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ABSTRACT

Context. The object of the research is a two-stage process of material flows allocation in the transport-logistic system, the
structural elements of which are enterprises that collect a resource, is been distributed in a certain territory (centers of the first stage),
and the enterprises that consume or process this resource. A mathematical model of such process is a two-stage problem of the
optimal partitioning of a continual set with the locating of subset centers under additional constraints presented in the paper.

Objective. The goal of the work is to ensure the reduction of transport costs in the organization of multi-stage production, the
raw material resource of which is distributed in some territory, through the development of appropriate mathematical apparatus and
software. The urgency of the work is explained by one of the most pronounced tendencies in extracting and processing branches of
industry and agriculture, namely, the creation of territorially-distributed multilevel companies that include dozens of large enterprises
and carry out a full cycle of production from raw material harvesting with its integrated use and the product manufacturing to its
transportation to end consumers.

Method. Mathematical apparatus for two-stage problems of optimal partitioning of sets with additional couplings was developed
using the basic concepts of the theory of continuous linear problems of optimal set partitioning, duality theory, and methods for
solving linear programming problems of transport type. The research shows that the formulation of a multi-stage transport-logistic
problem in a continuous variant (in the form of an infinite-dimensional optimization problem) is expedient when the number of
resource suppliers is limited but very large. The application of the developed mathematical apparatus makes it possible to find the
optimal solution of the two-stage allocation-distribution problem in an analytic form (the analytic expression includes parameters that
are the optimal solution of the auxiliary finite-dimensional optimization problem with a nondifferentiable objective function). The
proposed iterative algorithm for solving the formulated problem bases on modification of Shor’s r-algorithm and the method of
potentials for solving the transport problem.

Results. Developed mathematical models, methods and algorithms for solving continuous multi-stage problems for locating
enterprises with a continuously distributed resource can be used to solve a wide class of continuous linear location-allocation
problems. The presented methods, algorithms and software allow solving several practical problems connected, for example, with the
strategic planning in the production, social and economic fields. The theoretical results obtained are been brought to the level of
specific recommendations that can be used by state-owned and private enterprises in solving logistics tasks related to the organization
of collection of a certain resource and its delivery to processing points, as well as further transportation of the product received to
places of destination.

Conclusions. The results of the computational experiments testify to the correctness of the developed algorithms operation for
solving two-stage optimal set partitioning problems with additional couplings. Furthermore, it is confirmed the feasibility of
formulating such problems when it is necessary to determine the location of new objects in a given territory, considering the multi-
stage raw material resource distribution process. Further research is subject to the theoretical justification of the convergence of the
iterative process realized in the proposed algorithm for solving continuous problems of OPS with additional couplings. In future, the
development of software to solve such problems with the involvement of GIS-technologies is planned.

KEYWORDS: multi-stage transport and logistics systems, continuously distributed resource, optimal partitioning of sets,
continuous location-allocation problems.

ABBREVIATIONS S - total quantity of resource in a given area;

OPS - optimal partitioning of sets;
OPSAC — optimal partitioning of sets with additional
couplings. bf — cardinality of r-stage i -center, r=1,11 ;

1] — coordinates of r -stage i -center;

A ¢! (x,7/) — resource unit delivery cost from point
NOMENCLATURE |

Q — area on which the resource is distributed, and X € to center T ;
where the first-stage centers can be located;
p(X) — resource reservoir in each point X of Q area;

q}' (‘Eil,l'ljl) — unit delivery cost from center 1} to center

1
N —number of first-stage centers; Tj s

M - number of second-stage centers;

© Us S. A., Koriashkina L. S., Stanina O. D., 2019
DOI 10.15588/1607-3274-2019-1-24

256



e-ISSN 1607-3274 Pagioenexrponika, inpopmaruka, ynpasminss. 2019. Ne 1
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2019. Ne 1

& — resource sorting and shipment cost in the

enterprise ril , calculated per resource unit;

Vij — resource amount delivered from the center ril to

center T |J-' ;

Rym NM  — dimensional space of nonnegative real
numbers;

Zg — class of all possible partitions of the set Q into
N disjoint subsets;

o = {0,...Q} — Element of class Zg ;

Aj(-) — characteristic functions of the subsets €,
i=1L..,N;

F(:) - functional of SPPAC;

yij — dual variable (potential of center ril ),
i=1..,N;
nj - dual variable (potential of center

i) =L M.

INTRODUCTION
Transport-logistic systems, functionality of which
includes the material resources circulation processes, are
quite capacious and complex. Such systems are
characterized by many economic agents and
intermediaries located in different regions and large areas,
differences in quantity of customer demands, many other
factors that predetermine the specifics of the organization

of the movement of material resources.

In the modern economic region (country) development
conditions, these processes are carried out not only within
the framework of one independent enterprise, but also
outside, in other similar structures located in different
places of the considered region, that determines their
multi-stage of logistics processes.

The object of study is a two-stage material flows
allocation process in a transport-logistic system, the
structural elements of which are enterprises that collect a
certain continuously distributed on a given territory
resource (hereinafter centers of the first stage), and
enterprises that consume or process this resource (centers
of the second stage). In such systems, each center of the
first stage, as a rule, is assigned to the territory (zone) of
its servicing. The movement of material flows is carried
out first in the direction from each point of the considered
area directly to the enterprise servicing it, and then the
primary processed or sorted resource is sent in certain
quantities to the enterprises acting as consumers of this
resource. Examples of such logistic processes and related
optimization tasks are:

— rational collection of agricultural crops and their
delivery first to the granaries, and then to the end user;

— forming a network of modern waste transfer stations
and waste sorting stations to reduce the specific total costs
for the export of waste;
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— planning of logging operations and subsequent
removal of timber with the organization of intermediate
warehouses, taking into account not only the specific
plots being developed, but also the possibility of using
pile sites for delivering timber to them from neighboring
felling areas;

— distribution of materials flows between customers,
points of receipt and processing of raw materials,
ensuring minimum transportation costs;

— formation of a regional warehouse network, net of a
postal delivery services.

The subject of study is mathematical models and
theoretical justification of methods and algorithms for
solving multi-stage transport problems with a resource
that is continuously distributed in a given territory
(occupied a certain area).

The purpose of the work is to ensure the reduction of
transportation costs in the organization of multi-stage
production, the raw material resource of which is
continuously distributed in some territory.

1 PROBLEM STATEMENT

Here is the most general formulation of the two-stage
continuous location-allocation problem, which arises in
the organization of a two-stage transport and logistics
system (Fig. 1) and which called the set partitioning
problem with additional constraints (SPPAC). It is
necessary to find the location coordinates of the first-stage
centers in a given territory, determine the service areas of
these centers for the collection of raw materials and
distribute the preliminary sorted raw materials between
the centers of the second stage minimizing total transport
costs.

Problem A. To find such partition of set Q into
disjoint subsets ® = {€2;,€,,...,Qy} (some of which can

be empty), to determine coordinates of its centers

‘Ell ,...,r}\j and supply volumes V;y,...,Vyy > under which
the functional

o

e

Figure 1 — Scheme of material flows distribution in the two-
stage continuous optimal location — allocation problem
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would have reached a minimum value, and the following
conditions were satisfied:

M _
[ pO0dx =3 v, i=1,N, )
Q; i=
N 1 Ve
Zvij:bj » 1=1LM, 3)
i=1
(T)EZS,VER,J\]M,IIGQN, “4)

N
2 ={®={Q...an}: UQ; :Q’mes<gi mQj)ZO’
i=1 (5)
i+ j,i,jZLL}'

Comment. In the case where the centers are known in
advance, we formulate a continuous problem of optimal
partitioning of the set for fixed centers of subsets (or a
continuous problem of OPS with additional constraints):

Promlem Al. Find F(®,v) > min under conditions

(2.

2 REVIEW OF THE LITERATURE

System studies related to the construction of efficient
algorithms for solving multi-stage location/allocation
problems were carried out at different times by domestic,
in particular [1-9], and by foreign scientists, for example
[10-24].

