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ABSTRACT

Context. The problem to form generalized primitive matrixes on the Galois and Fibonacci any order over the field characteristics
2 for the construction by the generators gamma functions for cryptographically stable algorithms of inline data encryption, free from
the attack of Berlekamp-Messi (BM).

Objective. Development of a way to eliminate the threat an attack using the BM algorithm on LFSR-generators of pseudoran-
dom numbers (PRN) to increase their crypto stability.

Method. Linear Feedback Shift Registers (LFSR) are themselves good pseudorandom PRN generators, but they have undesirable
properties that reduce the efficiency of their use. For the registers of length shift n their internal state is a function of the previous
output bits of the generator. Even if the feedback scheme is kept the secret, it can be determined by 2n output bits of the generator
with the help of BM algorithm, which reduces the crypto-resistance of the generator PRN. The basis for single loop feedback cir-
cuits, which cover the classical LFSR-generators of PRN, are primitive polynomials.

There are various ways to increase the crypto-resistance of LFSR-generators. To their number concern: introduction of nonlinear
transformations, use poly register generators (as, for example, in the algorithm of encryption AS) and several others. The transition
from classical LFSR-generators to generators basis on the generalized matrixes of Galois and Fibonacci leads to the fact that the al-
gorithm of BM loses the ability to determine the unattainable polynomials generating multi-circuit feedback circuits in LFSR-
generators. The reason for this feature is that the series of bits generated by the generalized generator becomes dependent not only on
the selected irreducible polynomial but also on the primitive element that participates in the creation of the feedback loop generator.

Results. The PRN generators developed by LFSR were used to organize bytes of streaming information encryption.

Conclusions. Statistical tests of the proposed PRN generators carried out with the help of NIST STS, and Diehard [16—-18] pack-
ages have confirmed the high quality of the generated sequences. Moreover, the generators turned out to be cryptographically resis-
tant to BM attacks. The use of these generators in the formation of long keys, necessary, for example, in RSA encryption protocols
and other applications is promising. As an area of further researches, development of the generalized generators of PRN above a field
of Galois of any characteristic.

KEYWORDS: irreducible polynomials, primitive matrixes, Galois fields, linear shift registers, pseudorandom number genera-
tors.

BMis a Berlek?rfp?ll\(/[l*e:s‘;il?TIONs G (fn,)w is a Galois matrix of n-degree, generated by an
CGM is a classical Galois matrix; 1P fn and forming element ®;

GGM is a generalized Galois matrix;
IP is an irreducible polynomial;
LFSR is a linear feedback shift register; anIP f, and forming element ®;
PRN is a pseudorandom number;
PrP is a primitive polynomial.

NOMENCLATURE
o 1s a polynomial coefficient;

F " is a Fibonacci matrix of n-degree, generated by

‘F{" is a Fibonacci conjugate matrix of n-degree,
generated by an IP f, and forming element o;
E is an identity matrix;

. . . E is a cyclic shift operator one step to the left;
0 is a primitive Galois field element;

o is a forming generalized Galois element matrix;
fp, is an IP of n-degree;

E is a cyclic shift operator one step to the right;
N is a degree of matrix or polynomial;
P is a permutation matrix;
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P! is a permutation reverse matrix;

S is a state of generator PRN;

T is an operator of the classic (left side) transposition;
Visa (n+ 1)-bit vector;

X is a formal parameter of a polynomial;

1 is an operator of the inverse permutation matrix;

1isa cyclic shift operator of the inverse permutation
matrix one step to the left;

1isa cyclic shift operator of the inverse permutation
matrix one step to the right;
1 is aright side transposition operator.

INTRODUCTION

One of the most prime problems in the theory and
practice of cryptographic information protection is the
problem of constructing PRN generators of maximum
length (period) with acceptable statistical properties,
which are usually realized by means of linear feedback
shift registers (LFSR) in the configuration (according to
the scheme) of Galois or Fibonacci [1-4].

