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ABSTRACT

Context. We consider a Kolmogorov-Wiener filter for fractal random processes, which, for example, may take place in modern
information-telecommunication systems and in control of complex technological processes. The weight function of the considered
filter may be applied to data forecast in the corresponding systems.

Objective. As is known, in the continuous case the Kolmogorov-Wiener filter weight function obeys the Fredholm integral
equation of the first kind. The aim of the work is to obtain the Kolmogorov-Wiener filter weight function as an approximate solution
of the corresponding integral equation.

Method. The truncated orthogonal polynomial expansion method for approximate solution of the Fredholm integral equation of
the first kind is used. A set of orthonormal polynomials is used.

Results. We obtained approximate results for the Kolmogorov-Wiener weight function for fractal processes with a power-law
structure function. The weight function is found as an approximate solution of the Fredholm integral equation of the first kind the
kernel of which is the correlation function of the corresponding fractal random process. Analytical results for the one-, two-, three-,
four- and five-polynomial approximations are obtained. A numerical comparison of the left-hand and right-hand sides of the integral
equation for the obtained weight functions is given for different values of the parameters. The corresponding numerical investigation
is made up to the 18-polynomial approximation on the basis of the Wolfram Mathematica package. The applicability of the obtained
solutions is discussed.

Conclusions. The Kolmogorov-Wiener weight function for fractal processes is obtained approximately in the form of a truncated
orthogonal polynomial series. The validity of the obtained weight functions is discussed. The obtained results may be applied to the
data forecast in a wide variety of different systems where fractal random processes take place.

KEYWORDS: Kolmogorov-Wiener filter weight function, truncated orthogonal polynomial expansion, Fredholm integral
equation of the first kind, approximate solution.

NOMENCLATURE INTRODUCTION
T - time interval along which the input data are observed Nowadays fractal processes take place in a huge
k — time interval for which the forecast should be made variety of different systems (see, for example, [1-4] and
h(t) — Kolmogorov-Wiener filter weight function various references in [4]). This paper is devoted to the

obtaining of the Kolmogorov—Wiener filter weight
function for continuous fractal processes. The structure
function of the corresponding random fractal process is
supposed to be a power-law one. Such a model is widely

H — Hurst exponent
S, (t)— set of orthonormal polynomials in t €[0,T].

R(t) correlation function of the random fractal process

G’ process variance used for description of different systems in different fields
of knowledge; see, for example, [5] and references
therein.
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In paper [4] the problem of data forecast for fractal
processes in telecommunication systems was considered
on the basis of Kolmogorov-Wiener filter. The results of
paper [4] were refined in [5], but the Volterra integral
equation was considered in [4, 5] rather than the
Fredholm one. As is known [6], in the general case for
such a problem the Fredholm integral equation of the first
kind should be used. The exact analytical solution for
such equation meets difficulties, so an approximate
solution of the corresponding integral equation is obtained
in this paper.

The object of study is the Kolmogorov-Wiener filter
for continuous fractal processes.

The subject of study is the weight function of the
corresponding filter.

The aim of the work is to obtain the corresponding
weight function as an approximate solution of the
Fredholm integral equation of the first kind.

1 PROBLEM STATEMENT
We consider the Kolmogorov-Wiener filter for
continuous fractal processes. As is known, the weight
function of the considered filter obeys the following
integral equation

}drh(r)R(t—r):R(t+k), )

where T is the time interval along which the input data
are observed, kK < T the time interval for which the
forecast should be made, h(t) is the Kolmogorov-Wiener

filter weight function and R(t) is the correlation function

of the corresponding fractal process, the noiseless case is
considered. Here we consider a random fractal process
with the power-law structure function which leads to the
following correlation function [5]

R(t) = —%|t|2H : )

where G° is the process variance, o is a constant and
H is the Hurst exponent. The statement of the problem is
to obtain the weight function h(t) as an approximate

solution to the integral equation (1).