A mathematical model of the problem of minimizing
transportation costs, storage costs and grain losses
presented in [1], considers the two-stage scheme of grain
transportation from the combine to the elevator.

The model of forming a system of two-stage
transportation of solid municipal waste, proposed in [2]
allows obtaining information on the optimal location and
number of waste transfer stations. Economic and
mathematical models for solving multi-stage transport-
production problems of planning and management of
material flows between timber enterprises were described
in [3]. Vertically integrated production structures of the
timber industry complex, variants of their use in the
practice of enterprises, are considered.

In [4] the two-stage problem of placing production on
a tree network are considered. It is provided that the costs
of transporting a product unit from point to point are
equal to the sum of the lengths of the edges in the chain
connecting these points. An algorithm for exact solving
this problem has a laboriousness O(nm?), where n — the

number of points of demand for the final product, m — the
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maximum number of possible locations for the production
of each stage.

Properties of the problem of enterprises location with
indivisible consumers with non-decreasing nonlinear
functions of production costs were studied in [5]. In the
same place, the rules for rejecting non-optimal solutions
are formulated and proved. An algorithm for solving the
discrete programming problem combining the ideas of the
approximation-combinatorial method and the branch and
boundary method was developed.

The problem of distributing goods from one or several
factories through warehouses with expected projected
volumes of customer needs and possible overlapping of
service areas for warehouses is presented in [10]. Here, a
multistage problem of stochastic programming with
regression and a method for solving it are formulated. The
problem of distribution planning is considered with the
planning horizon in the N-stages, when the stage is
defined as the period during which the client’s
requirements are realized, and decisions must be made
before the following requirements are met.

In [11], the authors note to support the efficient
operation of complex production and transportation
systems, such parameters as cost, availability, product
quality and delivery should be both priority. An important
scientific research direction in a strategic perspective, the
authors emphasize the development of analytical and
simulation models that combine the main stages of the
supply chain. In the supply chain presented in [12], the
product life cycle, predictability of demand, product
versatility and market standards for preparation and
output are considered. Such a model makes it possible to
ascertain the nature of demand for products, and on this
basis to organize the supply of products to the best meet
demand.

In [13], the problem of mixed integer programming
was formulated to solve the problem of two-stage
distribution planning, in which: 1) various goods can be
provided to customers from a number of enterprises,
through a series of intermediate warehouses; 2) for each
given possible location of the warehouse, there is a fixed
cost of opening the corresponding warehouse, operating
costs and maximum throughput; 3) it is known the
demand of each customer for each product, the cost of
shipping from the factory to a possible warehouse, and
then to the customer; 4) it is required to select the
locations for the opening warehouses and to create a
delivery schedule in such a way that the total cost has
been minimized. To solve the problem, the authors
applied the method of branches and boundaries

In [14], consider the design of multiproduct, multi-
echelon supply chain networks. The networks comprise a
number of manufacturing sites at fixed locations, a
number of warchouses and distribution centers of
unknown locations (to be selected from a set of potential
locations), and finally a number of customer zones at
fixed locations. The system is mathematically modeled as
mixed-integer linear programming optimization problem,
the solution of which should determine the number,
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location and capacity of warehouses and distribution
centers, transport links that need to be installed in the
network, and the flows and rates of production of
materials. The criterion of optimization is the
minimization of the total annual cost of the network,
taking into account both the infrastructure and operating
costs.

The importance of accounting the inherent trade costs
of equipment, inventory, transportation costs and
“responsiveness” of customers when identifying the
location of distribution centers in the development of
logistics systems also emphasizes in [15]. An approach
such modeling that provides integrated view are
illustrated in the context of a specific example related to
the distribution of cars produced by a car concern.

The paper [16] contains a broad review of current
scientific publications devoted to the design of a
distribution system. The formulation of the allocation-
distribution problems presented here varies in complexity
from simple linear, single-stage, single-product,
deterministic  to  non-linear/probabilistic =~ models.
Algorithms, including, among other things, local search
and mixed integer programming, are evaluated in terms of
computational complexity and performance. Also, a wide
range of practical applications is presented.

The paper [17] is devoted to the study of optimal
planning of multi-stage production and distribution
networks, including the location of factories and
distribution centers under specific restrictions. The
formulated NP-complete problem takes into account the
three stages of resource allocation in the network and is a
more accurate abstraction of the real world, because
prices and transport costs for raw materials can vary
significantly among suppliers, depending on their
location, other factors that need to be considered. Since
the mixed-integer model contains many variables, the
authors proposed a methodology for solving it using the
genetic algorithm.

Problems of the development of effective heuristic
algorithms for solving partially integer mathematical
programming problems, which are models of optimal
multi-stage distribution networks, are also considered in
[18, 19].

Interesting from the point of practical application view
is the paper [20], which deals with the design of a supply
chain network with so-called “pop-up” stores that can be
opened for several weeks or months before the season
closes on the market. The supply chain network is
designed for a company that is one of the producers of
vegetable oils in Turkey and includes a warehouse located
between suppliers and factories for storing materials, as
well as pop-up stores open between plants and customers.
The proposed model is multi-period and multistage with
three quality criteria under restrictions on resource stocks.
The first criterion is to minimize the transportation costs
at all stages. The second goal is to minimize the cost of
creating pop-up stores. The third quality criterion is to
minimize inventory costs and extra-budgetary expenses.
Also, as in many of the above works, the mixed integer
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linear programming problem with a vector criterion is
formulated and solved here.

To solve the problem of designing a logistics system
with a multi-stage structure, taking into account
production/distribution planning, a genetic algorithm with
fuzzy logic elements was developed in [21] to manage its
parameters. The unification of concepts and the
description of multi-stage transport systems, as well as
their integration in supply chain management systems, is
proposed [22].

In [23], a comprehensive review of scientific research
conducted over the last 40 years in modeling and solving
the problem of locating objects in a multi-tier network has
been given to effectively serve clients both at the lowest
hierarchy level (to minimize costs) and on the highest
level of the hierarchy (to maximize the availability of
services). The hierarchical models published here are
classified based on such characteristics as the type of the
flow pattern, the availability of services, the spatial
configuration, the objective function, the coverage, the
network levels, the availability of the time element, the
capacity, etc. In addition, a classification of methods for
solving such problems and real practical applications is
given.

Two-stage problems of locating objects with limited
powers are considered in [24].

In contrast to all the above papers, in [9, 25, 26], when
formulating multi-stage location-allocation problems, it is
assumed that the initial resource densely occupies a
certain area. In this case, mathematical models acquire a
continuous character and are infinite-dimensional
programming problems. The continuity of the problem
formulated in this paper is also due to the possibility of
locating the first stage centers at any point of a given area.
The paper devotes to the research and development of
methods and algorithms for solving precisely such
problems.

3 MATERIALS AND METHODS
We assume that for the problem (1)—(5) the condition

M
Y bj = [p(x)dx ©6)
j=1 Q

are fulfilled. Under (6) the set of all possible partitions
(that satisfying the conditions (2), (3)) is no empty.