Structural schemes of classical n-bit LFSR-
generators of PRN are clearly defined by n-th degree IP
f,(X), using of which single-circuit feedback in shift

registers is established. It is known, that for the shift reg-
ister to be the maximum period register, and the corre-
sponding feedback polynomial must be primitive. For
LFSR discharges are usually used D-triggers that over-
write the input signal to the trigger output at the time of
receipt of the synchroimpulse.

The main disadvantage of LFSR-generators of PRN is
that the linearity of the sequence at the register output
allows us to determine the feedback polynomial f (x) by

2n consecutive bits using the BM algorithm [13].

The object of the study is the process of building
LFSR-generators of the PRN, providing cryptographic
security to attacks based on the algorithm of BM.

As a rule, the problem of providing reliable crypto-
resistance of LFSR-generators is solved by introducing
nonlinearity of the formed flow of PRN. However, this
method of constructing generators, as a rule, is possible, if
the order of the generator does not exceed 32. Therefore,
the problem of synthesis of multi-digit linear generators
of the PRN, providing at the same time nonlinearity of the
flow of PRN.

The subject of the study is the methods of construc-
tion of LFSR-generators of PRN, covered by multi-circuit
feedback circuits.

Such circuits arise as a result of the replacement of
PrP on polynomials, not necessarily be primitive. How-
ever, the element 6, forming a pseudorandom sequence,
must be the primitive element of the expanded field of
Galois, generated by an IP, such that 6 >10.

The purpose of the work is to eliminate the threat of
an attack using the Berlekemp-Messi algorithm on LFSR-
generators of the PRN.

© Beletsky A. Ya., 2019
DOI 10.15588/1607-3274-2019-3-10

1 PROBLEM STATEMENT

It is known that LFSR in itself is an excellent PRN
generator, but they have undesirable properties, which
reduce the efficiency of their use. For length register n,
their internal state is a function of the n previous output
bits of the generator. Even if the feedback scheme is kept
a secret, by the output 2n bits of the generator, using the
algorithm of BM, can determine it. The BM-attack can be
eliminated by introducing the nonlinearity in the process
of formation of the PRN. However, this method of attack
elimination may not be acceptable, because we implement
it only when the register length does not exceed, as a rule,
n=32.

Proceeding from the above-stated, the main purpose of
the given research is working out of a way of elimination
of the threat of a BM-attack on LFSR-generators PRN of
any length for an increase of their cryptographic safety.

2 REVIEW OF THE LITERATURE

Random numbers are used in many areas of research,
including cryptography and information security [1, 4],
computer and mathematical modeling [6, 7], sociological
analysis [3], innovative work, based on the “trial and er-
ror” method and in other areas of scientific knowledge.
Numerous monographs [1, 2], journal publications [5,
11], reports at scientific conferences [13, 15, 16] and Web
publications [9-11, 18] are devoted to the issues of build-
ing LFSR-generators PRN.

Let us note the fundamental differences both in the
presentation of the problem of synthesis of LFSR-
generators and the methods of their implementation,
adopted in this paper in comparison with the cited
sources. First, note that the numbering of register digits
and shift of the generator contents in Galois configura-
tions is performed from right to left. The chosen order of
numerical of cells the register and the direction of their
contents displacement are not only natural (as, for exam-
ple, in decimal numbering), but also lead to more trans-
parent algorithms of generalized Galois matrices con-
struction. And, secondly, if in classical (named by us sin-
gle-circuit) LFSR-generators feedback in registers is cre-
ated by PrP, and the matrixes of Galois are generated by
the primitive forming element, polynomials, using which
feedback in the generalized (multi-circuit) LFSR-
generators of PRN, should not be primitive at all. Regard-
less of whether primitive or non-primitive is polynomic of
feedback, the primitive constituent element the GGM
must exceed 10. It is under such conditions that the in-
crease in the crypto-resistance of the proposed variants of
LFSR-generators of PRN in comparison with the crypto-
resistance of classical generators is provided. The reason
for such phenomenon consists that the generalized LFSR-
generators appear protected from the attack of BM [14].

3 MATERIALS AND METHODS
Each LFSR-generator of PRN according to the
scheme of Galois or Fibonacci is answered by unequivo-
cally connected matrixes which we will name as well as
corresponding generators, and to designate symbols G
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and F . A distinctive feature of matrixes of Galois and
Fibonacci consists that on their basis it is possible to cre-
ate the binary m- sequence similar to the numbers formed
by classical LFSR-generator of PRN.

