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ABSTRACT

Context. Existing fluid simulation methods have several disadvantages and can be improved with the help of new approaches to
the solution of problems of computational fluid dynamics, which confirms the relevance of the work.

Objective. The goal of the work is to improve existing methods of mathematical modeling of fluid based on smoothed particle
hydrodynamics and R-functions method.

Method. A new approach of joint use of smoothed particle hydrodynamics, marching cubes and R-functions method is proposed.
Smoothed particle hydrodynamics helps to simulate fluid movement in real time. The method considers fluid as a discrete number of
sample points (particles), which have mass, velocity, position and physical field quantities (pressure, temperature, mass-density, etc.).
The R-functions method allows to solve the inverse problem of analytic geometry: finding an analytical equation of a 2D (3D) object
based on its geometrical representation. Using the obtained equation, one can simply detect a particle collision with the object
boundary and plot the object surface with the help of marching cubes algorithm. The suggested method allows to achieve good simu-
lation quality and to perform all needed calculations and rendering in real time.

Results. Computational experiments for the problem of fluid simulation were carried out. Various numbers of particles were
used. Different kinds of objects were put into the considered region in order to investigate the fluid behavior.

Conclusions. The results of visual simulations allow us to say that the obtained approach works as expected. Therefore, this
method can be applied to several problems of fluid simulation where the collision detection with arbitrary objects is considered. Fur-
ther research may be devoted to the optimization of neighbor-search algorithm, to performing all calculations in graphics processing
unit or to taking into account other physical quantities.

KEYWORDS: Navier-Stokes equations, fluid simulation, R-functions method, smoothed particle hydrodynamics, marching
cubes algorithm.

ABBREVIATIONS Q is a flow domain;
SPH is the Smoothed Particle Hydrodynamics; 0Q) is a boundary of a body;
FDM is the Finite Difference Method; X 1s a characteristic function of Q ;

RFM is the R-Functions Method;
CPU is the Central Processing Unit;
GPU is the Graphics Processing Unit.

¥ is an object represented by inequality;
n is a number of sub-domains describing Q ;
p is a density;

NOMENCLATURE m is a particle mass;

X,V ,Z are coordinates in the Cartesian system; | is a fluid threshold;

t is a time; G is a surface tension;
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h is a support radius;
k is a gas stiffness;
p is a pressure;

v is a field of fluid velocities, v =(Vy, Vy,V;);
a is an acceleration vector, a = (ay, ay, a);

v is a coefficient of viscosity;

f is a field of forces;

F is a field of internal and external forces;

o =0 is a normalized equation of 0Q;

o is a sufficiently smooth function describing the ge-
ometry of the domain Q ;

W is a smoothing (kernel) function;

r is a random pointin Q ;

F(r) is an arbitrary function;

V is a volume;

R is a universal gas constant;

T is a temperature;

K is a Boltzmann constant;

n is a inward surface normal of fluid;

g is a gravity constant;

CR is a coefficient of restitution;

c is a smoothed value of color field;
V is a gradient operator;
N is a number of particles.

INTRODUCTION

This work introduces a new method of fluid simula-
tion based on the joint use of SPH and RFM. Obviously,
there is a huge scope of applications of fluid simulation:
poring water, steam, ocean waves, simulations in astro-
physics, medicine etc. Therefore, new approaches that can
improve simulation are welcomed.

The Navier-Stokes equations are basis of fluid simula-
tion. Commonly, two approaches are used for obtaining
its solution: grid-based (Eulerian) and particle-based (La-
grangian) methods. Each of them has its pros and cons.

The Eulerian approach assumes that fluid is composed
of molecules and allows obtaining a solution which satis-
fies almost all fluid physical properties. The Navier-
Stokes equations are solved using FDM. As a result, we
have a grid-based approach which imposes restrictions on
solution existence only inside the grid domain and re-
mains a bunch of computational recourses.

On the other hand, the Lagrangian method allows to
simplify the Navier-Stokes equations. The main assump-
tion is that fluid consists of a finite number of particles
with fixed mass. Each particle should be considered as a
fixed amount of fluid with appropriate physical quantities.
This assumption leads to decreasing computational cost
and significantly simplifies evaluations on each time step.
However, this method has two main disadvantages: it is
difficult to treat boundary conditions and computational
cost increases with the number of particles. SPH is one of
the mesh-free Lagrangian methods.