According to the theory of continuous linear optimal
set partitioning problems [27] we introduce the following
characteristic functions of the subsets €; :

L, xeQ,,
Aj(x)=

0, xeQ\Q;, i=1.,N,

and rewrite Problem A as the infinite-dimensional
mathematical programming problem with Boolean
variables in the following form.
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Problem B. Find
min 10.0),7 ),
N,V)EFXQNXR;(,M

(WOX:
where

N
IO, v) = 2 [ of (e IPGo); (o) +

i=1Q
N M
+ZZ("1’ (/) +q; )Vz
i=1 j=1
under the condition

y 17
Zvl'j :bj 5 j:1,2,...,M,
l'_

Mi

i = [ PO (0)dx , i=1,2,..,N,
Q

A(x) =hy (%), A (X)) :
A(x)=0v1i :I,_N, a.e. forxeQ,

J
I'=

N

N

D %i(x)=1 ae. for xe Q}.

i=1
Further we insert the set I" into the following simplex
Ty = {A(x) =h (x),... Ay (X)) :

0<x(x)<Li=1N, ae. forxeQ,

N
D hi(x)=1 ae. for xeQ},
i=1

and pass from the Problem B to the problem with the

values of A;(-) from [0 1] IL,N:
3agaua C. Find
min ICYORANOR
MO V)EM QY xR}y,

N
100, ) = X [ e (o pGon; (o) +

=1Q
LA YA/
+ZZ(Ci Ti» j)+a)vi"

i=1j=1
y 11

Zvij :b] 5 j=l,2,...,M,
i=1

M
vy = [ PG (x)dx , i=1,2,..,N .
J=1 Q
The set of optimal solutions of Problem C contains the
optimal solutions of Problem B, and hence the solving of
Problem B reduces to the solving of Problem C and to the
selecting from all its optimal solutions the one that are
also solutions of Problem B.
Applying the apparatus of the duality theory for
problem C and taking into account the equivalence of
problems A and B, it is proved that for every fixed vector
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theorems take place (analogous to theorems for
continuous OPS problems under constraints from [29]).

Theorem 1. Let in problem A the function p(x) >0
1

and each vector veRY, the following

ae. for xeQ,
condition (6).
(Q*l,...,Q*i,...,Q*N)eZg of the set Q2 be optimal for

the parameters blll, satisfy the

In order that a possible partition

Problem A, it is necessary and sufficient that there exist
real constants Yy, y»,,...,yy such that

1 I I 1
& (xari)+WiScj(xaTj)+Wja (7)
i#j,ae forxeQy,i,j=1..N.

Corollary 1. If the conditions of Theorem 1 hold for
Problem A, at points x, belonging to the optimal boundary
of subsets Qs and Qs;, the equality sign is attained in

inequality (7).
Theorem 2. Let function p(x) >0 a.e. for x€Q, and
condition (6) is satisfied. Then triple

{X*(.),tl*,v*} el xQV x Ry, is an optimal solution of
the problem C if and only if there are real constants
w?,izl,...,N M , under which for

i=1,..,N and almost all x € Q

, and n_’;«,jzl,...,

. * *
1,1fc{(x,r£l~)+\pi ch(x,rij)+\vj,

A (x)=< i#jaeforxeQ, j=1..,N, then x € Qy,

0 in the other cases.

In the capacity of rii, w?,i =1,..,N and nj =L..,.M

the optimal solution to the problem
G(w,n)—)max,weRN,neRM, ®)

where

min

G(y,m) = G(
(W n) {‘c[,v}eQNxRX,M l{

< o).
) jmln(ck (x, Tk)+\uk )p(x)dx+

( 1 "/ pl

)+a _Tl] \VZ)V +Zﬂj
j=1

6
%

H Mi

If in the problem A the first stage centers ‘Ell ,...,r{v

are given, it is proved, that the necessary and sufficient
condition for the optimality of the pair
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{X* (~),v*} elyx R]J{,M in conforming problem B is

. * .
existence of such real constants w;,i=1,.,N, and

nj, j=1L,...,M , under which the following conditions are
satisfied:
1) forall i=1,...,N and almost all x € Q

Lifc! (x, ) +y; =

=) = min (G en)v)©)

m=

0 in the other cases, i =1,..., N,

2)forall i=1,...,N and j=1,..M

(t[ H)+a —\yl+n],1fv >0,
(10)

(’CI H)+a >\yl+nj,1fv =0.

In [28] the iteration algorithm for solving problem A1l
(with given coordinates of centers) is presented. It is
developed on the ground of formulas (9) and (10) under
the assumption that p(x)>0 for all xe Q. We give its
version with a refinement of the initial approximation
choosing. Here, at the beginning we assign to each first
stage center the points xe€Q, lying at the shortest
distance from it. Without loss of generality, we consider
that the set is a parallelepiped whose sides are parallel to
the axes of the Cartesian rectangular coordinate system.

Algorithm 1.
Initialization. specify the computational errors g >0,

€, >0.

Let £=0.

Specify the initial approximation of the characteristic
functions of subsets Q;, i :I,_N, as follows:

Lifc! (x,1) =

20 (x) = = min_c, (7,

m=l,

0 in the other cases, i =1,..., N.

Compute values b,-[ ) by formulas:

bl.[(k) = Jp(x)kl(k)(x)dx s i=1LN.
Q

Define values vlg.k), wfk) (k), i=1,_N, j=1,M,

solving the following linear programming problem of the
transport type:

ZZCU (r{,r”)vlj — min,
i=1 j=1

(11
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ZV —bl(k) i=12,.,N, (12)
N
Zvl»j ij , j=1,2,..M, (13)
i=1
vijZO,z L2,..,N, j=12 (14)
Let, as a result of performing £, £ =0,1,2,... steps of

the algorithm, definite values of the components of

vector-function A% (x) in each point x € QQ and current
approximation of parameters \|/l(- ) , ngk), vlg-k) , i= l,_N ,

j= I,M are obtained.

Perform the (k+1) th step as follows:

)\‘lk+1

1. Compute (x) by formulas:

1, 1fc (7 )+\|I(k) =

264D () = = min (5,6, 50) + Wik ),
m=1,N

0 in the other cases, i =1,..., N.

2. Compute the values bl.l (kD) by formulas:

p! D — = p(A Dy i=1 N
Q
3. Define the values V 15k+1)’ wfk”) §k+1)’ i=1,_N,

j=1M,
problem of the transport type (11)—(14).
4. Compute the value of the objective functional

solving the following linear programming

N
10:0,) =Y [ ¢f (et pe); (x)dx +

i=1Q

N M (15)
+ZZ((:,- ! H)+a )vj
i=1 j=1
o (k+D) k) 1A
under A; (x)=2; (x),v/_vl.j ,i=LLN,j=1LM.
5. If at least one of the conditions
DO 10 B0 <e, a6
or
[t 0200 <e, a7

is fulfilled, then go to step 6, otherwise, go to the
(k +2) th step.

6. Put A=A, i=LN, =,
= I,_N, J =1,_M , where [/ — is the number of iteration at
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which the pair (k(l)(-),v(l)) satisfies condition (16) or
(17) of the completion of the iterative process.
7. Compute the optimal value of the objective

functional by formula (15) under A; (x) = k; (x), i= LN,
xeQ; vij =v;-, i=1,_N,j=1,_M, and, to check the

calculations correctness,
by the formula

— the value of the dual functional

G (1//,77) = J.rr}{in(c,g(x,ti) +Wy )p(x)dx+

M, I 11 Vi
Z( i)ra-m; - \U,)V +an )
Jj=1

M=

+

—_

7

I
~.

* . a—
=vy;,i=LN and n; = nj, —lM

The description of the algorithm 1 is completed.

To develop an algorithm for solving the continuous
problem of OPSAC based on the necessary and sufficient
optimality conditions given above, we rewrite problem (8)
in the following form:

under y;

max
\ueRN s neRM

= min G ({TI,V},\V,T]):
{‘51 ,V}EQN xR

G(yn)=

. I
min max G ({r ,v} ,\u,n)=
{tl,v}eQNxR;(,M yeRY, neRM

= min min max G ({'cl,v},\y,n)=
' Q¥ veR},, yeRY ,neRM

= mm Q( )

eV

where
I\ _ . 1
Q(r )— min max G ({r ,v},\y,n).
veR\y, yeRY ,nerM

Given arbitrary fixed values ' eQV the value

Q(rl ) is an optimum value of the dual functional, which

constructed for the continuous problem of OPSAC with
fixed centers. Therefore, algorithm 1 is an integral part of
the algorithm for solving problem B below. The key role
is assigned to the method of generalized gradient ascent
with space dilatation in the direction of the difference of
two sequential gradients, i.e., the 7 -algorithm of
N. Z. Shor [29], which is successfully used to find the
local unconditional minimum of nonsmooth functions of
several variables.

Algorithm 2.
Initialization. Choose ' € Q"
setof N points.