Let’s the S(k) -state of the n -bit generator in the con-

figuration of Galois after the k -th synchroimpulse, the
calculation scheme of which is represented by the matrix
expression,

Sk+1)=Sk)-G™, k=0,1,..., S©0)=00..1 (1)
’ n bit

Our task is to make sure that the given PrP
f=lo a, ..ol o, eGFQ2)={2},
matrixes of Galois the n—degree, using which the ratio

(1) forms the same number of PRN as the generator of
PRN built based the LFSR, covered by the feedback chain

caused by PrP f.

Let us try to deal with this problem for small orders of
matrixes first. Let us turn to the scheme of the PRN gen-
erator, reduced to Fig. 1.

Lo 0 0o} 1 |
4 le—{ 3 j«— 2 |«

Figure 1 — Illustration of the initial state of the Galois PRN
generator

to calculate

The numeric above of the generator discharge charac-
terize the logical signal level at the output of the corre-
sponding register cell (trigger). As synchronous sends are
received, a unit from the lower (right) digit of the genera-
tor moves to its higher digits, as it is shown in Fig. 2.

a) 0 0 1 - 0
| e {3 {2 e

t) 0 1 0 ¢ 0
4 Je—{ 3 | 2 || 1 |«

C}L|1 0 0o\ DI‘J
4 J¢— 3 [+ 2 (P 1

Figure 2 — The PRN generator states after:
a) — First, b) — Second, ¢) — Third synchrotact

From Fig. 2 follows that the third synchrotacte the
logical units arrive at the inputs of both the first and the
second trigger and, consequently, at the fourth step of
PRN generation (Fig. 3) appear at the outputs of these
triggers.
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Lo 0 1
4 Je— 3 je—{ 2 |&(

Figure 3— The PRN generator status after the fourth synchrotact

Let us make a matrix Gy;’ of the totality of state vec-

(4)
3
tors into which the Galois generator passes after the first
four synchrotacte, having vectors in the matrix starting

from its lower line.

Tk
001 1 4
1 000 3
¢® = . 2
13 010 0 2 &)
0010 1
<t 43 21

Note that the lower index 13 in the matrix designation
G}n) in (2) is nothing, but a 16-number system a record
of PrP f=1'0011. We will use the same form of represen-

tation of numerical values of polynomials f in the fu-
ture. Besides, we will take into account that the number-
ing of rows of Galois matrix is carried out from bottom to
top and the columns - from right to left, different from the
generally accepted ones. The chosen way of the number-

ing of matrix rows and columns Gf(") simplifies, as we

will see later, the separate tasks of building a structural
scheme of PRN LFSR-generators.

The sequence of PRN, formed by the LFSR-generator
of Galois (Fig. 1), coincides with the sequence, calculated
by the formula (1) for the matrix (2), and is summarized
in Table 1.

Table 1 — The multiplicative group formed by the PRN genera-
tor (Fig. 1 or matrix (2))

Degree (or step) | Deduction ranks
k 413121
0 0Ojo]Oo]1
1 ojoj1]o
2 oj1]o]o
3 110]071]0
4 0]J]0[1]1
5 o|1j1rjo
6 1]1]0]0
7 110111
8 0] 1]0]1
9 l1{o|1]oO
10 O[1[1]1
11 1|]1]1]0
12 1 11 ]1]1
13 11110711
14 11001
15 0jofo]1
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It is easy to see that, firstly, the matrix rows (2) make
up a set of linearly independent vectors, which makes

G\" is a nonsingular matrix. Secondly, the matrix G,

being substituted in equation (1), forms several four-digit
codes, summarized in Table 1. In addition, thirdly, the top
line of the matrix (2) is nothing but the PrP of the fourth-

degree f =1'0011, in which the older unit is removed.
Based on the analysis of the matrix G](;), written out

by the ratio (2), we come to the following rule of con-

struction of CGM G}") of the order n generated by PrP

degree n. Let us call it the Rule of GGM V. In item 4 the
Rule of GGM will be introduced.