2 REVIEW OF THE LITERATURE

Nowadays fractal processes are used for the
description of a huge variety of different systems, and a
model with a power-law structure function is a popular
model of the fractal process, (see, for example, [1-5] and
references therein).

In paper [4] the Kolmogorov-Wiener filter is proposed
in order to make the forecast for the fractal traffic which
takes place in some telecommunication systems. Such a
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traffic is rather data-intensive, that is why for convenience
it is described as a continuous process in [4].

But in [4] the Volterra integral equation of the first
kind is used rather than the Fredholm one. In [4] the
method of solution of the corresponding Volterra integral
equation is described and finally an exact analytical
solution of this equation was obtained in [5]. It should be
stressed that the Volterra integral equation is not so
complicated as the Fredholm one and it admits an exact
analytical solution. Maybe, in some cases the use of the
Volterra equation instead of the Fredholm one is a
reasonable simplification. But definitely in the general
case one should use the Fredholm integral equation of the
first kind rather than the Volterra one, see, for example,
[6]. So the aim of the paper is to solve the corresponding
Fredholm equation.

But the exact analytical solution of the Fredholm
integral equation (1) meets difficulties, so here we restrict
ourselves only to a search for an approximate solution of
1).

It should be stressed that Fredholm integral equations
of the first kind take place in various fields of knowledge.
One of the most popular methods of their approximate
solution, which is used in this paper, is the expansion of
the unknown function into a truncated orthogonal
polynomial series, see the corresponding solution of the
kinetic equation in the framework of statistical physics [7,
8]. In fact, this method is a special case of the Galerkin’s
method described in [9].

3 MATERIALS AND METHODS
The solution of eq, (1) is sought as the orthogonal
polynomials series

h(t)=2.9,5 (1 3)

where S, (t) a set of polynomials which are orthonormal
in te[0,T] and g, are unknown coefficients.

The polynomials S, (t) are constructed as follows. As
is known [10], the polynomials S, (t) orthogonal in
t €[0,T] can be constructed as follows:

Ho M1 H2 - Hp
Hp o M2 K3 Hn+1
s (r) | : : : P @
Hn-1 Hn  Hnq Hon-1
1 T 2 "
Te [O,T]
where
T n+1
pnzgx”dx=;+l. )
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The numerical values of S, (t) for t~T may be

rather large, that is why the use of the orthonormal
polynomials S, (t) may be convenient:

[dt(sh (1)) ©

0
the polynomials (6) obey the property

T

Idtsn (t) Sm (t) = Bmn (7
0

where S, is the Kronecker delta.

By a straightforward calculation on the basis of (4)—
(6) one can obtain explicit expressions for the first 5
polynomials:

1 \B(z j
So(t)=—=, S;(t)=—F=| =t-1],
0() \/.IT 1() \/'I_' T
5(6 ., 6
Sz(t):TlT T—zt —?t'i‘l N
®)
%(t):ﬁ 14123002, 205
T2 L R
3 20, 90,, 140 .3 70 4
t)=— | I-t+—t? P+ —t* |
+( Tl/z[ T T T j
On the basis of (3) one can rewrite (1) as
T
Zgnjdtsn(I)R(t—r)=R(t+k). )
n 0
After multiplying (9) by S, (t) and integrating one can
obtain
zgnGmn = b, (10)
n
where
T T
Gy = [ dt[ d1S, (1) S ()R(t-1),

b =

m

dtS,, (t)R(t+k),

Sy —

the quantities G,, are called the integral brackets. The

obtained set of linear equations (10) is infinite, and
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solving (10) meets difficulties. So one should artificially
truncate (10):

-1

Y90G =by, m=0,1-1.
n=0

(12)

The set (12) is finite, and one can obtain the
coefficients ¢, as the solution of the set (12). The

corresponding
equation (1)

approximate solution of the integral

h(c)= I%gnsn (1) (13)

is called the solution in the | -polynomial approximation.
In matrix form (12) can be rewritten as

