axons and den-
drites and extract graph representation of the neural network. The underlying Voronoi diagram data structure allows us to compute
such graph efficiently in O(N log N) operations (where N is a number of contour points). The proposed segmentation method was
implemented in the C++/Python programming language and evaluated on the fluorescent images from CelllmageLibrary (CIL).

Conclusions. The proposed segmentation method aims to facilitate studies of biological neural networks. It computes segmenta-
tion of the network of biological neurons in O(N log N) operations using the Voronoi diagram data structure. This data structure, in
turn, gives us an attributed graph representation of the segmented network. Therefore, classical graph processing algorithms can be
applied to analyze the neural and compute such network’s characteristics as the number of connections between individual neurons,
the shortest signal transduction path between two neurons, etc.
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ABBREVIATIONS m; is a number of points sampled on Cj(t);
VD sa VOI‘OHO.l diagram; I(t) is an arc-length of a curve C(t);
VP is a Voronoi polygon; ] )
BFS is a breadth-first search algorithm; k(t) is a curvature of a curve C(t);
DFS is a depth-first search algorithm; Pc, is a set of discrete points on sampled a curve C;;

DCEL is a doubly-connected edge list data structure;

. . is a “significance” coefficient in a parametrization;
CIL is the Cell Image Library resource; Y & P

Ty, is a threshold for bifurcation points merging.

NOMENCLATURE

q is a point in R2; INTRODUCTION
5. . . The nervous system comprises a large number of neu-
R” is a two-dimensional space; rons forming a branched connected network, which is
" . ” is Euclidean norm in R2 : responsible for signal transduction and cognitive abilities
of the living organisms [1]. The comprehensive under-
C(t) is a parametric curve in R? ; standing of the structures, functions, processes and
G (t) denotes i™ parametric curve; mechanisms related to the biological neural networks re-

quires analysis tools, which would enable a fast and pre-
cise processing of large quantities of available measure-
ments. This, in turn, would facilitate the development of

M is a number of curves in a set;
I{ v 1s an index set from one to M;

S is a set of M parametric curves in R2 ; effective diagnosis, treatment and prevention methods

VR(Ci ) is a VR associated with a curve C;; against the deceases related to the neural system.

VP(C-) is a VP associated with a curve Cs: In comparison to other measurement techniques, fluo-
| is

rescent microscopy imaging allows us to capture the
structural information of the neural network and visually
deg(v) is a degree of a graph vertex V; investigate such characteristics of the network as topol-

ogy, the density of the neurons, formation of synapses,

VD(S) is a VD of a set of parametric curves S;
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etc. However, a manual extensive analysis of the large
neural network based on the obtained microscopy data
could be extremely time-consuming. Therefore, one re-
quires fast automated image processing tools, which
would extract the topology and structural properties of the
neural network from the fluorescent image data. The most
suitable data structure for representing the topology and
the structure of the network is an attributed graph. Such
representation allows us to use numerous graph mining
algorithms for the neural network analysis (e.g., Dijkstra
algorithm for finding the shortest path or Ford-Fulkerson
[2] algorithm for investigating the number of direct con-
nections between two neurons).

Therefore, suitable image processing algorithm should
segment fast and precisely the network of biological neu-
rons and extract the graph-based representation of the
network capturing its structural properties.

The Voronoi skeleton data structure meets these re-
quirements, since it’s based on the Voronoi diagram for
line segments [3], it allows us to extract a graph represen-
tation of the network in terms of DCEL and it can be effi-
ciently computed in O(N log N) operations, where N is a
number of input generators Moreover, Voronoi skeleton
allows us to obtain a thin-line representation and store
such structural information as local radii of the neuron
bodies and radii of the individual protrusions (axons and
dendrites). This could be employed to classify cellular
bodies from their protrusions and to compute various
network properties (such as the width of the axons, etc.).

The object of study is the segmentation of the net-
work of biological neurons based on the fluorescent mi-
croscopy image data.

The subject of study is efficient Voronoi-based
methods for segmenting the network of biological neural
network based on the fluorescent microscopy images,
which allow extracting the topology of the network suit-
able for further analysis using graph theory.

The known methods are based on morphological thin-
ning [4-7] or tracing techniques [8—12]. The first class of
methods is known to give errors on the step of vectoriza-
tion and graph constructions. The latter class of methods
requires a lot of computational resources.

The purpose of the work is to establish an efficient
Voronoi-based algorithm for segmenting the network of
biological neurons based on the fluorescent microscopy
image data.

1 PROBLEM STATEMENT

Given a fluorescent microscopy images depicting the
biological neural network, segment the individual somas,
axons and dendrites, construct the graph representing the
connectivity of the network, which can be used to apply
graph processing algorithms and establishing neural net-
work’s structural properties.

The segmentation problem reduces to the following
tasks: (1) compute the binary image of neural network;
(2) construct thin skeleton based on the binary image,
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extract the topology of biological neural network;
(3) identifying cellular bodies and classify the protrusions.