Rule of GGM V: The basis of the matrix G/(-") IS a

single matrix E of the order (n —1), framed by a zero
column on the right and a PrP f with a thrown out the
senior (left) unit.

The general form of GGM G;"), in which bold font

for clarity are selected fringing elements (right — zero
column and the top — the line, which is shortened by one

digit on the left PrP, generating GGM G ,(") ), looks like:

o,, o,, = o, o I n
1 o - 0 0 0| n-1
0 0 0 0| n-2
G}")= L B)
0 -1 0 2
1
n n-1-- 3 2 1

By the general form (3) we will make, for example,
the matrix of the eighth-order G}S) with the PrP in a

feedback circuit fg =101100101

01 100°T101)8
1 00000GO0O0|7
01 000O0O0O0|6
Gf§2=001000005
0001000 O0]4. “4)
0000100O0|3
00000T100|2
00000O0T1O0)1
8 7 6 5 4 3 21

The scheme of LFSR-generator PRN in Galois con-
figuration, corresponding to the matrix (4), is presented in
Fig. 4 a.
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Galois G}" ) and Fibonacci’s F }”) matrixes are

linked by a right-sided transposition operator L, i.e.
transposition relative to an auxiliary diagonal,

G ==F". (5)

The transformation (5) of the Galois matrix (4) leads
to the Fibonacci’s matrix,

0000O0OTO01)8
1 00000GO0TO0|7
01 00000O0T]|6
Flé?=001000005
0001000 0f4. (6)
000010°GO0T1|3
0000010 1|2
00000O0T1 0)1
8 7 6 5 4 3 21

The scheme of LFSR-generator PRN in Fibonacci
configuration, corresponding to the matrix (4), is pre-
sented in Fig. 4 b.

Let us denote through *G r * Fp) - matrixes formed
by classical (left-hand) transposition of Galois (Fibonacci)

matrixes and call them conjugated to matrixes G, and

F, , accordingly. We have
) ()Y —L s ) (+ g0
6" (F")=='6/"('F"). ™

The conjugate matrixes of Galois and Fibonacci of the
eighth order, generated by matrixes (4) and (6) and trans-
formations (5), look like:

0100000 0) 8
101000007
1001000 0|G6
0000100 0|S5

'G=[0 00001004 @®
100000O0T1 0|3
0000000 1|2
100000001
87654321

A structural scheme of conjugate LFSR-generators of
PRN, corresponding to matrixes of Galois *Gl(ﬁxs) from (8)

and Fibonacci *F];? —(9), are presented on Fig. 5 a, b.
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Figure 4 — The scheme of LFSR-generators of PRN in the configuration of Galois (a) and Fibonacci (b)
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Figure 5 — The scheme of conjugate LFSR-generators of PRN in the configuration of Galois (a) and Fibonacci (b)

0100000 0] 8
0010000 0|7
0001000 0|6
000010005

F®=00000100[ 4 O
0000001 0|3
0000000 1|2
101001 10) 1
87654321

The set of G, F/” and conjugate matrixes
‘G, "F /" can be displayed, as shown in Fig. 6. Ar-
rows in Fig. 3 denote directions in rows or columns of

matrixes, in which the coefficients o, , k=0, n, of PrP

/, are arranged, starting with the lowest coefficient o

up to the road of the higher coefficient.

F
F

G

Figure 6 — Conditional graphics display Galois and Fibonacci
matrixes

The rule for constructing CGM can be rephrased by
calling it the updated version of the Construction Rules
option:

Rule of GGM @: In the right corner of the bottom
line of the synthesized GGM of order n, the element
0 nin =10, forming it is written, which is the minimal
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primitive element of the field generated GF(2") by a PrP
/., of degree n. The digits of the line to the left of the are
0,;, filled with zeros. Subsequent rows of the matrix
G }.”) (bottom-up) are obtained by shifting the previous

row one digit to the left, and zeros are entered into the
released right digits. If, when a row is shifted, its most

significant unit goes beyond the matrix G}”’ , then the
(n+1)— bit vector ¥ =100...0 corresponding to this
%/._/
n bit
row is reduced to the remainder modulo PrP f, and, thus,
the row becomes a n— bit because the vector deduction
V' is equal to the polynomial f,, which ejected the older

unit.
Synthesized by Rule ® (as well as by Rule ") the Ga-

lois matrixes G | refer to the set of primitive matrixes
in the sense that several powers of such matrixes, starting
with a zero for which (G;f’))0 it is equal to the identity

matrix, forms several maximum lengths. In this case, al-
gebraic transformations are performed over the field Ga-

lois GF(2); that is, all elements of the matrixes obtained

in the course of matrix calculations are reduced to the
remainder modulo 2.

Primitive matrixes G }”’ can be constructed not only

based on the PrP, but also of any IP (IP), which are not
necessarily primitive, provided that the element ® form-

ing G is a primitive element of the field GF(2")
over the IP f, .

We call the Galois matrixes generated by not neces-
sarily the PrP f,, which forms an element ® such that,
®>0_ =10, GGM and introduce the notation for them
G ") [12]. Synthesis of GGM G") is carried out ac-

cording to the rule called the GGM rule, similar to the
above-formulated GGM Rules.
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Rule of GGM. The bottom line of the synthesized
GGM G}"()” is recorded forming its element ®=10,

which is an element of the field GF'(2"), generated by an
IP f, . If at shift the non-zero bit of a line goes beyond the

left border of a matrix, the vectors, answering to such

lines, are led to the rest on the module f, and, by this

way, the line becomes n — bit again.

From the theory of polynomials of one variable x it
is known, that multiplication of an arbitrary degree
k polynomial ®,(x) by the x equivalent of its shift by

one digit to the left. Or, in other words,

(10)

X 0p(X) D> 0pyq(x).

Using ratio (10) and taking into account how GGM is
formed, record the transformation chain

xn—l .6 xn—l
xn—2 . xn—2
Gy = mod f, = o mod f,. (11
X0 X
. x . . .

Elements of the right vector-column inequality (11)
are monomers, which, being represented in binary form,
convert this vector-column into a single matrix, i.e.

T 0 - 0 0
xn—2 o 1 --- 0 0

e =1 o =F, (12)
. 0 0 0

| 0 0 -« 0 1

which makes it possible to formulate the following state-
ment.

Affirmation. The GGM Gj,"zo of the order # above

IP f, isomorphous to its constitutive element, which is a

field GF(2") element

G 0. (13)

Therefore, according to the expressions (12) and (13),
there is a mutually unambiguous correspondence (iso-
morphism) between GGM G {/)
®, which is reflected by the ratio (10) and leads to such
consequences:

Consequence 1. The generalized matrixes of Galois

and its forming element

G ") are non-singular at any parameters Jy and o, as

are formed linearly independent lines.
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Consequence 2. To elevate the matrix G;”f,) for the
degree k , it is enough to calculate IE ©, = o (mod f,)

and make a matrix Gf(.” f)Dk using the diagonal filling

method.
Consequence 3. The minimum non-zero value of de-

e
gree e providing equality (G}"zn) = E coincides with the

order of the element ® , which forms the matrix G ;”20

Consequence 4. The generalized matrix of Galois
G (f”zu is primitive, if the element forming © it is primi-
tive, i.e. if @ = 0, there is O a primitive element of the

field GF(2").

Consequence 5. The operation of multiplication of Ga-

lois G }”20 and G%)z, o, # ®,, is a commutative op-

eration, because according to the ratio (10) of the product
in the left and right parts of the equality

G .gn _ G}’f)wz. G}”}m, which must sat-

f7('01 f:(Uz
isfy the commutative product, are equivalent to the prod-
ucts of elements (®,-®,) and (®,-®,), calculated on

the module of the IP f, , and their equality is quite obvious.

Consequence 6. Arbitrary modular algebraic trans-
formations (summation, subtraction, multiplication, and
division) over Galois matrixes are isomorphic to the same
transformations over the constitutive eclements of these
matrixes.