Gg=b (14)
where
Goo GIO Goj
G= G:Ol Gll G:lj , j=|—1,

G,, G G

0]j 1j 1) (15)
9 by

9= g:‘ , b= " :
9; b;

so the coefficients g, can the obtained in matrix form as

g=G7b. (16)

Now let us consider the properties of the matrix G.
First of all,

T T
G, = [dt[dtS, (7)S, ()R (t-1)={t o} =
0 0
T T 17
:jdt‘[dtsn (t)S, (t)R(-t). )
0 0
The correlation function is an even one:
R(r—t)zR(t—r), (18)
and on the basis of (17) we have
T T
Gy, = [dr[dtS, (7)S, ()R(x~t)=G,,.  (19)
0 0
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Also the polynomials (6) obey the property

S, (%—t),mz
(3 (T-ote

Let us consider the quantity G,,, where m and n are

of different evenness. On the basis of (11) and (18) we
have

here the fact that the correlation function is even is used.
On the basis of (20) and the fact that m and n are of
different evenness, we have

T T T T
Sm (E+ Xj Sn (E-"— yj = _Sm (E_ Xj Sn [E_ y} (22)

and with account for (21) we have

dys,, (%—xjsn [%—y]R(y—x):

= _Gmn = Gmn =

—o |

dx

@
Il
—|

mn

(23)

o=
o=

So the matrix G obeys the following properties:

1. G is a symmetrical matrix: G, =G,

2. G,, =0 if m and n are of different evenness.

These properties allow one not to calculate all the
matrix G by a straightforward calculation. It is enough to
calculate by straightforward calculation only those
components G, for which m>=n and m and n are of
the same evenness.

By a straightforward calculation on the basis of (8)
and (11) one can obtain the components of the matrix G
upto G, :
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Gy T2 2H+1
(2H +1)(H+1)
_a 3H T2H+
T2 (2H+1)(H +1)(H +2) ’
5H-1 7H-2
2T s o O T S O
9H-3
G -_ 2\/§OLH 2H+
* (2H+2)(2H +3)(2H +4) ’
. a  24H(H-1)(2H -1) 24)
- _ = X
Y 2 (2H+6)(2H +5)(2H +4)
% 1 2H +1
(2H +3)(2H +2)
a 3V5H (H-1)(H -2)
G42 =5
2 (H+1)(H+2)(H+3)
x 1 2H+1
(H+4)(2H +3) ’
G _o \/EH(H_l) 2H+1
B2 (H+1)(H+2)(H +3)(2H +3)
On the basis of (11) and 8 the coefficients b, are
calculated up to b, :
1 a
b, = T‘/2£ T—EJIJ,
a V3
IZ_ETT( J,-(2k+T)J,),
b, = O‘T{z[m —(12k +6T)3,
+(6k? +6KT +T* )Jl],
V7
b, :_%TW [ (T +12T 7k +30Tk® +20k° ), +
25
#12(T2 +5KT +5k7) 3, =30 (T +2k) J, +203, |, (@)
b, =—%T%[Jl (T* +20KT? +90k>T? +

+140k°T +70k*) =203, (T* +9KT* +21k°T +
+14K7 ) +10J, (9T 2 +42KT + 42k’ ) -
~140(T +2k)J, +70J, |,