Finally, RFM allows to solve easily one of the most
complicated problems: modeling collisions with 3D ob-
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jects. It is tedious to describe a complex object which
consists of few simpler objects. RFM provides a solution
how to get an analytical equation of such objects and a
simple way of collision detection.

The object of study is an unsteady flow of viscous
incompressible fluid in three-dimensional space, and the
subject of study — the mathematical apparatus for de-
scribing such flows.

The purpose of this paper is to develop a new
method based on SPH and RFM of getting an approxi-
mate solution of the Navier-Stokes equations. The main
advantage of these methods is that they can be easily im-
plemented and the solution can be obtained in real time of
a differential equation can be obtained in an analytical
form. These benefits allow one to perform fluid simula-
tions without any restrictions on the target domain.

1 PROBLEM STATEMENT
The unsteady flow of a viscous incompressible fluid in

the space region QeR? is described by the Navier-
Stokes equations which allow to find the flow speed v
when all other flow characteristics are known [1, 2]:

0
p[a+ V~VJV ==Vp+ VvV (VV)+1feyiermal » M
V-v=0, (2)

where p=const, v: Qx[O,t]—>R3, p: Qx[0,t] > R.
Taking into account the Lagrangian approach, where
fluid is represented by the fixed number of particles, the
continuity or mass conservation equation (2) is guaran-
teed and can be omitted. Furthermore, the particles define
the fluid completely and therefore any physical quantity
depends on time only. Finally, the Lagrangian formula-
tion of the Navier-Stokes equations (1) can be read as:

dv
paz_vp“'vvzv"'fextemal . (3)

In the right hand side of (3) there are two types of
forces: internal (pressure, viscosity) and external (grav-
ity). Let us combine them into F = ioina1 + fexternal -

Then, taking into consideration the denotation for the
forces, for particle i equation (3) can be rewritten as:

a= b @)
dt  p
2 REVIEW OF THE LITERATURE

At present, SPH is widely used in solving problems of
fluid simulation. Paul Cleary and others [3] use SPH for
modeling cast systems. They manage to model cast sys-
tems in 3D. The geometric complexity of the cast systems
leads to the fact that it is difficult to represent an object as
an analytical expression.

Tahakiro Harada, Seiichi Koshizuka and Yoichiro
Kawaguchi [4] propose and improve computation model
of wall boundary in SPH. The method uses a distance
function calculated from a polygon model as a wall
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boundary. Generally, particle methods calculate a wall
boundary by converting it to wall particles. Thus, the
shape of the boundary gets much complex and the number
of wall particles increases.

Zlii Dai and others [5] apply SPH to simulate rapid
landslide motion across 3D terrain. They present land-
scapes as different amount of particles for each landscape.

A. Barreiro and others [6] use SPH for the coastal en-
gineering problems. They represent boundaries as discrete
set of boundary particles that exert a repulsive force on
the fluid particles when they approach.

Todd B. Silvester and Paul W. Cleary [7] bring into
play SPH to simulate wave-structure interaction. For the
physical boundaries they use two separate approaches. In
the first instance, the boundaries are defined by a single
line of stationary particles. The second approach con-
structs the wall boundaries from two or more layers of
stationary fluid particles.

Randles and Libersky [8] consider boundary particles
whose properties, including their position, vary each time
step. When a real particle is close to a boundary (at a dis-
tance shorter than the kernel smoothing length) then a
virtual (ghost) particle is generated outside of the system,
constituting the image of the incident one.

The R-function method allows us to describe any
complex geometric objects in an analytical form in 2D or
3D, which will help us easily detect collisions of particles
with the object that will enhance existing methods and
reduce total amount of particles used in fluid simulation.

3 MATERIALS AND METHODS
Inverse problem of analytic geometry and RFM.

Let region QeR? be given with the piecewise-
smooth boundary. It is necessary to construct the function
o(X,Y,2), which should be positive inside ), negative
outside Q, and equal to zero at its boundary 0Q. Le.
equation ®(X,Y,z)=0 in implicit form defines the locus
for points lying on the boundary 0Q [9]. It is required
that w(X, Y, z) should be an elementary function and have

a unique analytic representation. This function can be
easily constructed be means of RFM.