In this paper we focus on Voronoi-based skeletoniza-
tion algorithm as it allows us to obtain directly the graph
representation of the neural network and avoid the step of
vectorization, which is necessary for tracing- and thin-
ning-based algorithms.

2 REVIEW OF THE LITERATURE

Typically, the workflow for transforming fluorescent
image into a binary mask consists of the following steps
[13]: image denoising, image, enhancement and binariza-
tion. Then the skeleton of the binary mask is constructed
(either by using contours of the mask or the region of the
mask itself).

Skeletonization methods. There are three main classes
of the skeletonization methods. The first class consists of
the algorithms, which use morphological thinning tech-
nique [4-7]. This technique iteratively constructs the
skeleton in the same resolution as original binary mask.
Therefore, vectorization of the skeleton and extraction of
the graph is required. This might induce additional com-
putational errors due to irregularities in the skeleton.

The algorithms of the second class [8§—12] employ pre-
computed distance (potential) map and trace the skeleton
along the maximal ridges of the map. Some versions of
such method still require vectorization.

The third class of the algorithms employs the approxi-
mate Voronoi diagram and requires extracting the con-
tours of the binary object [14—16]. Then the skeleton of
the planar object is obtained as an intersection of ap-
proximate Voronoi diagram with the object’s domain.
However, at the discretization step such approach should
consider the spatial complexity of the object [17].

In this paper we focus on the latter class of the Vo-
ronoi-based algorithms, since they don’t require the vec-
torization step and give us directly a graph representation
of the object’s skeleton.

Currently there are many efficient algorithms for
computing Voronoi diagrams for simple objects (e.g.,
points, line segments). For example, Fortune’s algorithm
[18] and “divide and conquer” algorithm [19] allow us to
construct a Voronoi diagram for the set of N points/line
segments in O(N log N). However, usually in practical
problems objects have more sophisticated curved shape. It
in turn leads to investigation of the Voronoi diagram for
complex-shaped objects.

One approach for constructing the Voronoi diagram
for curvilinear polygons was introduced by Ramamurthy
and Farouki in their papers [20, 21]. The authors proposed
an incremental algorithm for constructing the exact
Voronoi diagram and medial axis for planar domains with
curved boundaries. Their method uses an approximate
algorithm for computing curve-curve bisectors [22] and
also Newton-Raphson iterative scheme for computing
exact bifurcation points. It was shown that the complexity
of such algorithm is O(N?), where N is a number of sites.
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Figure 1 — The main steps of our segmentation algorithm: a — image processing and contours extraction; b — Voronoi-based skeleton
construction and cell bodies segmentation (dark gray regions).

In the paper [23] authors proposed a randomized in-
cremental method for constructing the Voronoi diagram
for curved objects, which has complexity O(N log N),
where N is the number of curves. However, authors as-
sume that some operations (e.g., finding intersection point
of two curves) can be performed in O (1), although in
practice these operations are time-consuming and some-
times require a sophisticated iterative implementation.

The difficulties in computing exact Voronoi diagrams
led to study of approximate Voronoi diagrams. One class
of approximate algorithms aims to discretize a spatial
domain and build Voronoi diagram based on a finite pixel
grid [24], [14] (Algorithm 4.9.2) or as in case of [25] on
an exponential grid. Another class of approximate algo-
rithms simplifies the object’s representation (for example,
curves can be approximated by a set of points or line
segments). Then the Voronoi diagram for simple objects
(points / line segments) is constructed and processed such
that an approximate Voronoi diagram for curves is ob-
tained [14] (Algorithm 4.9.1), (see also [26]).

3 MATERIALS AND METHODS

In this section we provide a brief description of our
segmentation algorithm. Its main steps are the following:

1) the fluorescence image is processed as described in
the section “Image processing routines”: image is en-
hanced and binarized, the contours of somas, axons and
dendrites are extracted and interpolated using cubic
splines (see Fig. 1 a);

2) voronoi-based skeleton for the network represented
by a set of parametric curves (contours) S is constructed
(see section “Skeleton constructing algorithm — Descrip-
tion”);

3) using skeleton graph from Step 2 we classify points
corresponding to the somas/cell bodies (see Fig. 1 b), axons
and dendrites (see section “Segmentation of biological neu-
rons”); localize the regions corresponding to somas.
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Fluorescent microscopy images can be exposed to the
noise and/or photo bleaching, which makes it difficult to
use these images in further computations (e.g., for contour
tracing). In order to suppress the artifacts obtained during
the image acquisition, we perform additional image en-
hancement steps.