~ (T +k)2H+n _k2Hn
- 2H +n

On the basis of (15), (16) and the above-mentioned
properties of the matrix G one can obtain the following
results:
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1 (1) =as, (1), o) = ot =2,
GOO
hl (t) = oS, (t)+ g's, (1), g =g 22_1’
11

h®(t) = g"S, (1) +9,7'S, (1) +957's, (1),
gl =g¥ =M
G00G22 _Gzzo
o = gt - Gs ~:G

Gzzo _Gooezz ’

ht* (1) = gi”'s, (t)+ai¥'s, (t)+ab"'s, (1) +
+9iS, (1),

b1G33 _b3G31

GHG33 _G321

bG,, —-b,G,

G, -G,G,

)+ais, (t)+gb7's, (t)+

(t)+9"8, (1),

[5] _ &J

9, =—,
n

£ =(G,,G,, —G,,Gy, ) (B,Gy —Gob, ) -
—(b,Gy — Gy, ) (GG — Gy Gsa ) »
N=(G,,G,, —GyG,,)(Gi, ~GyG., ) -
~(G3Gay ~GyyGyy ) (GisGuy — GG ) »
s _ Guby =Gy, ~(G,yGuy ~GyyCu) 08

41 _ 51 —
9" =g =

1 b

gl =g = (26)

3

h[S]() [4] (
g S

g
’ G40(322 _GzoG4z
[ _b Gy 15 _%ggﬂ
G40 G4o G40

where explicit expressions for G, b, and S (t) are

given in (24), (25) and (8), respectively, and the
superscript [n] denotes that the corresponding quantity is

taken in the n-polynomial approximation. The
approximations of a larger number of polynomials are
investigated in this paper only numerically because the
corresponding analytical expressions are too cumbersome.

4 EXPERIMENTS

As is known, the above-mentioned method of
truncated polynomial expansion is convergent if the
kernel of the corresponding integral equation is positively
defined function (see, for example, a similar discussion
for the solution of kinetic equations in electron-phonon
systems in [11]). The kernel of the integral equation (1) is
the correlation function (2), which is not a positively
defined function, so the proposed method is not
necessarily convergent for all the parameters. So the
obtained solutions should be checked at different
numerical values of the parameters, and the aim of this
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section is to answer the question for which parameters the
proposed method is reliable.
Let us take the following parameters:

T=100, k=3, 0=12, H=08, a=m/2 7)

and compare numerically the left-hand and right-hand
sides of eq. (1) for the obtained weight functions (26).
The corresponding numerical calculation is made in
Wolfram Mathematica 11 package. The corresponding
graphs for one-, two-, three-, four- and five-polynomial
approximations are given in Fig. 1, Fig. 2, Fig. 3, Fig. 4
and Fig. 5, respectively:

i
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=
=
T

Figure 1 — Comparison the left-hand and right-hand sides of eq.
(1) for parameters (27) for the one-polynomial approximation
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Figure 2 — Comparison the left-hand and right-hand sides of eq.
(1) for parameters (27) for the two-polynomial approximation
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Figure 3 — Comparison the left-hand and right-hand sides of eq.
(1) for parameters (27) for the three-polynomial approximation
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Figure 4 — Comparison the left-hand and right-hand sides of eq.
(1) for parameters (27) for the three-polynomial approximation
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Figure 5 — Comparison the left-hand and right-hand sides of eq. (1) for
parameters (27) for the three-polynomial approximation

It should be stressed that the left-hand side of (1) is
calculated numerically on the basis of Wolfram
Mathematica as

T T

Idth(t)R(t—r):Idrh(t)(cz —%|t—‘t|2H j:

0 0

t
= J.drh (‘E)(Gz —g(t—t)ZH j+
0 2
+'T[ dth (r)(cz o (r t)ZH j
t 2 '

As can be seen from the figures, the one-polynomial
approximation is not quite accurate, but the accuracy of
the obtained solution increases with the number of
polynomials, and the three-polynomial approximation is
already rather accurate. For the five-polynomial
approximation the obtained curves are very close to each
other. Approximations of a larger number of polynomials
are made numerically in Wolfram Mathematica up to the
18-polynomial approximation. It should be stressed that
Mathematica is not able to calculate the approximation of
higher-than-18 polynomials adequately due to machine
errors (the corresponding «ripple» can be seen on the
graphs). A rather strange behavior of n-polynomial
approximation solutions is obtained: for 1<n<8 the
accuracy increases, and for n=7 and n=8 the curves
are in fact ideally identical. For 9<n <15 the method
fails — the left-hand and right-hand sides of (1) are totally
different. But for 16 <n<18 the method is again very