RFM was developed by V. L. Rvachev in [10]. The
main idea is that among the functions of a continuous
argument there are such functions (R-functions), which
approximate to the logic algebra functions. These func-
tions form a set that has a non-empty intersection with a
set of elementary functions. Thus, each R-function was
associated with the corresponding Boolean function,
which further made it possible to use the developed appa-
ratus for constructing the solution of the inverse problem
of analytic geometry.

Let us denote a characteristic function corresponding

to a region €; as yj(0j(X,y,2)=20), Q=UQ;, i =1,n.
Then one can construct a predicate x = F(y,....,xn) =
=F((w; 20),...,(wy 2 0)). Therefore, the region Q can
be constructed by means of the Boolean algebra.
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Hereby, an object X exists and can be represented as
a superposition of objects X;,....Z, using logic opera-
tions: negation, disjunction and conjunction. Currently, a
large number of R-functions systems is known [11], but
in present work the simplest one is used — the R, system,
which has the following form

u=-u, quVEu+v+\/u2+v2 ,
U/\OVEU+V—\/U2+V2.

Let us consider some examples.
Example 1. A cube defined by its vertices O(0,0,0),

A(0,0,3), B(0,3,0), C(0,3,3), D(3,0,0), E(3,0,3),
F(3,3,0), G(3,3,3) . The cube can be represented as
Q=% A2y AZ3,
where %, =(z(3—-2) = 0) — the region bounded by planes
z=0 and z=3, £, =(X(3-%X)20) — by x=0 and
X=3, 23=(y(3-y)20) —by y=0 and y=3. Then
the boundary equation has the form
o(X,Y,2)=[23=2) g X(B=X)]rg YB-Y) =0.
Example 2. A pawn (figure 1a) can be described as
Q=C|AZyAZ3)V(Z4VvEs).
Here 3, = (0, 20), o =0.25—(x—1.5)% —(y-1.5)
— aright circular cylinder, £, =(®, 20), 0, =2z(1-2) —
a region between planes z=0 and z=1, 23 = (03 20),
o3 ==20((x—1.52 +(y-1.5>)+1+10(z-0.75)> - a
hyperboloid, 4 = (w4 20), ©, =0.125—(x—1.5)* -
—(y-1.52=20(1-2)> - an ellipsoid, Z5=(ws>0),
o5 =0.05—(x—1.5)% —(y—1.5)> —=(1.25—2)* — a sphere.
The boundary equation 0Q2 can be represented as:
o(X,Y,2) =[] Ag ©y Ag 03] Vvg o4 Vo os5]=0. (5)
Example 3. A bishop (figure 1b) can be described as
Q=] A2y AZ3)V(Z4VEs),
where ¥, = (o, 20), o =025-(x=1.5)> = (y-1.5)> —

a right circular cylinder, 2, = (0w, 20), 0, =2(1.25-72)
— a region between z=0 and z=125, X5 =(w320),

o3 ==20((x—1.52 +(y-1.5>)+1+10(z-0.85> — a
Sy=(0,20), ©5=02—(x-15)*-
—(y—1.5)%=20(1.25-2)* — an ellipsoid, 5 = (w5 > 0),

o5 =0.2-5(x—1.5)% —4(y—1.5)> =(1.4—2)*> — an ellip-
soid. The boundary equation 0Q has the form:

hyperboloid,

o(X, Y,2) =[] Ag @y Ag W3]V [04 Vo 0s5]=0. (6)
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a b
Figure 1 — Drawn regions: a — pawn, b — bishop

Marching cubes algorithm.

Marching cubes is a well-known algorithm that was
originally developed by Lorensen and Cline [12] and it is
used for plotting complex shapes in 3D. It allows to ex-
tract a polygonal mesh of a shape surface. Then one can
pass this mesh to OpenGL and plot the shape surface.

Suppose we have a shape and it can be described by
the boundary equation F(X,Y,z)=0. Firstly, we split the

domain into a uniform grid of cubes. Then for each vertex
of a cube we check if it is outside or inside the shape
checking the sign of the function at this point. After that
we look into the look up table and depending on how
many vertices are marked as inside the shape we choose
an appropriate line to be plotted [13].