The comprehensive workflow of image processing rou-
tines is described below:

1) [Optional] Original image (see Fig. 2 a) is denoised
using TV-regularization [27];

2) the brightness of dim axons and dendrites in the
image from Step | is enhanced using Frangi’s filter [28]
(as shown in Fig. 2 b);

3) the images from Steps 1 and 2 are binarized using
Otsu’s global thresholding [13]. Then the resulting binary
masks are combined using morphological union operation
(see Fig. 2 ¢);

4) based on the binary mask from Step 3, we trace the
contours of the object’s boundary. The contours are
oriented such that interior part of the objects is always to
the left;

5) finally, we interpolate each contour using paramet-
ric periodic cubic spline (see Fig. 2 d). Such parametric
representation is used later for Voronoi-based skeleton
construction;

Skeletonization algorithm. Let’s define distance be-
tween a parametric curve C(t), te[0,]] and a point

ge R2 as follows:

d(Q»C)=trEI[1(iﬁ]||q—C(t)||~ (1)

The value t* €[0,1], which minimizes the Equation
(1) is called footpoint of point q on the curve C(t). Note
that a curve can have more than one footpoint [20].

Let S={Ci(t)te[0,]/Ci(0)=C;(tkiely| be a

set of continuous parametric closed curves in R2.
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Figure 2 — The original image (a) is processed using Frangi’s ridge enhancement filter (b). The result of this procedure is used to
produce the binary mask (c). Then we use obtained mask to trace the contours of biological neural network (d).

Definition 1. The Voronoi region VR(Ci) facurve C;
is defined as follows:

VR(C,)={qe R d(q,C;)<d(a,C; ) Wi e I Vit @)

Definition 2. The Voronoi polygon VP(Ci) associ-
ated with a curve C; is defined as a boundary of VR(C;).
According to [20] it is customary to call VP(Ci) a “poly-
gon”, although it has curved edges.

Definition 3. The Voronoi diagram VD(S) of a set of
parametric curves S is defined as follows:

vD(S)= |JVP(C;).

icl; v

3

Definition 4. The Bisector of two curves Ci(s) and

C i (t), where S,t €[0,1], is defined as a set of points that

are equidistant from these two curves:

lge R2|d(0.Ci(5)=d(.C; (t)}i. j e [0 @
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Definition 5. The Self-bisector of a curve C(t),
where t €[0,1], is defined as a set of points, which have at

least two footpoints on C(t) :

lgeR?[d(@.C)=d@.Cl)=d@cw) ). ©

where U; # U, are two distinct footpoints on C(t) .

Thus, Voronoi polygon VP(C;) of curve C; consists

of a subset of (possibly trimmed) bisectors between and
all other curves from S. It also contains self-bisectors of
curves C; (t), i=1,..,M . According to [23] self-bisectors
are of great importance, since they capture the connec-
tivity of the object’s domain.

Definition 6. The junction point connecting three or
more bisectors (including self-bisectors) of the Voronoi
diagram is called Voronoi vertex.

In this section we present the main steps of the Vo-
ronoi-based skeletonizing algorithm. Steps (1-3) of the
algorithm are based on the Algorithm 4.9.1 from [14].
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In comparison to Algorithm 4.9.1 from [14], we have
modified Step (3) in order to preserve self-bisectors and
handle possible topological errors. The main steps of
skeleton construction algorithm are the following:

1. Discretize curve C; (t), i=1..,M,te[0,1] and
represent it as a set of points:

P, ={Ci(t).Ci(t2)...Ciltm, ) . 6)
where 0 =1 <1, <..<tp =1 (Fig. 3a, b).

2. Construct Voronoi diagram for points VP(P),
where P=Pc UPc, U..UPc, , using Fortune’s algo-
rithm [18]. Example is shown in Fig. 3 a.

3. Process Voronoi diagram VD(P) as follows:

3.1. Apply depth-first search algorithm to classify all
vertices of Voronoi diagram VD(P) as “inner” or “outer”
w.r.t. the object interior. Firstly, we initialize DFS algo-
rithm [2] from “outer” vertex (outside the convex hull of
P, which can be obtained from VD(P)). If DFS is cross-
ing the border of object change the label of the vertex to
the opposite (“inner” to “outer” and vice versa), otherwise
propagate current label. The cross-check can be per-
formed fast if we store in a hash-table the pairs of Vo-
ronoi vertices and corresponding to them consecutive
VPs.

3.2. Remove edges of VD(P) for every pair of succes-
sive sampled points on a curve Ci(tj ), Ci(t j +1), where
ielim,j= L....,(m; —1). Remove all Voronoi vertices

and respective edges classified as “outer”. The resulting
graph is denoted as VD'(P);

3.3 Determine bifurcation points of the Voronoi-based
skeleton VD(S) using VD'(P): traverse all vertices of VD

using breadth-first search (BFS), mark v as a bifurcation
point if deg(v) > 2;
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Figure 3 — The Voronoi diagram for sampled points (a) and corresponding Voronoi-based skeleton (b).

3.4. If a pair of neighboring bifurcation points is con-
nected by polyline edge shorter than a give threshold
value Ty, > 0 then the corresponding polyline edge is re-
moved and the pair is represented by one vertex (see Fig-
ure 3, B);

4. [Optional] Approximate edges of the processed Vo-
ronoi graph by Bezier splines using algorithm [29].

Remark 1. Step 3.2 can be performed faster if we or-
ganize data into two hash-tables. The first hash-table
maps indices of sampled points to the compound structure
comprising: index of a respective curve, indices of the
next and previous sampled points of the corresponding
curve (if applicable). The second hash-table maps indices
of a curve to indices of sampled points of these curve (one
point per curve is sufficient).