(28)
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good and the curves are in fact ideally identical. Such a
strange behavior can hardly be explained. Maybe the
reason is that the kernel of the integral equation (1) is not
a positively defined function and the convergence of the
method is not guaranteed. But nevertheless it should be
stressed that for parameters (27) and for 3<n<8 the
method works really good and the obtained solutions for
the weight function give the good coincidence of the left-
hand and right-hand sides of eq. (1).

Then let us change the parameters. The most
interesting change is the change of the parameter T
because this parameter may vary most significantly in real
systems. So let us take the parameters

T=10,k=3,0=12, H=08, a=m7/2. (29)

For parameters (29) the corresponding investigation is
also made up to the 18-polynomial approximation, and it
seems that for parameters (29) the method is really
convergent. The accuracy increases with the number of
polynomials, the three-polynomial approximation is
already rather accurate, for the five-polynomial
approximation the obtained curves are very close to each
other and starting from n=8 the curves are in fact
ideally identical.

Another set of parameters which is investigated in the
paper is the following:

T=1000, k=3, 6=12, H=0.8, a=n/2. (30)

For this set of parameters the method is not
convergent. For 1<n<4 the accuracy increases and for
n=3 and n=4 the coincidence of the curves is rather
good. But starting from n=35 the method begins to fail,
and the accuracy decreases with the number of
polynomials for n>5. The corresponding comparisons
of the left-hand and right-hand sides of (1) for the four-
and five-polynomial approximation are given in Fig. 6
and Fig. 7, respectively.

But, as can be seen, the four-polynomial
approximation gives a really good coincidence of the
curves. So, although the method is not convergent for
parameters (30), the four-polynomial approximation gives
a good approximate solution for the weight function.

(=N
[=]
(=N
[=]
=]
(=1
[=]
[=]
=N
[=]

onn A

igure 6 — Comparison the left-hand and right-hand sides of eq.
(1) for parameters (30) for the four-polynomial approximation
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Figure 7 — Comparison the left-hand and right-hand sides of eq.
(1) for parameters (30) for the five-polynomial approximation

It should be stressed that, strictly speaking, the
correlation function should obey the property

[R(t) <R(0), 31)

so the considered parameters may not be physical. But if,
for example, we change the parameter o in such a way

that R(t) obeys (31), the situation does not change

significantly; anyway, the situation does not become
better.

If, for example, we take o =3-10" rather than
a=n/2 in (27), we have the following behavior of n -
polynomial  approximations. The  one-polynomial
approximation is not accurate, for the two-polynomial
approximation the curves on the corresponding graphs are
very close to each other. The three and four-polynomial
approximation give approximately the same pictures.
They are worse than the two-polynomial approximation,
but better than the one-polynomial approximation. But the
five-polynomial approximation gives almost identical
curves, and for 5<n <18 the qualitative behavior of the
solutions is the same as for parameters (27).

If, for example, we take o =10" rather than
a=n/2 in (29), we have the following behavior of n -
polynomial  approximations. The  one-polynomial
approximation is not accurate, the two-polynomial
approximation is much better than the one-polynomial
one, and for 2<n <6 the accuracy slowly increases with
the number of polynomials. The accuracy of the 7-
polynomial approximation is lower than that of 6-
polynomial approximation, but for 7<n<10 the
accuracy slowly increases with the number of
polynomials. For 11<n <17 the accuracy increases with
the number of polynomials and the curves on the
corresponding graphs are very close to each other.
Mathematica is not able to calculate the approximations
of more than 17 polynomials adequately due to machine
errors (the corresponding «ripple» can be seen on the
graphs).