Therefore, the application of marching cubes algo-
rithm in our work is to plot 3D objects by equation ob-
tained with the help of RFM.

Smoothed particle hydrodynamics.

SPH has various applications [14—17]. It is based on
the kernel interpolation, which is used to approximate
mathematical calculations with acceptable threshold of
approximation. The special case of applying is to define
density — the initial value of expressing further equations.
The smoothing function, which is placed for specifying
connection between particles, must confirm conditions:

[wWr,hdr=1, W(r,h=0,
Q

W(r,h) =W (-r,h), W(r,h)=0<|r|>h.

For any function F(r) smoothing interpolation F(r)
can be found by using kernel convolution W :

Fo(r) = [F@)W(r—r'h)dr’ .

Because of lightweight computational complexity
kernel function is replaced by spline, which is annulled
beyond the pale of two smoothing radii. It means that any
physical magnitude is composed by values of neighbour
particles, which are within the ambit of smoothing area.
Spline usage requires symmetry and sufficient smooth-
ness that guarantees twice continuously differentiable
kernel. Corresponding spline takes the following form:
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3
315 |(w =) os|r<n,

W (r,h) =——
64rh 0, || > h.

In case when the variety of points is known and its
mass and density are predefined, the overall volume of
final element can be approximated by changing integral
with the following sum:
mj
—F(@rj)W(r-rj,h). @)
P

Fs(f)=Z
i Pi

An important thing is that approximation Fg(r) is de-

fined everywhere and differentiable because of kernel
differentiability. In case F(r) = p(r) the approach of den-

sity can be expressed with

pS(r) ~ ZmJW (l'—l'j,h),
J

which depends only on mass and coordinate of a particle.
The length of a smooth radius may depend on
h=h(r), which is a precondition of variety calculations
in density sample. There are two approaches: «scattering»
and «gathering». The first one has a great advantage: a
volume integral in the smoothed area returns total mass:

_[p(r)dr = Zmi .

On the other hand, where kernel is described by
W (rj —rj,h(r;)), the only necessary value for density

definition of i particle is hj .

Thereby, because of the only requirement is particle
density value, but total mass is a constant, an unambigu-
ous equality between the volume integral in general form
and total mass is unimportant. In other words, the «gath-
ering» approach simplifies (7) a lot, so it becomes:

N
pi = > mjW (rj —rj,h). ®)
=1

The described above approach of the kernel interpola-
tion allows to declare the rest of the hydrodynamic values.
The first ones are internal forces: pressure and viscosity.
To evaluate pressure the ideal gas law should be reviewed

pV = NRT .

In case of isothermal fluid with permanent mass the
right side can be replaced with Boltzmann constant:

pPV=x, p/p=x, p=xp. )
In terms of satisfying Newton’s third law, pressure

force must apply the symmetry property as follows:

D m;
gpressure _ _Zu —_JVW (ri -rj, h). (10

1
= 2 Pj
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Combining the origin formula of interpolation kernel
and pressure force equation, the corresponding pressure
kernel and gradient take the following form:

3
15 {(h- o<lrl<h
Wpressure (r,hy=— ( "l‘") > < "l‘" <h,

| o, ]| > h,
45 r 2
Vvaressulre (I‘, ) = _TC?H(h - "r”) :

The viscosity force has to apply the symmetry prop-
erty either:
viscosity mj s
f; =V (uj—u)—VW(rj-rj,h). (11)
j#i Pi
The viscosity kernel is received similar:

3 2
A, h
inscosity (r, h) = 3 2h3 h2 2"1‘"
2wth
0, Il > b,

1, 0<|r|<h,

45
VZ\NViscosity (r’ h) =756 (h _"r") :
7th

The only external force is gravity and it is trivially
formulated using Newton’s second law

(Y = pig (12)

But there is an additional force that can be applied to
the free surface of a liquid fluid — the surface tension
force. It is normally not a part of the Navier-Stokes equa-
tions as it is considered as a boundary condition.