Remark 2. In the Step (3.2) we obtain Voronoi dia-
gram VD'(P) . It can possibly contain vertices of degree 1,
which are isolated vertices (e.g., centers of circles); verti-
ces of degree greater than 2 (bifurcation points) and also
vertices of degree 2. The latter constitute the approximate
polyline edge of the VD for curves. At Step 4 we ap-
proximate these polyline edges by Bezier splines.

Discretizing parametric curves. At the Step (1) we
sample points on curve Cj,iel;) as stated by Equa-

tion (6). Note that, a sampling method has to consider the
shape of the curve, otherwise topological inconsistencies
may occur [17]. Therefore, uniform parametrization

‘tjﬂ —tj‘:const, where jzl,...,(mi —1) as well as an
arc-length parametrization (cf., Fig. 4 a) of a curve
" Ci (tj+1 )—Ci<tj)||=const, j=l,...,(mi —1) won’t give
satisfactory results [17].

In order to obtain a point set Pci representing the

curve’s shape, we used the method based on mixture of
curvature and arc-length normalized parametrizations (cf.,
Figure 4, B) as described in [30] (Equation (8) in [24]).
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Figure 4 — Application of different parameterization methods for point sampling: a — is an arc-length parameterization (constant dis-
tance between two consecutive points); b — shows a mixed parameterization, which is a combination of curvature- and arc-length
parameterizations. (The difference between (a) and (b) is well visible around the tips of dendrites)

In comparison to [30], where authors just averaged
curvature and arc-length parameterizations, we use the
following equation:

p(t)=1(t)+ vK(t)%, )

where y >0 controls the “significance” of the curvature
term (similar to Equation (7) in [24]). In case of y=0 we

obtain just an arc-length parametrization.

Thus, if we parametrize a curve in such way, it will
behave as an arc-length parametrized curve in “flat” re-
gions with a small curvature (K(t) ~ 0). However, in re-

gions with a large curvature (K(t)>> 0), the density of
the sampled points will increase (controlled by y ).

Let m; be a number of points, which we have discre-
tized on a curve Ci(t), N=m;+m,+...+my is a total
number of points. In the following lemma(s) we analyze
the complexity of each step of our algorithm.

Lemma 1. Let Ci(t) be a curve represented by Bezier
spline, then Step 1 of our algorithm can be computed in
O(N log N) in the worst-case.

Proof. The worst-case scenario appears when we con-
struct bisector between a point and a curve represented by
the rest N-1 points. Assuming that the number of control
points of Cj(t) is proportional to N, one point of Ci(t) can
be computed in O(log N). Then for N points can be com-
puted in O(N log N).

Lemma 2. Voronoi diagram for N points at the Step
(2) of our algorithm can be computed in O(N log N).

Proof. At the Step 2 we just apply well-known sweep-
line algorithm for Voronoi diagram construction, which is
described in detail in [18]. Its complexity in case of N
input points is O(N log N).

Lemma 3. Processing of the Voronoi diagram for
points at the Step 3 can be performed in O(N).

Proof. Let’s analyze the operations of Step (3) in de-
tail:
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Step 3.1: The complexity of BFS is O(N). At every
step of BFS we check if we cross the border of the object,
which is O(1) due to the fact that all pairs of border verti-
ces are stored in a hash-table. Thus, total complexity of
Step 3.1 is O(N).

Step 3.2: We can look through all pairs of consecutive
sampled points for every curve in O(N) operations using
the hash-tables as described above. One edge can be re-
moved in O(1) operations just by reassigning pointers in
doubly-connected edge list (DCEL). Thus, total complex-
ity of Step 3.1 is O(N).

Step 3.3: The complexity of BFS for a graph with N
vertices and E edges is O(N+E). In case of Voronoi dia-
gram E proportional to N. Thus, complexity of Step 3.2 is
O(N).

Step 3.4: The length of Voronoi edges between two
bifurcation points can be already computed in Step (3.1).
Checking the condition that the length of an edge is less
than Ty, for all edges can be done in O(N). Two Voronoi
vertices can be merged into one in O(1) by reassigning
pointers of DCEL. Thus, the total complexity of Step 3.3
is O(N).

Since the complexities of Steps 3.1, 3.2, 3.3, 3.4 are
equal to O(N), the total complexity of Step 3 is O(N).

Theorem 1. The complexity the proposed algorithm
for constructing an approximate Voronoi diagram for a set
of M curves and N sampled points is O(N log N).

Proof. Follows directly from Lemmas 1-3.