— initial approximation of
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Using algorithm 1, compute values of characteristic

functions of subsets A% (x) at each point xe€Q, and
initial approximation of parameters vlg-o), i =1,_N,
j=LM.

Compute components g, (t"”) of the generalized

gradient of the function Q(t’) atthe point v by formulas:

Ip(x)g IK,(x)dxﬁ-ZZg nVij s i=LN,

i=l j=1 G

(18)

mmXM%VWmngmgu

lJ

of the N -dimensional vectors g, (x,7) and g, (t,7") of

— i-th components

generalized gradients of the function ci] (x,ri[ ) and

i, 1 I
c (Tza J) N»

point t’ = (1] ,...,rf

i=1..,M, respectively at the

) T, _(‘E(l) (2))
Ty .

Define H,=1,, (1dent1ty matrix) and choose parameters

a>LpB= 1 <1.
a
k=0.
1. Let, as a result of performing k, k =1,2... steps of
the algorithm, definite values of B e N ;
o, =a, Bk = l} .

2. Using algorithm 1, compute values of characteristic

functions of subsets k(k)(x) at each point xeQ, and

current approximation of parameters v[(jk) , i=1,N,

=1L,M.
3. Compute components of the generalized gradient
vector g, (t'™) of function O(!) atpoint 7'® by formulas
18y with 1 =AF) |y =y®)

4. Compute next approximation t'**" by formula

1(k)
I(k+1) _ 1(k) Hng(T )
L 1(h) 1)
JH, g, (7Y, g, (')
where P o is the operator of projection onto the set

oV ; h, 20 —is a step multiplier chosen under the
condition of the optimum of the function along the
H.g 0 (xk) .

5. Compute components of the generalized gradient

direction p, =—

vector g, (t'“™") of function O(x!) at the point T/“*" by
formulas (18).

6. Letr, 1oy,

=g,(T"") - g, (x
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7. Compute matrix

Hrr'H
Hk+l :Hk+(B2_1)M:
(Hkrk’rk)
Hrr'H
:Hk+([32_1) ka [l 3
n Hyn,

If at least one of the conditions
|Q("+” —Q(“| <gor "r'(k“) - r'(“" <g,e>0,

is fulfilled, then the end of algorithm, otherwise,
k =k +1 and go to the step 2.
The description of the algorithm 2 is completed.

Note. In algorithm 2 conditions eV are
accounted by the operator of projection P_, . Therefore,

algorithm 2 can be applied to solve the continuous problem of
OPSAC only if the set Q is convex, closed, and has a rather
simple structure that does not call solving the auxiliary
problem of conditional optimization for finding the
projection of a point on the set. If structure of Q is rather
complicated, then its form should be described by
inequality constraints. For taking into account of such
constraints, in turn, non-smooth penalty functions can be
used.

4 EXPERIMENTS
Algorithms 1 and 2 are implemented in a software
environment Delphi 7.0 when the set Q is a square
Qz{(x,y):OSxSl,OSySl}.

The numerical realization of algorithms presupposes
the discretization of the given domain. To calculate
multiple integrals, the cubature formula of the trapezium
is used in the developed program. Problem (11)—(14) is
solved using the method of potentials.

A number of computational experiments were carried
out, while the studies were aimed at:

— checking the correctness of the algorithms;

500

— revealing the dependence of the functional value and
the computing time on the size of the region discretization
grid;

— clarifying the parameters that determine the shape of
the boundaries between subsets in problems with fixed
centers of the first stage;

— substantiation of the expediency of formulating and
solving continuous problems of OPSAC in the
organization of systems of two-stage transportation of
material (raw) resources, entirely occupied by a certain
territory.

In all the experiments, the results of which are given
below: € =0.0001, &, =0.001; parameters of 7 -

algorithm: o =3,3=009, 8210_4; p(x)=1VxeQ;

al-:OVi:I,_N;forall i:I,_N,j:I,M

2 2
I, 1 I I
¢ (x,Ti):\/(xl—Tli) +(x2—T2i) )

2 2
i, 1 I 1 11 1 11
Cl] (Tl-,‘Cj )—\/(Tli—'[lj) +(T2i—T2j) .

5 RESULTS

To assess the effect of the discretization grid size on
the running time of algorithm 1, as well as on the value of
the problem functional and the optimal partitioning of set,
the same problem of OPSAC with different grid density
was solved. In Fig. 2 it is represented a graph of the
dependence of the running time of algorithm 1 on the grid
size when solving model problem 1 with the following

initial  data: N=4, M=2, 1711 =(0.97;0.1),
th =(0.86;0.03), 1t =(0.87,0.84), 1} =(0.47:0.7);
il =(0.33;0.26), ¥ =(0.73;0.31); b =(0.45,0.55).
The constructed trend line shows that the algorithm works

intime 7'(n) = O(n4) , where n — grid size.

T R —

800

o= 358084 - 31,52x% = 98,851x - 125,28 + EE.EBEI
Rz =1

500

DI o e e 2 e A R R A R R R A R

300

200

algorithm runningtime, picoseconds

LT T

4]

121 441 8ra

1681 10201 40401

num ber of grid nodes

Figure 2 — The graph of the dependence of the running time of algorithm 1 on the size of the
discretization grid
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Fig. 3 shows the optimal partitioning of the set and the
scheme of couplings obtained in solving the problem of
OPSAC for different region discretization grids. Of
course, there was a slight difference in the values of the
objective functional, which is explained, firstly, by the
approximate computing of subsets cardinalities, and,
consequently, in the sizes of supplies between the points
of the first and second stages (see table 1 and 2).
Secondly, as is known, the discretization grid
fragmentation does not always improve the result of

calculating multiple integrals.

a b
Figure 3 — Optimal partitioning of set and a
communication scheme for different grid densities:
a— 0.04x0.04;b— 0.005%x0.005

Table 1 — Areas of subsets that constitute the optimal
partition of set Q in the modal problem 1

Subset Value bi] , computed with grid step
b =hy =004 | h =h =0.005
Q 0.1136 0.1218
Q, 0.2495 0.2708
Q, 0.032 0.0403
Q 0.5263 0.5568

Table 2 — Optimal supply volumes between the centers of
the first and second stages in the model problem 1

Supply volumes calculated at such
discretization grid
h =hy =0.04 h =hy =0.005
1 0.1136 0.1218
V12 0 0
Va1 0.2496 0.2709
V7 0 0
31 0 0
Vi) 0.032 0.0404
V41 0.0913 0.0618
Vay 0.435 0.4951

Observations of the objective functional value at each
iteration of algorithm 1 in solving a number of continuous
problems of OPSAC with fixed centers show that
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algorithm 1 allows to construct a solutions
approximations sequence on which the functional
gradually decreases. In addition, the balance condition
(6), and, consequently, the conditions (2), (3) is satisfied
(with an accuracy of calculating the double integrals by
the cubature formula of trapezoids). All this testifies to
the correctness of the Algorithm 1 operation.

The correctness of the Algorithm 1 operation is also
confirmed by the hyperbolic form of the boundaries
between the subsets that constitute the optimal set
partitioning. Here we give a solution of model problem 2
with such data:

— region discretization grid — 101x101=10201;

~ N=2; M=12; b] =0.076, j =111, b3 =0.166;
— centers 17 , J :m, are marked in Fig. 4a, 4b;
stage o =(0.89;0.12),

! =(0.43;0.23); 6) 1} =(0.36;0.59), 75 = (0.7;0.57).
The optimal partitions and couplings are shown in
Fig. 4a and 4b respectively. The corresponding optimal

—  first centers: a)

values of the target functional and dual variables vy ,y,
are presented there.

Figure 4 — Optimal partition of set £ and communication
scheme in the modal problem 2:

a—1=1.285; y; =-0.265;y, =0.0;
b—T=1.246; y; =0.236; y, =0.0

Let us examine the effect of the dual variables to
form the boundaries between the subsets. In Fig. 4a

boundary between subsets €); and Q, curved in the

direction from ‘Ell to ré, while in Fig. 4b — in the

opposite direction. This is explained by the analytical
form of the boundaries between the subsets, which is
determined by formula (7), and the negative and positive

value of the variable w; in the optimal solution of the

problem. The supplies volumes and capacity of the
centers of the first stage are given in Tables 3 and 4
respectively.