For a Lagrangian fluid the boundaries can be identi-
fied by the particles. Its behaviour can be described by

surface
fi

(13)

- oV i
il

The main attribute of this value is identity of gradient
and the inward surface normal of the fluid:

m:
n; IVCi ZZP—IJVW(I‘i —l'j,h) .
j 1

(14)

The overall algorithm has the following form [18]:

1. Initialization of hydrodynamic system:

— creation of a liquid substance;

— creation of N particles and the initial values of their
characteristics;

— preparation of kernel function and calculation of
smoothing radius;

— construction of equations of collision objects (obsta-
cles) with the help of RFM and getting a polygonal mesh
of an obstacle;

— initialization of the Verlet method for calculating
particle acceleration.

2. Calculation of density and pressure:
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— search for neighbors for each particle i ;
— calculation of particle density p; using (8);

— calculation of particle pressure p; using (9).
3. Calculation of internal forces:

— calculation of pressure force f'**"'® on the particle
using of kernel interpolation (10);
— calculation of viscosity force £;"*°*"¥ on the parti-

cle using kernel interpolation (11);
— summing of pressure and viscosity forces to get in-

_ gpressure viscosity
=1 .

ternal forces £{1emal +f;

4. Calculation of external forces:
— calculation of gravity force ££"'% (12);

— calculation of the surface normal n; (14);

— calculation of the surface tension force " for a
plurality of particles located on or near the surface of the
liquid (13);

— summing of forces fieXtemal = figravny + fisurface .

5. Time integration and collision management:

_ fiexternal i filnternal :

— summing of forces F;

— calculation of particle acceleration using (4);

— calculation of particle velocity and location using
the Verlet method;

— performing a collision search;

— if a collision occurred, then correct the particle ar-
rangement and update its  velocity  vector
vi =vj—(1-cr)(vj-n)n, where 0<cg <1;

— approximation of a new velocity vector.

6. Plotting the obstacle and the particles located in the
positions obtained at the previous step.

4 EXPERIMENTS

The algorithm was implemented in C++ object-
oriented programming language. The source code could
be easily compiled on Windows, Linux and Mac OS X
with the help of CMake tool as project generator and an
appropriate compiler. Overall, the project skeleton con-
sists of four main parts:

— algorithms library, where Marching Cubes and
Neighbor Search methods, R-operations and 3D Point are
introduced;

— demo executable, which is responsible for graphical
representation of the achieved results;

— sph library, where SPH is carried out;

— thirdparty, that contains Google Test and FreeGLUT
source code.

The interactions between these main parts are per-
formed as follows: sph uses algorithms library, demo bi-
nary links both of them and FreeGLUT library as well for
the graphical representation of the achieved results.

Google Test framework takes care of unit testing.
Code coverage of the project is about 95%. Project quality
is measured by Codacy code analysis and equal to A.
Every pull request is checked by Travis continuous inte-
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gration tool, which performs Linux build on random
Linux-build OS and runs all unit tests.

The source code is introduced as an open source pro-
ject in GitHub https://github.com/aartiukh/sph-sdk. Any
help or bug report are appreciated.

The simulation based on the proposed algorithm was
carried out in cube, i.e. QQ=[0,3]%[0,3]x[0,3], for two
obstacles: the pawn and bishop described by their equa-
tions (5) and (6) respectively. The number of particles N
was equal to 10000 .

The physical parameter values that were used for fluid
simulation are presented in the table 1 [18].

A few features were implemented:

— it is possible to rotate the cube with particles and
inserted object as well;

Table 1 — The physical parameter values of simulation

Name Symbol Value Unit
Density p 998.29 kg /m’
Particle mass m 0.02 kg
Viscosity v 35 Pa-s
Surface tension c 0.0728 N/m
Threshold | 7.065 n/a
Gas stiffness k 3.0 J
Support radius h 0.1 m

— particle color is changing depending on its speed:
red corresponds to a very fast particle, yellow — medium
speed and blue — slow motion;

— gravity vector gets updated during cube rotation;

— one can restore the original cube position.

In addition, the performance of the algorithm was
measured depending on the different number of particles.
See figure 4 for the details. The data was taken on Ubuntu
18.04 x64, which has Intel Core 15-5200U 2.2 GHz and
12Gb RAM. Only one processor was used.

5 RESULTS

Figures 2 and 3 depict the results of simulation for 2
cases described above in the different periods of time. The
first experiment demonstrates the behavior of particles
with pawn (5) as an obstacle. The second experiment re-
veals how flow behaves when bishop (6) is inserted into
cube. Time is denoted in seconds.