Remark. In the current analysis we didn’t take into
account the optional Step (4), where we approximate the
edges of the resulting skeleton by splines. The fitting of
Bezier spline at Step (4) is performed using the recursive
“divide and conquer” algorithm, which is described
in [29]. In the worst-case scenario this procedure works
in O(N%). Therefore, the average time complexity
is O(N log N).
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Figure 6 — Examples of input fluorescent microscopic images (left column — a, c, e); Segmented axons, dendrites (red lines, right
column — b, d, e) and cell bodies (gray regions, right column — b, d, e)

Segmentation of biological neurons. From the Step 2
of the algorithm described above we employ skeleton to
identify cellular bodies (somas). Since every Voronoi
vertex is associated with corresponding circle, which
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encloses (at least) three generator points of Voronoi
diagram, we can differentiate the cellular body vertex
from axon/dendrite vertex by comparing the radius of the
circle with some threshold.
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If we consider all radii of all Voronoi vertices of the
skeleton, we can apply (similar as for image binarization)
Otsu’s thresholding [13]. This would allow as to find an
optimal value of the radius of the circle corresponding to
the cellular body. Then using such procedure, we can
classify all Voronoi vertices as “body” vertex or “non-
body” vertex. Using BFS algorithm all connected “body”
vertices (with no gaps between them) can be grouped into
the connected components (clusters). At the last step we
build a star-shape polygon [31] for each component. This
polygon would represent the body of the neuron.

4 EXPERIMENTS

The proposed segmentation algorithm was imple-
mented in C++ and Python programming languages. The
image processing workflow as described in the corre-
sponding section was implemented using Python pro-
gramming language. We used “skimage” library to inves-
tigate and set up the pipeline of image filters from denois-
ing to contours extraction. We have implemented the Vo-
ronoi skeletonization algorithm (including the Voronoi
diagram for line segments and Voronoi graph post-
processing routines) in C++ programming language and
used STL library for containers. Finally, C++ code was
integrated with Python code using intermediate Cython
programming language. C++ code was compiled as a
separate library with Python interface. In order to visual-
ize the results of the segmentation algorithm, we used
Python’s “matplotlib” graphics library.

The performance of the implemented method in terms
of execution time (s) was tested on Linux platform, which
has Intel Core i7 2.2GHz and 8Gb RAM (for details,
please, see Figure 5).

In order to test and visually evaluate the performance
of the segmentation algorithm we processed 20 images
depicting the network of biological neurons as well as
individual neurons. Typical resolution of the image is
1300x1300 pixels. The examples of input fluorescent mi-
croscopic images are available in free access at the web
resource of the CelllmageLibrary [32]. We used images
of Dieter Brandner and Ginger Withers: Rattus, multipo-
lar neuron (2010). The CIL IDs are the following: 8785,
10109, 10112, 10113, 10118, 10203, 10218, 10219,
10223, 10224, 10225, 10226, 10227, 10228, 10229,
10234, 36182, 36183, 36184, 36185.

For the contour discretization we used the “signifi-
cance” parameter y =0.5. The threshold for merging the

neighboring bifurcation points was set to T=1.0.

5 RESULTS

We have tested the execution time of our segmenta-
tion algorithm and averaged the results for all CIL images
mentioned above. The average time required to process
one single image using the filter pipeline as described in
the section “Image processing routines” is ~1.32s. In or-
der to evaluate the execution time of the Voronoi skele-
tonization algorithm we have discretized the contours by
varying the number of sampled points from 700 to 5500.
For each fixed number of sampled points (input sites) we
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measured the execution time and averaged over all im-
ages. The results of the evaluation are shown in Fig. 5.
Typically, the average object contains from 800 to 1500
points after sampling using the “mixed” parametrization.
Therefore, the average execution of the whole segmenta-
tion routine is approximately ~2.7s.

Due to the absence of the ground truth labels for seg-
mented neurons we performed a manual visual investiga-
tion and evaluation of the segmentation results. In particu-
lar we investigated the error related to the neuron bodies’
identification. Firstly, we have manually counted the
number of false positives (FP) — the number of protrusive
regions (axons or dendrites) of wrongly detected as cell
bodies, false negative (FN) — the number of cell bodies,
which were not identified. After computing the precision-
recall metrics we obtained the following results: Precision
(P) =95.33% and Recall (R) =93.32%.
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Running time (s)

0 2000 4000
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Figure 5 — Average running time of the method depending
on the number of contours (20 images).

The examples of input fluorescent microscopic images
(left column) and segmentation results (right column)
obtained with our method are shown in Figure 6. In order
to illustrate the results in this paper we used a subset of
the originally collected CIL dataset. The subset consists
of the CIL images with the following IDs: CIL: 8785,
10219, 10113, 10109.

6 DISCUSSION

The developed segmentation algorithm allows us to
obtain directly the graph representation of the neural net-
work. In contrast, thinning-based algorithms [4—7] per-
form the construction of the binary skeleton of the shape.
In this case the resulting skeleton has the same resolution
as an input image. Therefore, one needs to apply vectori-
zation techniques and extract the graph representation
from the binary skeleton. This in turn may induce addi-
tional errors due to vectorization. Other class of algo-
rithms — tracing methods [8—12] — performs the computa-
tion of the skeleton iteratively by tracing each individual
branch of the skeleton. Such methods may recover the
topology of the underlying graph. However, this requires
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additional checking procedures (e.g., collision tests),
which might be extremely time-consuming in case of
large image data.