If, for example, we take o=8-10"° rather than
a=m/2 in (30), we have the following behavior of n -
polynomial approximations. The one-polynomial
approximation is not accurate, but the two-polynomial
approximation is rather accurate: the curves in the
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corresponding graphs are very close to each other. For
n>3 the accuracy of the result decreases with the
number of polynomials, starting from n=35 the curves
are far from each other.

5 RESULTS

The method of truncated orthogonal polynomial
expansion is proposed in order to solve the integral
equation (1). Analytical expressions for a one-, two-,
three-, four- and five-polynomial approximation solutions
are obtained.

The kernel of this integral equation is not a positively
defined function, so the method may not be convergent, in
other words, the accuracy of the obtained solution may
not increase with the number of polynomials. But in a
rather wide range of parameters the approximations of
rather small number of polynomials are rather accurate
and may be applied to the following investigation of the
data forecast. Moreover, for some parameters the method
is convergent.

6 DISCUSSION
We propose the method of truncated orthogonal
polynomial expansion in order to obtain the Kolmogorov—
Wiener filter weight function on the basis of the Fredholm
integral equation of the first kind (1). A set of
polynomials orthogonal for t €[0,T] is built (6), and this

set is convenient because of the above-mentioned
properties of the integral brackets. The analytical
expressions for the approximate solutions for the integral
equation (1) are obtained in the one-, two-, three-, four-
and five-polynomial approximation.

The kernel of the integral equation (1) is not a
positively defined function, so the proposed method is not
necessarily convergent for all the parameters. The sets of
parameters (27), (29), (30) are chosen to check the
convergence and the accuracy of the proposed method.
The investigation is numerically made up to the 18-
polynomial approximation.

For rather small T (T =10) the method is
convergent, and starting from the three-polynomial
approximation the left-hand and the right-hand sides of
(1) are rather close, starting from the eight-polynomial
approximation they are almost ideally identical.

For T =100 a rather strange behavior of n-
polynomial approximations is seen. The accuracy
increases up to the eight-polynomial approximation,
starting from the three-polynomial approximation the left-
hand and the right-hand sides of (1) are rather close, for
the seven- and eight-polynomial approximation they are
almost ideally identical. The corresponding graphs for the
one-, two-, three-, four and five-polynomial
approximations are given. Then for 9<n<15 the
method fails, and for 16 <n <18 the method again works
very well. Such behavior can hardly be explained. But it
should be stressed that the approximation of 3-8
polynomials works well, and the corresponding obtained
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AHOTAIIA

AkTtyansHictb. Mu posrisinaemo ¢inetp Konmoroposa-Binepa miis BUnmagkoBHX (pakTalbHUX IMPOLECIB, sKi, HANPUKIAL,
MOXYTh MaTH Miclle B Cy4acHHX iH(OpMaI[iHHO-TENCKOMYHIKI[IHHIMX CHCTEMaxX Ta y KepyBaHHI CKJIAJAHUMHU TEXHOJIOTIYHUMH
npouecamu. Barosa ¢yHkuis GinbTpy, M0 PO3IIISIAETHECS, MOXKE OYTH 3aCTOCOBaHA 10 MPOTHO3Y JaHUX y BiANOBITHUX CHCTEMaX.

Merta pobotu. Sk Biomo, y HelepepBHOMY BUIAAKy PIBHSHHS Ha BaroBy ¢yHKuUio ¢iasrpa Konmmoroposa-Binepa € piBHSIHHIM
Opearonbpma mepiioro poxy. MeTtoro poGoTH € oTpumaTH BaroBy ¢yHkuito ¢inerpa Kommoroposa-Binepa sik HaGmmxeHuit
PO3B 30K BiAMOBITHOTO IHTETPAIBEHOTO PiBHSIHHS.