Thus, both experiments show us how the real-time
simulation is moving. In the beginning (Figures 2a, 3a)
one can see a drop constructed from 10000 particles that
is falling at the obstacle (pawn or bishop) under the power
of gravity. Then, calculating the value of the function on
the boundary, the particles are striking against an obstacle
and flying apart by changing their direction (Figures 2b,
3b). On figures 2¢ and 3c the particles are pushing off the
cube boundary by changing its speed to 0. Then, after
some time, they are calming down (Figures 2d, 3d). Some
of the particles are getting stuck on the obstacle surface
that depicts the wetting phenomenon.
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c d
Figure 2 — Experiment 1,
N =10000, obstacle is the pawn:
a—-t=2,b-t=15,c-t=30,d-t=45

Figure 4 shows a dependency of the average running
time of the implemented SPH algorithm from the number
of particles involved into simulation.

c d
Figure 3 — Experiment 2,
N =10000, obstacle is the bishop:
a-t=2,b-t=15,c-t=30,d-t=45
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Figure 4 — The average running time in seconds
of one SPH iteration depending on number of particles

6 DISCUSSION

Obviously, 10000 particles are not enough to simulate
water-like behavior. The graphical representation shows
that it is necessary to add more particles in order to
achieve better simulation results. Other authors use one
million particles to get a naturally looking simulation.

However, one cay say that Zlii Dai’s work [5], where
the terrain is represented as different number of particles,
is improved. This improvement is achieved in our re-
search by using RFM, which replaces the common ap-
proach of boundary representation as particles with an
analytical boundary equation.

As one can see on figure 4, the average running time
of one SPH iteration strongly depends on the number of
particles. The largest part of computation time is con-
sumed by the nearest neighbor search algorithm. Imple-
mented neighbor search has O(nlog(n)) complexity. In

further research it is reasonable to move all computations
to GPU. GPU has more arithmetic logic units comparing
with CPU that increases the ability to process simple op-
erations in parallel. This will help to achieve the desired
performance and allow to get better simulation results in
real-time.

Thus, it is clear that new investigations are required.
They will allow to develop new instruments and methods
in order to help researchers in different areas of science.

CONCLUSIONS

The solution method for 3D simulation of unsteady
flows is introduced. The solution algorithm is based on
smooth particle hydrodynamics, marching cubes and the
R-functions methods, combined usage of which allows to
reduce particles number that are involved in a simulation.
The various numerical experiments are carried out. More-
over, our C++ implementation is published in GitHub that
grants access to it for anyone and allows to comment it or
to report an issue.

The scientific novelty of the obtained algorithm is
that it allows to change the considered obstacle easily and
render its graphical representation. This advantage gives
scientists an opportunity to perform a simulation faster
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and easier. The only difficulty here could be how to build
a boundary equation of an obstacle.

The practical significance of the developed algo-
rithm is that it can be easily implemented and has various
practical applications. In addition, the implemented soft-
ware follows SOLID principle that makes it more under-
standable, extendable and maintainable. This is crucial for
further development and code reuse.

The prospects for further research can be dedicated
to Neighbor Search algorithm speed up; performing all
computations on GPU in order to reduce computation
time and to avoid copying the data from CPU to GPU;
implementation of Dual Contouring which is faster than
Marching Cubes algorithm; performing more experiments
with other shapes constructed by means of RFM.
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AHOTAIIS

AKTyalIbHicTh. IcHyIOUl METOIM MOJEIIOBAaHHS PIAMHM MAOTh PsiJi HEAOJIKIB Ta MOXYTh OYTH BIOCKOHAJICHI 32 JIONOMOTIO0
HOBHX MiJXO/IB 10 PO3B’sI3aHHs 33/1a4 00YHCIIIOBAIBHOI T1APOANHAMIKH, IO CBITYNTH PO aKTYaIbHICTh POOOTH.

Meta po6orn. MeTtoio poOOTH € BIOCKOHAJICHHS ICHYIOYHX METOIIB MaTEMaTHYHOTO MOJCIIOBAHHS PiIMHU Ha OCHOBI TiAPOIH-
HaMIKH 3TJIa[DKeHUX YaCTHHOK Ta MeToay R-dyHkmiit.