We have estimated the average execution time of
thinning methods [4—7] with vectorization routine and
tracing methods [8—12]. First class of methods performs
in average ~2.5s. The average execution time of the trac-
ing-based methods [8—12] varies significantly from 5s to
60s per image. Therefore, the proposed Voronoi skeleton-
based segmentation algorithm allows us to segment
both — precisely and fast.

An important aspect of the proposed skeletonization
algorithm is the reparametrization of the periodic spline
curves representing the contours of the neural network. In
this paper we proposed a mixed parametrization, which is
a combination of an arc-length parametrization and curva-
ture-based parametrization. The first one (arc-length pa-
rametrization) allows us to sample points equidistantly
along the spline curve. However, such approach tends to
decrease the details of the shape (e.g., local bumps) and,
thus, may lead to inconsistencies in the resulting skeleton.
The second (curvature-based) parametrization approach
tends to reduce the number of sampled points in the flat
regions of the curve. However, it might also provide an
excessive amount of point in the regions with high curva-
ture, which may correspond to a random noise in the con-
tour data. Thus, curvature-based method would make the
skeletonization algorithm less robust and more sensitive
to random noise (or errors of contour tracing algorithm).
Therefore, we the proposed mixed parametrization is a
compromise approach, which allows to control the influ-
ence of the random noise or errors based on the intro-
duced curvature “significance” parameter y > 0.

As it was also mentioned above, Voronoi diagram al-
lows us to represent neural network as a graph with sub-
pixel precision. This in turn allows us to apply such algo-
rithms as Ford-Fulkerson [2] for finding the number of
connections between two cells (see Fig.7) or Dijkstra
algorithm [2] to find the shortest signal transduction path.

Figure 7 — Ford-Fulkerson algorithm was applied to find the
connections between two neurons (gray regions)
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CONCLUSIONS

The problem of automatic segmentation of the bio-
logical neural network based on the fluorescent micros-
copy images is solved.

The scientific novelty of obtained results is that we
firstly propose the Voronoi-based method for segmenting
the biological neural network using the fluorescent mi-
croscopy image data. The proposed method localizes the
cellular bodies and distinguishes them from axons and
dendrites.

The analysis of the image data is performed using the
pipeline of the predefined image filters. In such way we
obtain the contours of the neurons. Then the contours are
interpolated by periodic cubic splines and the Voronoi
skeleton of constructed. We also firstly introduced a
mixed parametrization of contours for the problem of an
approximate Voronoi diagram (skeleton) construction.

The proposed mixed parametrization allows us to
sample contour points taking into account its local shape
and controlling the influence of random noise and errors.
The introduced O(N log N) Voronoi skeletonization algo-
rithm allowed us to speed-up the computation of the neu-
ral network in comparison to the tracing methods. It also
allows us to obtain directly the graph representation of the
neural network with sub-pixel precision and apply nu-
merous graph processing algorithm to analyze the proper-
ties of the network.

The practical significance of obtained results is that
the software realizing the proposed segmentation algo-
rithm is developed. The experiments showed that the al-
gorithm allows us to segment the network of biological
neurons fast and precisely (see section “Experiments”).

Thus, the algorithm can be applied to analyze the bio-
logical data and examine the properties of neural biologi-
cal networks of living organisms. This in turn may facili-
tate the investigation in the field of microbiology and help
to extend our knowledge and improve our understanding
of the structures, functions, processes and mechanisms
related to the biological neural networks.

Prospects for further research are to make further
optimization of the proposed algorithm and apply the pro-
posed algorithm to analyze the biological data using the
graph processing algorithms for investigating the struc-
tural properties of the network of biological neurons.
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BIOJIOI'TYHOI HEMPOHHOI MEPEKI
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AHOTALIA

AxTyanbHicTb. [Ipobiema aBToMaTH30BaHOi 0OPOOKH Ta aHANI3y JaHUX 300pakeHb 3 MIKPOCKOITy Ma€ BEJIMKE 3HAUCHHS 3 OIVIAy Ha ii
3HAYHHI BIUTUB HA JOCIIDKCHHS Ta OCTaHHI PO3poOKU B obiacTi Gionorii Ta MexunuHu. EdexTusHi anroputmu 06poOku 300pakeHb CIIpU-
SIFOTH PO3POOILII HOBUX MEAWYHUX JIArHOCTUYHHX 3aCO0IB 1 TEpameBTUYHNX METO/IB, & TAKOX CIIPUSIOTH PO3LUIMPCHHIO HAIIIOrO 3HAHHS PO
OCHOBHI MEXaHI3MH 1 MPOIIECH B KMUBHUX opraHizmax. [lepBuHHUM (okycoM wiel poOdoTn € 00poOKa MIKPOCKOMIYHUX 300paXKeHb 010JI0TTUHOT
HepoHHOT Mepexi. PoboTra Mae Ha MeTi MOJISTIINTH NOAAIBLII JOCIIKEHHS 01010Ti4HOI HEHPOHHOI Mepexi, 0 IMPHU3BENE 10 PO3POOKH
OinbII epeKTHBHUX METOAIB NiarHOCTUKH, IPO(LIAKTHKY Ta JiKyBaHHS I10B’A3aHHUX i3 HUIMU 3aXBOPIOBAaHb.