The results of other computational experiments for
the solving of the OPSAC problem with fixed centers are
presented without a detailed description in Fig. 5-7.

It should be noted that an increase in the number of
centers of the first stage with unchanged other initial data
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does not significantly affect the running time of algorithm
1. The changes are appeared only in set partitioning
shredding (in accordance with a given number of first
stage centers), and in the sizes of supplies between the
centers of both stages.

It was noticed that at the beginning with the
appearance of each additional first stage center the
functional value gradually decreases. This obviously takes
place due to a reduction in the cost of delivery of the

resource collected from the relevant areas to first stage
centers. Although the cost of transporting the resource
from the first stage centers to the second stage centers can
increase. Subsequently, such an increase in the resource
transportation cost is compensated by a reduction in
transport costs for smaller quantity of the product
transported from the centers of the first stage to
consumers.

Table 3 — Supply volumes between the centers of the first and second stages in the model problem 2a

1 1 1 1 Vi Vij Vi 1 1l il Vif 1 1
U 45 3 T 75 6 2] T3 T o | | T2 b;
-[;1[ 0.076 0 0 0.076 0 0 0 0.076 0 0.076 0.075 0.167 0.544
-[;é 0 0.076 0.076 0 0.076 0.076 0.076 0 0.076 0 0.001 0 0.455
Table 4 — Supply volumes between the centers of the first and second stages in the model problem 2b
1 Vi§ Vi Vi Vi Vi Vi§ 1 1l 1 1 il 1
U P 73 T4 Ts T i T3 T 0 Ul T2 b;
-[;1[ 0 0.076 0.076 0 0 0 0 0 0.076 0.028 0 0 0.235
1;5 0.076 0 0 0.076 0.076 0.076 0.076 0.012 0 0.047 0.076 0.167 0.745
N 7 .J.' ’,f{
I\ F—
,‘:ﬁfi’““ /;Lf ,
-i” - ! o 3
75'_“‘}_;—-4:.«
4 —=% | *
- __-;;_-,,- -.\. =
d

Figure 5 — Optimal partition of set {2 and communication scheme in the SSPAC at M =2

] \

S ,,e/

a—- N=9;b N=10;c- N=18;d- N=25

N,

Figure 6 — Optimal partition of set {2 and communication scheme in the SSPAC at M =5
a- N=4;b-N=9;c- N=23;d- N=25

Figure 7 — Optimal partition of set Q and connection scheme in the SSPAC with such data:
a- N=5, M=13; b/ =0.07, j=1,12,b =0.06; b~ N=8, M =13; b]' =0.07, j=1,12,b{3 =0.06;

c— N=18, M =6;b] =015, j=1,5,b{( =025; d— N=9, M =15; b}’ =0.06, j =114, =0.16
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The ambiguous nature of the functional value change
is due to the choice of the location of the each next center.
But, since the total amount of the resource distributed on
a given set does not change, the quantity of the product
delivered by each center of the first stage to the centers of
the second stage is less and less. Therefore, it makes no
sense to formulate the task of OPSAC with the location a
large number of the first stage centers.

In addition, when solving the tasks of an OPSAC with
a sufficiently large value of N, it may turn out that some
of the centers will acquire the status of fictitious ones, that
is, these centers will not be assigned any zone that they
can serve. This is exactly what happens in Fig. 5¢,d, 7c,d.

Detailed description and analysis of the results of
solving many continuous problems of OPSAC with the
location of the first stage centers is not possible within the
framework of this article. Here we give only those that
indicate the correctness of the algorithm 2 operation and
the desirability of describing two-stage logistics processes
with a resource entirely occupied by some territory in the
form of continuous problems of OPSAC.

Modal problem 3 (with centers locating).

data: N=M=2; b1 =(050.5);
' =07505); ¥=0.103),

Initial
il =(0.250.5),
) = (0.8,0.6) .

The following values are obtained at the 58th iteration
of  r-algorithm:  7/=0.3039; r{* =(0.263;0.498) ,

D =(0.752;0.5); w1 =05, v, =0.017, vy, =0.483.
Optimal partitioning and location of centers are presented
in Fig. 8.

Thus, in solving problem 3, in which the centers of the
second stage coincide with the points (0.25, 0.5) and
(0.75, 0.5), the centers of the first stage were located
almost at the same points. The optimal partitioning of
square is the classical Dirichlet-Voronoi diagram for these
points. In this case, the second term of the objective
functional is almost zero, and the first equals with the
minimum value of the quality criterion in the problem of
optimal partitioning of the unit square into two subsets
with the placement of centers.

Figure 8 — Optimal partition of set 2 and
communication scheme in the modal problem 3

We note that the OPS problem of the unit square from
E’ into N subsets with finding the corresponding
coordinates of the centers of these subsets when
p(x)=1VxeQ, and functions cl»I (x,r{ ) is Euclidean
metric, are detailly studied in [29]. Here it is proved that
when N =2 the above points as well as with the pair
(0.5, 0.25) and (0.5, 0.75), together with corresponding
Dirichlet-Voronoi diagrams, constitute global optimal
solutions of the OPS problem of the unit square with the
placement of the centers of subsets. In this case the
objective functional value equals 0.2966. As you can see,
in the functional value obtained as a result of solving
model problem 3 differs from the global minimum of the
functional in the problem of partitioning a unit square by
an amount 6 = 0.3039-0.2966 = 0.0073. Thus, we can
conclude about the globality (with a certain accuracy) of
the found optimal solution of problem 3 and the
correctness of the operation of algorithm 2.

Other examples of the partitioning the unit square into
N subsets with the location of their centers and the
establishment of additional couplings between these
centers and the M centers of the second stage are shown
in Fig. 9.

If N much more M , then in optimal solution of the
problems of OPSAC the first stage centers are located, as
a rule, in groups near the centers of the second stage. In
this case, the centers of the second stage often turn out to

18

e f

Figure 9 — Optimal partition of set {2 and communication scheme in the SSPAC with locating of first-stage centers at such data:
a- N=4,M=2;b=05j=1,2;b- N=6, M =2; b =05, j=1,2;

c— N=20, M,bj{l,jzl,Z —thesame; d— N =12, M =3, p" =(0,31;0.32;0.37); e- N=2, M =5;
b =(0.18;0.17;0.19.0.18;0.19) ; f— N=4, M =9; b’ =(0.1;0.12;0.1;0.12;0.09;0.1;0.1.0.1;0.16)
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be the “centers of gravity” of polygons, which are convex
hulls of points corresponding to the nearest first stage
centers. The optimal partition is the Dirichlet-Voronoi
diagram. The boundaries between subsets are straight
lines, in contrast to the hyperbolic form of the boundaries
between the subsets that constitute the optimal region
partitioning in problems of OPSAC with fixed first stage
centers.

In conclusion, we give an example that shows how
important to formulate optimization problems for two-
stage logistical processes with a continuously distributed
resource in the form of problems (1)—(5) to obtain a
synergistic effect. Imagine a situation where the resource
is uniformly distributed on the same unit square. It is
necessary to find partitioning of the square into 10 zones,
place the corresponding centers and determine their
possible couplings with the two centers of the second

stage (with demands bl” =pil =0.5) to minimize the

total costs for the resource transportation to the centers of
the first stage and the costs of further transportation of the
resource to the centers of the first stage. The location of
the second stage centers is shown in Fig. 10a. This figure
also shows the optimal location of the first-stage centers,
their corresponding service areas, and also indicates the
additional couplings between the centers of the first and
second stages. The value of the objective functional with
such a location-allocation is 7 =0.33069 .

If, on the other hand, first the OPS problem with the
location of the centers and the criterion of the quality of
the partition, equal to the first term of the functional (1),
and then, with the obtained coordinates of the centers of
the first stage, the transport type problem with the
criterion equal to the second term in (1) to obtain the
optimal location of the centers of the first stage and the
corresponding zones shown in Fig. 10b.