MeTton. 3anponoHOBaHO HOBHH MiAXi/ CIUIBHOTO BUKOPUCTAHHS TiAPOIMHAMIKHI 3TJIQJKCHUX YAaCTHHOK Ta MeToay R-¢yHKIiii.
lNapoanHamika 3ri1aJUKEHAX YaCTUHOK JIO3BOJISIE MOJISITIOBATH PYX PIAMHU B peanbHOMY 4daci. MeTon po3risiae piiuHy sK AUCKpPET-
HE YHCIJIO TOYOK BUOIPKM (YACTHHOK), SIKi MAIOTh MacCy, IIBHAKICTH, ITOJIOXKEHHS 1 BEJIMUMHHU (DI3UIHOTO MOJIS (THCK, TeMIeparypa,
LIIBHICTE TOIO). Meton R-dyHKIii 103Bossie po3B’s3aTH 0OEpHEHY 3a1avy aHATITHYHOI FeOMETpil: 3HAWTH aHATITHYHE PIBHSIHHS
2D (3D) 006’ekTy Ha OCHOBIi HOr0 reOMETPHYHOTO IIpeCTaBiIeHHs. BUKOPUCTOBYIOUHM OTPHMaHE PIBHSHHS 00’€KTY, MOXKHA HMPOCTO
BUSIBUTH 3iTKHEHHS YaCTHHOK 3 MEXEI0 I[bOr0 00’€KTy Ta MOOYyIyBaTH MOBEPXHIO 00’€KTY 3a JOMOMOIOI0 aIrOPUTMY KPOKYIOUHX
KyOUKiB. 3anpOrOHOBaHUI CHOCIO J03BOJISIE JOCSTTH TapHOI SKOCTI MOJICTIOBAHHS Ta BUKOHATH BCi HEOOXIiIHI PO3paxyHKH Ta Bio-
Opa’keHHS B peajlbHOMY Yaci.

PesyabTaTn. O04nCIIOBaIbHI €KCIIEPUMEHTH OyNH MPOBEICHI IS 3aa4di MOJCIIOBAHHS piIMHU. {151 MOJETIOBaHHS BUKOPHC-
TOBYBaJach pi3Ha KUIBKICTh YaCTHHOK. /IJIs1 BUBUCHHS MOBEIIHKH PIAMHA B PO3TIIAHYTY 001acTs Oy oxaHi pi3Hi BUAN 00’ €KTIB.

BucnoBkn. Pe3ynbraTté Bi3yaabHOTO MOJIETIOBAHHS JTO3BOJIIIOTH CTBEPDKYBATH, IO OTPHMAHUH METOZ MpamIoe K 1 OviKyBa-
nock. Llelt Metox Moke OyTH 3aCTOCOBAHO IO Pi3HMX 33jad MOJECNIIOBAHHS PiMHH, ¢ GepeThCs 10 yBark BUSIBICHHS 3iTKHEHb 3
JOBUTBHUMH 00’ exTamu. [lomanbiii NOCIIDKEHHS MOXYTh OyTH IPHUCBSUEHI ONTHMI3alii alropUTMy IMOIIYKY CYCilIiB, BUKOHaHHI
BCiX 00YHMCIICHb y TpadiuHOMY Tpoliecopi a00 BpaxyBaHHIO 1HIIUX (i3HYHUX BEJTHYHH.

KJIFTOYOBI CJIOBA: piBusins Har’e-Ctokca, MO/eNIOBaHHs piiMHU, MeTOA R-GyHKIIH, TiApoAnHaMIKA 3II1aKEHHX YacTH-
HOK, QJITOPUTM KPOKYIOUHX KyOHKiB.
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AHHOTAIUA

AKTyanbHOCTh. CyIeCcTBYIOLIME METOABI MOJECIHPOBAHMS KHUIKOCTH UMEIOT PsiJi HEAOCTATKOB M MOTYT OBITH yCOBEPIICHCTBO-
BaHbI C TIOMOLIBIO HOBBIX ITOJXOJOB K PELICHHIO 33J1a4 BHIYMCIUTEIBHON THAPOIUHAMUKH, YTO HOATBEPXKAAET aKTyalIbHOCTh pabo-
THI.