Meton. Buxopuctano meron o0ipBaHOTO PO3BHHEHHS 3a OPTOTOHAIBHUMH IOJHOMAaMHU Ui HaOJNM)KEHOTO PO3B’S3aHHA
iHTerpanpHOro piBHsAHHA PperoyibMa NepLIoro poay. BUKOpUCTaHO ciCTeMy OPTOHOPMOBAHHX MOJIIHOMIB.

Pe3yasTatn. Hamn otprMano HaOmmkeHi pesynbsraTtd it Barosoi ¢yskmii ¢instpy Kommoroposa-Binepa s dpaxransanx
MPOIIECIB 3 CTENIEHEBOIO CTPYKTYPHOIO (DyHKIN€r0. BaroBy QyHKIIO 3HAiICHO K HAOIMKCHUN PO3B’ 30K IHTETPATBHOTO PiBHSIHHS
®dpenronbpMa MEpIIOro poay, SIPOM SKOTO € KOpelsiliifHa (yHKIis BiIOBIAHOTO BUMIAIKOBOTO (GPaKTaIBHOTO MPOIECY. AHANITHYHI
pe3yJIbTaTH OTPUMAHO Ui HAaOJMKEHb OIHOTO, JBOX, TPbOX, YOTHPBOX Ta II'STH HOJIHOMIB. Iyt pi3HMX 3Ha4YeHb NapaMeTpiB
3pobJieHe YHcesIbHE MOPIBHAHHS JIIBOI Ta MPaBOl YaCTHH iHTETrpaibHOTO PIBHSHHS U OTPMMaHMX BaroBux QyHKUii. Biamosigne
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YHCeNbHE JOCIIJDKEHHS 3po0ieHe y MareMarndHoMmy makeri Wolfram Mathematica mo HaOmmkeHHS 18 TOJIHOMIB BKIIIOYHO.
OOroBOpIOETHCS 3aCTOCOBHICTh OTPUMAaHHX PE3yJIbTaTiB.

BucnoBkn. HaGmmxeHo otpumano BaroBy ¢yHkuio ¢dinetpa Konmoroposa-Binepa mist ¢gpakraqbHUX HpOLECIB Y BHIIIAMIL
00ipBaHOrO psy 3a OPTOrOHAJIbHMMH HosiHOMamMu. OOrOBOPEHO 3aCTOCOBHICTh OTPHUMAaHMX BaroBuX O¢yHKUid. Ortpumani
pe3yJIbTaTH MOXKYTh OyTH 3aCTOCOBHHMH [0 NPOTHO3YBAHHS JAHHUX M1 0araTbOX pisHMX CHCTEM, A€ MaloTh Micue (pakTayibHi
IPOLIECH.

KJIIFIOYOBI CJIOBA: BaroBa ¢ynkmis ¢inetpy Kommoroposa-Binepa, oOipBaHe pO3BHHEHHS 32 OPTOTOHAJIBHUMH
MoJTIHOMaMH, iHTerpasibHe piBHAHHS DpeArobma meporo poay, HaOIMKEHUH PO3B’I30K.
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AHHOTALUA

AKTyansHocTh. Mbl paccmarpuBaeM ¢uibstp Kosmoropoa-Buaepa uis GppakTalibHBIX IPOLECCOB, KOTOPBIE, HATIPUMED, MOTYT
UMETh MECTO B COBPEMEHHBIX HH(OPMAIHOHHO-TEJICKOMMYHUKAMOHHBIX CHCTEMaX M B  YHPAaBICHHH  CIIOKHBIMH
TEXHOJIOTHIECKHMH TIporieccamu. Becosast (yHKIus paccMaTpuBaeMoro (GpuiisTpa MoxeT ObITh IPUMEHEHA AN IPOTHO3a JaHHBIX B
COOTBETCTBYIOIINX CHCTEMaX.