/

: 1 . .
—\ "
- J" _
2 /

a b
Figure 10 — Optimal partition of set Q and optimal
location of centers in the problem:
a — SPP with additional constraints;
b — SPP with locating of subsets centers

The values of the objective functionals of the two
problems are: /;=0,1222 and [, =0.300964

respectively, which in total is [; +1, =0.423164 . And
thus, the gain in the value of the objective functional in
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the modeling of a two-stage logistical process in the form
of a continuous problem of OPSAC is obvious.

6 DISCUSSION

The results of computational experiments allow to
make the following conclusions about optimal solutions
of continuous multi-stage location-allocation problems.

1. If the first stage centers are fixed in the OPSAC
problem, then the boundaries between the subsets, making
up the optimal partition of the given region, are
hyperbolas. This fact is completely consistent with
analytic results (a corollary 1) and agree with the
theoretical justification of the form of the boundary
between the subsets making up optimal partitions in
problems of OPS under constraints in the form of
equalities and inequalities [27, 29].

2. In the optimal solutions to the OPSAC problems the
first stage centers are usually located in groups near the
centers of the second stage. In this case the components of
the vector y of dual variables often turn out to be close

to zero, as a result of which the optimal partitions of sets
are the classical Dirichlet-Voronoi diagrams constructed
for the placed points.

3. If the number of centers of the second stage is much
less than the number of the centers of the first stage in
OPSAC problems with fixed centers, then some of the
corresponding ones’ areas can be empty. Therefore, when
solving continuous OPSAC problems, one can get an
answer to the question of the rational number of first stage
centers, which will be enough to collect the entire
continuously distributed resource at the relevant areas and
with minimum costs to transport the processed product to
the second stage centers.

The results of the computational experiments testify to
the correctness of the algorithms operation. Both
algorithms search for a local (sometimes global)
minimum of the objective functional. The reliability of
the obtained results is confirmed by their consistency with
theoretical research and logically reasoned expected
outcomes.

CONCLUSIONS

It is solved the actual problem related to the optimal
organization of two-stage material flows distribution
processes in the transport-logistical system, the structural
elements of which are enterprises that collect a certain
resource continuously distributed on a certain territory,
and enterprises that consume or process this resource.

The scientific novelty of obtained results is to
construct mathematical models of problems that allow to
quantitatively justify the decision to locate a two-stage
production, the raw material resource of which is
continuously distributed in some territory. Methods and
algorithms for solving problems of optimal partitioning of
a continual set with placement of centers of subsets and
additional connections due to the presence of the second
stage are presented. It is shown that a system approach to
solving the issues of placement of two-stage production
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makes it possible to obtain a synergistic effect that affects
the overall goal of the logistics system.

The practical significance of the obtained results is

the developed software that implements the proposed
algorithms for solving continuous OPSAC problems and
can be used in practice when creating territorially
distributed multilevel companies that perform a full cycle

of

production from raw material harvesting with its

integrated use, transportation to end customers. The
introduction of the proposed approach to the accounting
of two-stage transportation of a continuously distributed
resource on a given territory to the end user will ensure a
reduction in costs for the advancement of material flows,
as well as an increase in the efficiency of the use of
natural resources.

Prospects for further research are theoretical

justification of the convergence of the iterative process
realized in the proposed algorithm for solving continuous
problems of ORM with additional constraints, as well as
the development of software for solving such problems
with the use of GIS technologies.
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V]IK 519.8

ONTUMIBALIA IBOETAITHOI'O PO3IIOALTY MATEPIAJIBHUX IIOTOKIB Y TPAHCHOPTHO-JIOFICTI/I‘IHIIK
CHUCTEMI 3 PECYPCOM, PO3ITIOBCIO/IKEHAM HA 3AJTAHIW TEPUTOPII

Ye C. A. — kanHa. ¢i3.-Mat. Hayk, npodecop kadeapu cucTeMHOro aHamizy i ynpariinds HamionaneHoro TV «JIHinpoBcbka
MOJTiTEXHiKay, YKpaiHa.

Kopsimkina JI. C. — xanxa. ¢i3.-mMar. Hayk, IOLEHT Kadenpu CHUCTeMHOro aHajiidy i ympaBninas HamionansHoro TVY
«/IHITpOBCHKA MOJIITEXHIKa», YKpaiHa.

Cranina O. [I. — acucteHT Kadeapu KoM 10TepHHX iHPopMariitHux TexHonoriii IBH3 «YkpaiHcekuil nepskaBHHN XiMiKo-
TEXHOJIOTTYHHUH YHIBEpCHTET», YKpaiHa.

AHOTAIIA

AxTyanbHicTh. O0’€KTOM JOCHIKEHHS € JBOSTAITHUI MPoLeC PO3MOiTy MaTepialbHUX HMOTOKIB B TPAHCIIOPTHO-JIOTiCTHYHIH
CHCTEMi, CTPYKTYPHHUMH eJIeMEHTaMHU SIKOi € MiANpHEMCTBA, SIKi 3/IHCHIOITH 30ip JESKOro HENepepBHO PO3MOBCIOHKEHOTO Ha
neBHiit Tepuropii pecypcy (LEHTpU MepLIoro eramy), i MigNPUEMCTBA, WO IeH pecypc CHOXHBAIOTh abo MepepoOISIIOTh.
IpencraBneHa MaTeMaTHYHA MOJIEIb TAKOTO MPOLECY — 3a/iaya ONTUMAIBHOTO PO30UTTS KOHTUHYAILHOI MHOXKUHH 3 PO3MILLICHHIM
LEHTPIB MIIMHOXXUH 1 JOAATKOBUMH 3B’s3KaMd. MeTa poOOTH — 3a0e3medeHHs 3HIDKSHHSI TPAHCIIOPTHUX BHUTPAT HPH OpraHizamii
OaraToeTarmHOrO BHPOOHMITBA, CHPOBHHHHI pecypc SIKOTO PO3MOBCIO/DKCHUHM Ha JEsKid TepuTopii, 3a paxyHOK pO3poOKH
BIJITTOBIJTHOTO MAaTEMaTUYHOTO 1 POrpaMHOro 3a0e3neueHHs. AKTyalbHICTh poOOTH 00yMOBIICHA OJHIEI0 3 HAHOLIBII BHPaXKEHUX
TEHJICHIIH y BUIOOYBHHX 1 MEPEPOOHUX TATY3SX MPOMHUCIOBOCTI i CLTLCHKOIO TOCHOAAPCTBA, @ CaMe — CTBOPEHHSIM TEPHUTOPIaIbHO-
pO3MONiIEHHX 0araTopiBHEBUX KOMIIAHIM, 10 BKIIOYAIOTh B CeOC NECSATKA BEIUKUX MiANPUEMCTB i 3IIHCHIOIOTh MOBHHM UK
BHUPOOHUIITBA BiJl 3arOTiBJIi CUPOBUHHU 3 HOTO KOMIUICKCHUM BHKOPHCTAHHSM, BHIIYCKOM HPOAYKLIi O TPAHCHOPTYBaHHS KiHLEBUM
CIIOXKUBAYAM.