Heap padorsl. Llensio paboThl SBISETCS YCOBEPIISHCTBOBAHHE CYIIECTBYIOIIMX METOJOB MAaTeMaTH4YECKOTO MOJEIHPOBAHUS
XKHUIKOCTH Ha OCHOBE THAPOANHAMUKH CTI)KEHHBIX 9acTUIl U MeToaa R-dynkimii.

Meton. [IpennoskeHO HOBBIN MTOAX0A COBMECTHOTO MCTIONB30BAHH METO/Ia TUAPOAMHAMHUKH CTIIAXECHHBIX YacTHI U R-dyHKumii.
I'upponuHamuKa Crila)KeHHBIX YaCTHI II03BOJIIET MOJECIUPOBATh IBUXKECHHE KUIKOCTH B pealbHOM BpeMeHH. MeToJ paccMaTpuBaeT
XKHUIKOCTh KaK AUCKPETHOE YHCIIO TOUCK BEIOOPKH (JACTHIT), KOTOPEIE HMEIOT Maccy, CKOPOCTb, ITOJIOKCHUE U BETNIUHBI (PH3HIECKO-
ro nois (JaBlieHWE, TeMIepaTypa, INIOTHOCTh U T.1.). Meron R-dyHKuuii mo3BossieT pemnTh 0OpaTHYIO 3a1ady aHaJIMTHYECKOMH
TeOMETPHH: HaliTh aHanuTH4eckoe ypaBHeHue 2D (3D) o0bexTa Ha OCHOBE €ro reOMeTpUIEcKOro npeacrasieHus. Mcnone3ys noiy-
YEHHOE ypaBHEHHE OOBEKTa, MOKHO IPOCTO OMPEJIEIUTh CTOJIKHOBEHMS YAaCTHI] C TPaHMIEH OOBEKTa M MOCTPOUTh MOBEPXHOCTh
00BEKTa C TTOMOIIBIO AITOPUTMA MIATAONNX KyOuKkoB. IIpenoxkeHHslil criocod Mo3BOsIET JOCTHYb XOPOIIEro KayecTBa MOAEIHPO-
BAHUS U BBINOJIHUTH BCE HEOOXOANUMBIE PacyeTHl X IPOPHCOBKY B PEaTbHOM BPEMEHH.

Pe3yabTaThl. Beranciurensabie 3KCIEPUMEHTHI OBLTH ITPOBEAEHBI IS 3aJaYH MOACITHPOBAHNUS KHAKOCTH. sl MOIENNpPOBaHUS
HCTIONIb30BAJIOCH Pa3HOE KOJIMYECTBO YacTUIl. JIJIsi M3ydeHus MOBEJCHUS JKUIKOCTH B pacCMaTPHBaeMyIo 001acTh ObUIH 100aBICHBI
pa3I4YHbIE BUOBI 0OBEKTOB.

BriBoasbl. Pe3ynbTaThl BU3yaibHOTO MOJCIMPOBAHUS ITO3BOJIIOT YTBEPXKIATh, YTO IOJNYYEHHBIH MeTo]] paboTaeT KaK U OXKujaa-
JIOCh. DTOT METOJ] MOXKET OBITh IPUMEHEH K Pa3INYHbIM 337a4aM MOJCIMPOBAHUS XKHUIAKOCTH, I1ie OepeTcs BO BHUMaHUE OOHapysKe-
HHUE CTOJIKHOBEHHUH C MPOU3BONBHBIMU 00bekTamMu. [lanbHeHIne uccaeJ0BaHusl MOTYT OBITh MOCBSILEHBI ONTHMHU3ALUK aArOpUT™Ma
HOMCKA COCe/IeH, BBINOIHEHUH BCEX BBIYMCICHHI B rpaduecKOM IIPOLECCOPE WM YUETY IPYTUX (GH3NUECKHX BEIMYHUH.

KJIFOUEBBIE CJIOBA: ypasuenus HaBbe-CTokca, MOIENUPOBAHUE KHUAKOCTH, MeTOA R-QyHKIMH, rHOApOIMHAMHUKA CIJia-
JKEHHBIX YaCTHI], AITOPUTM IIArafomux KyOHKOB.
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