Merto/. 3anponoHOBaHO aJrOPUTM CErMEHTAIll Mepexi 010JIOTTYHUX HEHPOHIB, 10 CKIAMAEThCS 3 JEKUIBKOX KpoKiB. Ha nepmiomy kpo-
1[I 3aCTOCOBYIOTHCSI TpOLEAYypH 00pOOKH 300paskeHb, SIKi CIPSMOBaHI Ha MiJABUIIEHHS SKOCTI JaHUX 300pakKeHHs Ta BUALJICHHS KOHTYpIB
GiosoriuHo1 HelipoHHOT Mepexi. Ha npyromy kpoiti OyayeTbest CKeIeTOH Mepexi, IPU LbOMY BUKOPHUCTOBYEThCS JiarpamMa BopoHoro s
BiZIpi3KiB, IO CKJIAJAIOTh KOHTYp 00’ekTa. CKeJICTOH Ha OCHOBI JiarpaMu BopoHOro BUKOPHCTOBYEThCS Ha TPETHOMY KpOII s ineHTH(i-
Kallil KIIITHHHUX TUT 1 BAOKPEMJICHHS X BiJl aKCOHIB 1 ICHAPHTIB.

PesyabTaTn. Po3poGiieHnii anroput™ Ha OCHOBI Jiarpamu BopoHOro n03BoJisie CErMEHTYBAaTH OKpeMi HeHpOHH, JIOKaJi3yBaTH iX K-
THHHI TiNa, aKCOHHU, JEHIPUTH. AJITOPUTM TAaKOX JO3BOJIAE NPEACTABUTH HEHPOHHY Mepexy y BUNLAAI rpady. CTpyKTypa JaHHX AiarpamMu
Boposoro no3sossie edexruBro oduncnuTu Takuii rpad 3i cknanuictio O(N log N) oneparii, 1e N KijbKicTh TOUOK KOHTYPY. 3ampornoHoBa-
HUIl MeToJ| cerMeHTauii OyB peaynizoBaHuil Ha MoBax nporpamyBaHHs C-++/Python i mporecroBaHuii Ha (IIyOpECUEHTHHX 300pa)KEHHSIX
orpumanux 3 CelllmageLibrary (CIL).

BucHoBKH. 3apornoHOBaHUi METO/ CerMEHTAalil CIPSIMOBAHHMI Ha TOJICTIICHHS BUBYCHHS 010JI0TYHUX HEHPOHHHUX Mepex. MeTon 10-
3BOJISIE IIBUIKO CErMeHTyBaTH Oiosoriuny HeifponHy mepexy 3a O(N log N) omepariit 3 momomororo giarpamu BopoHoro st Bifpi3kiB.
CTpyKTypa AaHHX jAiarpaMu BopoHoro, y cBO 4epry, J03BOJISIE OTPUMATH TPECTABICHHS BiZICETMEHTOBAHOI HEHPOHHOT MEPEeXi y BUIIISII
rpadyy 3 arpubyramu. TakuM YMHOM, MOXYTb OYTH 3aCTOCOBaHI KJIACHYHI aJI'OPUTMHU 0OpoOKH rpadiB Ui aHallizy HeHpOHHOI Mepexi i
obuncneHHs {i pi3HOMaHITHUX XapaKTepUCTUK (HAIPHKIIAJ, 3HAXOMKEHHS YUCHIA 3B S3KIB MDXK OKPEMUMH HEHPOHAMU, HAHKOPOTIIOTO M-
Xy Tepezadi CUrHaly MiXK IBOMa HEHPOHAMH TOLIIO).

KJIFOUYOBI CJIOBA: mikpockorisi, 00poOka 300paxeHs, Jiarpama Boponoro, nmosiron BopoHoro, Heliponu, cermenTanisi, rpag.
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Komyp . B. — acniupant kadeapsl MaTemMaTnieckoi HHPOpMaTUKU (akyabTeTa KOMIBIOTEPHBIX HayK U KnOepHeTnku Kuesckoro Ha-
mHoHaNBHOTO yHUBepcuTeTa nmenn Tapaca IlleBuenko, Kues, Ykpanna.

Tepemenko B. H. —1-p ¢us.-mart. Hayk, npodeccop, 3aBeayrommii kKapeapoir MareMaTuueckoil nHpopMaTHKH (HaKyIbTeTa KOMITBIOTEp-
HBIX HayK ¥ KnOepHeTHkn KueBckoro HalioHanbpHOTro yHHBepcuTeTa uMeHu Tapaca Illesuenko, Kues, Ykpauna.