Meton. Matematndne 3a0e3MEUCHHS JBOCTAMHHUX 3a4ad PO3MIMICHHSI-PO3MOIITY pO3pOOIECHO 13 BUKOPHCTAHHSM OCHOBHHX
MOJIOXKEHb TEOpii HEMepepBHUX JIHIMHUX 3a7ad ONTHMAIFHOTO PO3OUTTS MHOXHH 3 PO3MIIIEHHSAM LEHTPIB MiJMHOKHH, TEOpii
IIBOICTOCTI, @ TaKOK METOJIB PO3B’s3aHHS 3a[ad JIHIHHOTO MPOTrpaMyBaHHs TPaHCIOPTHOro Tumy. [lokazaHo, oo GpopMyTtOBaHHS
OaraToeTarHOi TPaHCIIOPTHO-JIOTICTHYHOI 33/1adi B HEMEepepBHOMY BapiaHTi (y BUIUIAIL 3a7adi HECKiIHUCHHOBHUMIPHOI ONTHMIi3amii)
JIOIIJIBHO, KOJIM KUTBKICTH ITOCTaYalbHHKIB Pecypcy My’kKe BeJUKA. 3aCTOCYBaHHS pPO3POOIEHOr0 MAaTeMaTHYHOTO arapaTy Iae
MOXKJIMBICTh 3HalTH ONTHMAIIBHUI PO3B’ 30K JBOETAITHOI 3a/1a4i PO3MILICHHS-PO3IOALTY B aHATITHYHOMY BUIJISI, X04a OTPUMaHUIH
BUpa3 MICTUTbH IapaMeTpH, SKi € ONTUMAaIbHUM PO3B’SI3KOM JOIMOMDKHOI CKIHYEHHOBUMIPHOI ONTHMI3aliifHOI 3a/1aui 3 HErNIaJKo0
LiTbOBOIO (pyHKIIi€I0. 3arpONOHOBAHO iTepaLliiiHUil alrOpuT™M pO3B’si3aHHS cHOPMYJIHOBAHOI 3amadi, po3poOiaeHH Ha OCHOBI I-
anroputmy H.3. Illopa i MeToay noTeHIiaiB, 0 3aCTOCOBY€ETHCS ISl 33124 JIHIHHOTO IpOrpaMyBaHHs TPAHCIIOPTHOTO THILY.

PesyabTaTn. Po3pobneHo MareMaTWdHi MOJENi, METOOM Ta alTOPUTMU PO3B’S3aHHS HENEPEepPBHHUX OaraToeTanmHux 3agad
PO3MILICHHS MiIIPHUEMCTB 3 HENIEPEPBHO-PO3MOAITICHUM PECYPCOM, Ha OCHOBI KHX CTBOPEHO MPOTPAMHUI MIPOAYKT, II0 MOXKE OyTH
BUKOPUCTAHMH IJIs PO3B’S3aHHS MIMPOKOTO KJIacy HENepepBHUX JIHIHHMX 3aad po3MilleHHs — po3noaury. [Ipexcrasieni meronn,
ITOPUTMH Ta IPOTPaMHHI IPOAYKT JO3BOJISIOTH BHUPINIYBaTH LM pAJ MPaKTHYHUX NpoOsieM, IIOB’S3aHUX, HANpPHUKIAN, i3
3a7a4aMM CTpPATeriyHOro IIaHYBaHHSI, SKi BUHHMKAIOTh y BHPOOHMYIH, coliaibHiil Ta eKoHOMIi4HIN cdepax mismpHOCTI. OTpHMaHi
TEOPETHYHI pe3yJIbTaTh JOBEICHI 0 PiBHS KOHKPETHUX PEKOMEHJaIil, SKi MOXYTh OyTH BUKOPUCTaHI JIEp)KaBHUMH 1 NPUBATHUMH
HiAIpHUEMCTBAME NP BUPIILICHH] JOTICTUYHUX MHUTaHb, OB’ I3aHKUX 3 OpraHizauieio 300py MEBHOTO pecypcy i HOro JA0CTaBKOO 0
HyHKTIB IIepepOOKH, a TAKOXK MOAAIBLIOrO MEPEBE3CHHS OTPHMAHOTO MPOAYKTY 10 MiCLlb IPHU3HAYCHHS.

BucHoBku. Pe3ynbraTé OOYMCIIOBANBHUX EKCIIEPUMEHTIB CBiUaTh MPO KOPEKTHICTH POOOTH 3alpOIIOHOBAHOTO alTOPUTMY
pO3B’s3aHHS 3a/Jadi ONTUMAIbHOTO po30uTTs MHOXHMH (OPM) 3 nomaTkoBHMH 3B’S3KaMH, KpiM TOTO, NAIOTh MO>KJIUBICTB
CTBEPIKYBATH IIPO AOULIEHICTH (JOPMYITFOBAHHS TAKHX 3a7ad, KOJIU MOTPIOHO BH3HAYATH HA 3aaHIi TepUTOpIl MiCIs pO3TalTyBaHHS
HOBHX OO0’€KTiB 3 ypaxyBaHHSIM 0araToeTammHoro TMpPOIECy pPO3MOIUTY JESKOTr0 HENEPEPBHO PO3IOBCIOIKEHOTO PECYpCy.
[MopanpmomMy IOCIHIKEHHIO MiZJISTaloTh MUTAHHS TEOPETHYHOrO OOTPYHTYBaHHs 301KHOCTI iTepaliifHOro mpolecy, peanizoBaHOTo
B 3aIPOIIOHOBAHOMY AJITOPUTMi pO3B’si3aHHs HemepepBHUX 3amad OPM 3 nonaTtkoBUMHM 3B’s3KaMH. Y TIEPCIEKTHBI TaKOXK —
po3pobka mporpamMHOro 3ade3nedeHHs po3B’sI3aHHs TAKKUX 33724 i3 3amydeHHsM [ IC-TexHomorii.

KJIFOYOBI CJIOBA: 0OaratoerarHi TpaHCIIOPTHO-JIOTICTHYHI CHCTEMH, HEMEPEepBHO PO3MOAUICHUI pecypc, ONTHMallbHE
PO30OUTTSI MHOKHH, HETIEPEPBHI 3a/1a4i PO3MILICHHA-PO3MIOILTY.

YIK 519.8
ONTUMM3ALUA IBYXITAIIHOT'O PACIIPEAEJEHUA MATEPUAJIBHBIX IOTOKOB B TPAHCIIOPTHO-
JIOTUCTUYECKOM CHCTEME C PECYPCOM, PACITPOCTPAHEHHBIM HA 3ATAHHOM TEPPUTOPUN
¥Ye C. A. — kaun. ¢us.-mar. Hayk, npodeccop kadeapsl CHCTEeMHOro aHanu3a u ynpaeienus HaumonansHoro TY «/lHenpoBckas
TOJINTEXHUKA», Y KpauHa.
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Kopsimkuna JI. C. — kann. ¢us.-mar. Hayk, OOLEHT Kadeapsl CHCTEMHOro aHanm3a U ynpasieHus HamwmonansHoro TY
«/lHenpoBcKast OJIUTEXHUKA», YKpauHa.

Cranuna O. [I. — accucteHT Kadeaps! KOMIBIOTepHBIX HHQopMannoHHbIX TexHonoruid JIBH3 «YkpanHckuil rocynapcTBeHHBINH
XUMHKO-TEXHOJIOTUYECKUH YHUBEPCUTET», Y KpauHa.