Ieas padorsl. Kak n3BecTHO, B HENIPEPHIBHOM CIIydae ypaBHEHHE Ha BeCOBYIO ¢yHKuuio ¢uibTpa Konmoroposa—Bunrepa ectb
HHTETpaNbHBIM ypaBHeHHeM PpenronasMa mepsoro pona. Llens paboTsl — moayduTs BecoBylo GyHKIuIo ¢uibtpa Kommoroposa—
Bunepa kax npuOIMKeHHOE PellieHHe COOTBETCTBYIOLIET0 HHTETPAIBHOTO YPaBHEHHMSI.

Metoa. Mcnonp30BaH MeTO[ OOOPBAHHOIO PA3JIOKEHHsI 10 OPTOTOHAIBHBIM ITOJMHOMAM JUISl IMOJYYCHUs] HPHOJIIKEHHOTO
peleHns HHTerpaabHOro ypaBHeHust Opearoabpma nepBoro poja. Mcrnonp3oBanack CHCTEMa OPTOHOPMUPOBAHHBIX MOJIMHOMOB.

PesyabraTrhl. Hamy monyueHsl mpuONImKeHHBIE pe3ysbTaThl [Uisi BecoBoit (yHkumn ¢unbrpa Kommoroposa-Bunepa s
(pakTanbHBIX IIPOIECCOB, CTPYKTypHAass (YHKIMS KOTOPBIX €CTh CTemeHHoi ¢ynkmueil. BecoBas ¢ynkmmsa Haiimena kak
MpUONIKEHHOE PEIIeHNe HHTErPaIbHOro ypaBHeHH PpenroasMa MepBoro poja, sapoM KOTOPOTO €CTh KOPPEISIMHOHHAS (yHKIUS
COOTBETCTBYIOIIETO (PAKTAIBHOIO Ipolecca. AHATUTHUSCKUE Pe3yJbTaThl IOIYyYeHBI Ul NPUOIMKEHHH OJHOTOo, IBYX, TpEX,
YeThIpeX W IIATH IOJIMHOMOB. [Iisi pa3HBIX 3HAUEHMI ITapaMeTpOB C/EJIAHO YHCICHHOE CpPaBHEHHE JICBOM W TpaBoOH dYacTeit
HHTETPAIFHOTO ypPaBHEHHUS JUIS MONYYCHHBIX BeCOBHIX (QyHKIUH. COOTBETCTBYIONIEC UHMCICHHOE HCCIENOBAHHE HMPOBOJHMIOCH C
NOMOIIbI0 MaTeMaTuueckoro makera Wolfram Mathematica Brutote 1o npuOmmwkenus 18 nomuHoMoB. OOroBapuBaeTcs
HNPUMEHUMOCTD MOJTYYCHHBIX PEIICHUH.

BriBoabl. Becosast dyukuust ¢puiprpa Kosamoroposa-BuHepa misi (pakTanbHbIX MPOLECCOB MPUONMKEHHO MOJyYeHa B BHAC
000pBaHHOTO psijia IO OPTOrOHANBHBIM MonuHOMaM. OOCyKAaeTcsl MPUMEHHMOCTD TOMYYEHHBIX BECOBBIX (QyHKUUH. [TomydeHHble
pe3ynbTaThl MOTYT OBITH HNPHMEHEHBI K IIPOTHO3MPOBAHHUIO TAHHBIX B IIMPOKOM Pa3sHOOOpAa3sHU pa3IUIHBIX CHUCTEM, B KOTOPBIX
HMEIOT MECTO CIydJaiHble ()paKTaIbHBIE IPOIECCHI.

KJ/IIOUEBBIE CJIOBA: BecoBas ¢yHkuus ¢uinstpa Kommoroposa-Bunepa, o60pBaHHOE pa3IoKeHHE 10 OPTOTOHATIBHBIM
MIOJIMHOMAM, HHTeTpalibHOe ypaBHeHHe PpenroasMa epBoro pojia, IpHOIIKEHHOE PEIICHHUE.
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