AHHOTALUA

AKTyaJIbHOCTD. [IpobiiemMa aBTOMATH3UPOBAHHOI 00paOOTKH U aHANKM3a JAaHHBIX W300paKEHHI C MUKPOCKOIA MMeeT OOJIbIIOe 3Haue-
HHUE, YYUTBIBAs €€ 3HAYMTENIbHOE BJIMSHHE Ha MCCIICAOBAHUS M MOCIEIHHE Pa3padOTKH B 00JIacTH OHOJIOTHH U MeAuIMHBL. DddekTHBHbIC
ITOPUTMbI 00pabOTKH H300paXKeHU# CHOCOOCTBYIOT pa3pabOTKe HOBBIX MEIHIMHCKHX JHArHOCTHYECKHX CPEACTB U TEPareBTHYECKUX
METO/IOB, @ TAKXKE CIIOCOOCTBYIOT PACIIMPEHHIO HAIETO 3HAHMS 00 OCHOBHBIX MEXaHH3MaX M IPOIECccax, MPOUCXOISAIIMX B JKHBBIX Opra-
Husmax. [lepBuuHbiM (DOKyCOM 3TOit pabOTHI siBIsieTCsl 00pabOTKa MHKPOCKOMHYECKHX HM300pa)KeHH OMOJOrHYecKOd HEHPOHHOW CEeTH.
PaboTa umeer Lenbo 00JErYuTh AajbHEHIINE HCCleq0BaHus OMOIOTHUECcKOil HeHPOHHOW CeTH, YTO MPHBEIET K pa3paboTke Oosee 3¢ dek-
THUBHBIX METOJIOB THATHOCTUKH, MPODHIAKTHKN U JICYCHHs CBA3AHHBIX C HUMHU 3a00JICBaHHUIA.

Merton. [IpeioxkeH alnropuT™ CerMEHTALUK CETH OMOIOTYEeCKUX HEHPOHOB, KOTOPBII COCTOUT M3 HECKOJIbKUX I1aros. Ha mepBoM 1a-
re MPUMEHSIOTCS POoLeAypbl 00paboTKH N300paXKeHU H, HaIIpaBJIeHHbIEC HA MOBBIILIEHHE KauecTBa JaHHBIX H300paXKEHHS U BBIIEICHUS KOH-
TYpoB OHOJIOrMYecKOl HEHpOHHON ceTH. Ha BTOpOM miare CTpOMTCS CKEJIETOH CETH, MPH 9TOM HCIOJNb3yeTcsi auarpamma Boponoro s
OTPE3KOB, COCTABIISIONIMX KOHTYp 00bekTa. CKEIeTOH Ha OCHOBE JHarpaMMbl BOpOHOr0 MCHONIB3YeTCsl Ha TPEThEM IIare JJisi HAeHTU(HKa-
LM KJICTOYHBIX TEJl M BBIIEJICHHE UX OT AKCOHOB M JICHIPHUTOB.

Pe3yabraTtsl. PaspaboTaHHbIi alropuT™ Ha OCHOBE JAuMarpaMMbl BOpoHOro mo3BoJisieT CerMEHTUPOBATh OTAEIBHBIC HEHPOHBI, JTOKAIH-
30BaTh UX KJICTOYHBIC TeJla, AKCOHBI, JICHAPUTHI. AJITOPUTM TaKKe MO3BOJISET MPEICTABUTh HEHPOHHYIO ceTh B BHe rpada. CTpykTypa aaH-
HBIX AuarpamMmbsl Bopororo nossomuser 3 ¢eKTHBHO BHYHCIHUTE Takoi rpad co croxuHocThio O(N log N) omeparwmii, rne N — konudgecTBo
TO4eK KOHTypa. [IpeyioxkeHHBIl METO CerMeHTalMu ObUT peaM30BaH Ha A3blkax mporpammupoBanus C++/ Python u nportectupoBan Ha
(yopecueHTHbIX n300paxeHusx nonydeHHbIx ¢ CelllmageLibrary (CIL).

BruiBoabl. [IpenoskeHHBI METO CETMEHTAINM HANpaBJeH Ha oOJerdeHne u3ydeHwus OMOJIOrMYecKMX HEHpOHHBIX ceTeid. Merox mo-
3BOJISIET OBICTPO CErMEHTHPOBATh OHosornueckyro HeiporHyro ceth 3a O (N log N) omeparuii ¢ momoisio quarpaMmbl BopoHoro uist oT-
pe3koB. CTpyKTypa AaHHBIX Juarpammbl BopoHoro, B cBOIO ouepesb, HO3BOJISET MOTYYUTh NPECTABICHUE OTCErMEHTHPOBAHHON HEHpPOH-
HOH ceTH B BuJe rpada ¢ arpudyramu. Takum 00pa3oM, MOTYT OBITh TIPUMEHEHBI KIIACCHYECKHE alTOPUTMbI 00paboTKu rpadoB IJIs aHATU3a
HEWPOHHOM CETH U BBHIUMCICHUS €€ PasIMYHBIX XapaKTEPUCTHK (HampHMep, HAXOXKACHHUE YHCNA CBS3CH MEXIy OTACIbHBIMH HEHpOHAMH,
KpaTyauIero myTH Nepeaadyd CUrHaia Mexy IByMs HeHpOHaMHu).
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