AHHOTAIUA

AxTyanbHOCTh. OOBEKTOM HCCIENOBAHUS SIBISIETCS JBYXOITAIHBIH IPOIECC DPACIpPEAE]ICHHUS MAaTepHaNbHBIX IIOTOKOB B
TPAaHCHOPTHO-TOTHCTHYECKOH CHCTEME, CTPYKTYPHBIMH JJIEMEHTaMH KOTOPOW SIBJISIOTCS INPEANPUSTHS, OCYIIECTBISIONHE cOOp
HEKOTOPOI'0 HENpPEPBIBHO PaclpOCTPAHECHHOIO Ha ONpPENeNICHHOW TeppUTOPHU pecypca (LEHTphI IEpBOro dTana), U NpeAlpUsTHs,
KOTOpBIE 3TOT pecypc MOTpeONsAroT miu mepepadareiBatoT. IIpencrapnena maTemaTHueckash MOJENIb TAKOro Mpoliecca — 3ajada
ONITUMAJBHOTO Pa30MeHNs] KOHTHHYalIbHOTO MHOXECTBA C Pa3MEIIEHHEM IIEHTPOB MOIAMHOXKECTB M JIOMOIHHUTENBHBIMHU CBSI3SIMU.
Lens paboTsl — oOecrieueHne CHIKEHHS TPAHCTIOPTHBIX 3aTpaT MPH OpraHW3allMi MHOTO3TAITHOTO MPOU3BOICTBA, CHIPHEBON pecype
KOTOPBIX PacHpOCTPaHEH HAa HEKOTOPOH TEPPUTOPHH, 33 CUET pa3pabOTKH COOTBETCTBYIOIIETO MAaTEMAaTHYECKOTO M IIPOTPAMMHOTO
obecrieueHHs. AKTyalbHOCTh pPa0OTHl 00yclOBIE€Ha OIHOM H3 Hauboiee BBIPAKCHHBIX TEHIACHIMHA B JOOBIBAIONIMX U
nepepadaThIBAOINX OTPACISAX IPOMBINIIEHHOCTH M CEJIBCKOTO XO3fHCTBA, a HMEHHO — CO3JaHHEM TEpPPHTOPUAIIBHO-
pacrpe/ieIeHHBIX MHOTOYPOBHEBBIX KOMITAaHUH, BKITIOYAIOIIHX B €05 IECATKH KPYIHBIX TPEINPUITAN U OCYIIECTBIISIONIIX MTOTHBIN
LUK NPOU3BOJCTBA OT 3arOTOBKU CBIPbS C €r0 KOMIUICKCHBIM MCIIOJIb30BAaHHEM, BBIITYCKOM IPOLYKLHUH A0 TPaHCIOPTHPOBKU
KOHEYHBIM HOTPEOUTEIISIM.

Metoa. Marematndeckoe obecledeHHe ABYXITAMHBIX 3a7ad pa3MEIICHUSA-PACTIPEeieHns pa3paboTaHO C HCHOIB30BaHHEM
OCHOBHBIX ITOJIO)KEHHH TEOPHH HETPEepHIBHBIX JTMHEHHBIX 3a[ad ONTHMAIBHOTO Pa30OHEHUs] MHOXKECTB C pa3MEIeHHEM IIEHTPOB
TIOJIMHOXKECTB, TEOPUH IBOMCTBEHHOCTH, a TaKKe METOJOB PEIICHUS 3a7ad JIMHEHHOTO MpOrpaMMHPOBAHHS TPAHCIIOPTHOTO THUIIA.
INoka3zano, 4To (OpMyNIHpOBaHHE MHOTO3TAITHOHN TPAaHCHOPTHO-TOTHCTHYECKOH 3aJadd B HENPEpHIBHOM BapuaHTe (B BHIE 331a4d
OECKOHEYHOMEPHOH ONTHMH3AIMH) IeJIECO00pa3HO, KOTJa KOJIMYECTBO IIOCTaBIIMKOB pecypca OYeHb BEJIMKO. [IpuMmeHeHue
pa3paboTaHHOTO MaTEMAaTHYECKOro anmnapara JaeT BO3MOXKHOCTh HAWTH ONTUMAJIBHOE PELICHHE ABYXJTAITHOM 3aa4y pa3MeIeHus -
pacnpejeneHus B aHAJMTUYECKOM BHJE, XOTS AHAIUTHYECKOEC BBIPAKCHHME COJEPXKUT IMapaMeTpbl, SBISIOLUIMECS ONTUMAJIbHBIM
pelIeHHeM BCIOMOTaTeJbHONH KOHEYHOMEPHOH ONTMMM3ALMOHHON 3agaud ¢ Herjnagkod 1eneBoil ¢ynkuued. [Ipemnoxen
UTEPALMOHHBIA alrOPUTM pelleHUs] cOpMyIUPOBAaHHON 3amaun, pa3paboTaHHblii Ha ocHoBe r-anroputma H.3. Illopa u mertonma
MOTEHIMAIIOB PEIICHUS 33144 JINHEHHOTO [IPOrpaMMHUPOBAHUS TPAHCIIOPTHOTO THIIA.

Pe3yabTarhl. Pa3paboTansl MaTeMaTHYECKHE MOJAENH, METOABI M alTOPHUTMBI PENICHHS HENPEPHIBHBIX MHOTOITAIHBIX 337134
pa3sMelLIeHUus NPEANpUATHHA ¢ HEIPEepbIBHO-PACIPEIECIICHHBIM PECYpCOM, Ha OCHOBE KOTOPBIX CO3[JaH IPOrPaMMHBIM NPOAYKT,
KOTOpBII MOKET OBITh WCIHOJIB30BAaH JUIS PENICHHs IIHPOKOTO Kiacca HENPephIBHBIX JIMHEHHBIX 3ajad pa3MemieHus —
pacipeneneHus. IIpencraBieHHbIe METO/IbI, AITOPUTMBI U IPOrPaMMHBINA IIPOAYKT MO3BOJIOT pellaTh LENbIH psii MPAKTUYECKUX
npobieM, CBSI3aHHBIX, HANpUMep, C 3aJayaMH CTPATErHuecKoro IUIAHUPOBAHUS, KOTOPHIE BO3ZHHMKAIOT B IPOHM3BOJICTBEHHOI,
COLIMAIBHON M SKOHOMHYECKOH cdepax nesTenbHOCTH. [TosyueHHbIe TEOPETHYECKHE PE3yIbTAThI JOBEAEHBI 10 YPOBHS KOHKPETHBIX
pPEKOMEHJALNHA, KOTOphlE MOTYT OBITh HCIOJNB30BAHbl TOCYJAPCTBEHHBIMH M YaCTHBIMM NPEANPUATHAMHM TPH PEIICHUN
JIOTHCTUYECKUX 3371ad, CBA3aHHBIX C OpraHU3aIlued cOopa OMpeNeNeHHOTo pecypca M ero JOCTaBKOH [0 IyHKTOB IepepaboTky, a
TaKKe JadbHEHIIEH MepeBO3KH MOyIEHHOTO MPOAYKTa K MECTaM Ha3HAUCHHSI.

BroiBoabl. Pe3ynbTaThl BBIYMCINTENBHBIX OKCICPHMEHTOB CBHICTEIBCTBYIOT O KOPPEKTHOCTH PAOOTHI MPEIOKEHHOTO
aITOPUTMa PEIICHNUS HeNIPEPHIBHOI 3a1a4i ONTUMAIIBHOTO pa3duenus MHOkecTB (OPM) ¢ HOMIOTHUTEIFHBIMH CBSI3SIMU, KPOME TOTO,
JAalI0T BO3MOXKHOCTh YTBEPXKJIAaTh O IeJecoo0pa3sHOCTH ()OPMYJIHMPOBKH TAaKHMX 3ajad B Clydae, KOIZla HY)KHO ONpEeleisiTh Ha
3aaHHOW TEPPUTOPHUH MeECTa PACIOJIOKEHHS HOBBIX OOBEKTOB C Y4YETOM MHOTOITAIIHOIO MpoIiecca paclpeieneHus pecypca,
HEIIPEPBIBHO PACIIPOCTPAHEHHOTO HA 3afaHHON TeppuTopuu. JanpHeHIIeMy HCCIEIOBAaHUIO MOAJIEKAT BOMPOCHI TEOPETHUECKOTO
000CHOBaHHMS CXOJMMOCTH UTEPALIHOHHOTO MPOIIECCa, PEATU30BAaHHOTO B IPENIOKEHHOM AJITOPUTME PEIICHHST HENPEPBIBHBIX 3a1a4
OPM c [OmONTHUTENBHBIMHE CBS3IMH. B mepcnekTuBe Taxke — pa3pabOTKa MPOrpaMMHOTO OOECICUeHUs pEelIeHHs TaKWX 3aad C
npusiedenneM [ MC-TexHOmOTHiA.

KJIIOYEBBIE CJIOBA: MmHOroaTansele TpaHCIOPTHO-JIOTUCTUYECKUE CUCTEMBI, HETIPEPBIBHO pacIipelleIeHHbINH pecypc,
ONTHMAJIbHOE pa30MeHIe MHOXECTB, HEIPEPhIBHBIC 33a1a4N pa3MeIeHUS-PACTIPECIICHHSI.
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