Consequence 7. Set GGMs can be expanded by intro-

ducing similar Galois matrixes 'G ") or Fibonacci

‘F") defined by

() xp(n)y_ p-1 ~() n
G CE ) =P G (F )P, (14)
It is most convenient to choose the permutation ma-

trixes P of the order n as matrixes for transformation (14)
because reverse matrixes are just calculated for them

P_1 = PT. In contrast to GGM G(f”()u, such matrixes
‘G (f.”()” remain commutative and lose their isomorphism

properties.

The most important feature of the generalized of Ga-
lois matrixes is that the PRN generators based on linear
shift registers with feedback formed by GGM are crypto-
resistant about to the BM attack, which is explained in
more detail in the next chapter.

Definition. Linear PRN generators will be called gen-
eralized if the feedback in the linear shift registers that
make up the basis of the generators are formed by gener-
alized matrixes of Galois or Fibonacci.
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The relationships (5) and (7) enable the following rep-
resentation of the relationship between the generalized
Galois and Fibonacci matrixes, including their associated
variants (Fig. 7)

©

‘ ®
N
/ ®

Vi
N

F

3,

Figure 7 — Transpose operators in multiple Galois and Fibonacci
matrixes

All GGMs (as well as KGMs), which will include not
only the Galois matrix G itself, but also those formed
from G the right-hand transposition of the Fibonacci
matrix F', as well as the corresponding conjugate ma-
trixes ‘G and "F , are mutually unambiguously con-
nected by the transformation of similarity (11), as shown
in Fig. 8.

0()0 -
“G) CF

Figure 8 — Stylized display of transformations of the Galois and
Fibonacci family of matrixes

Let us consider an example of the synthesis of gener-
alized primitive matrixes and generators of Galois, choos-
ing as an irreducible binary polynomial of the fourth-
degree f,=11111, which is not primitive, and primitive
forming element equal to 111.

The components of similarity transformations include
involutive matrixes, i.e. matrixes inverse to themselves,
designated by the operator 1, as well as matrixes formed
by a cyclic shift by a single digit of involutive matrixes

rows to the left (matrix 1 ), or the right (matrix 1).

The group of involutive matrixes (for example, the
fourth-order matrixes were chosen) is represented by the
following relations:

- o o O
S = O O
S O = O
S O o =
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=t
Il

(15)

S = O O
S O = O
S O o =
- o o O
S O O =
- o O O
S = O O
(=

The second group of operators consists of matrixes
formed by the cyclic shift of lines of a unit matrix at shift

by one digit to the left E and right E, represented by
the system of operators:

000 1 0100
|1 000 L0010
0100/ 000 1] (16)
0010 1000

Let us briefly explain the technology of using opera-
tors (15) and (16) in the column of similarity transforma-
tions. With the help of involutive operators (15), gener-
ated by inverse permutation matrixes, transformations are
realized:

G 1ot F G 10l G
F o F 101 +p

whereas the operators (16) carry out transformations of
this type:

Let us consider an example of the synthesis of gener-
alized primitive matrixes and generators of Galois, choos-
ing as an irreducible binary polynomial of the fourth de-
gree, which is not primitive and primitive SE, equal to
111. The matrices corresponding to the selected parame-
ters are represented by the system (17).

The structural scheme of the generalized basic four-

digit of Galois generator, corresponding to GGM G :4)7,

is presented in Fig. 9.

0110 1010
001171 1111
4) _ G .
G”1110’F”1101’
0111 0100
(17)
001 0] 1110
1 011 0111
(4 _ Y .
Gf’71111’f’71100'
010 1] 0110

Replacing in Fig. 9 the contents of cells of vertical

registers of feedback by matrix elements F f(4% from the
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system (17), we get the scheme of PRN generator in the
configuration of Fibonacci.

Structural scheme of the PRN generator, the conjugate
scheme of the considered Galois generator, is presented in
Fig. 10. If in the scheme in Fig. 10 to carry out the re-
placement of contents of cells of feedback registers by

matrix elements “F ") from the system (17) we come to

the conjugate generator of PRN in a configuration of Fi-
bonacci.

Vertically arranged registers of generators, marked
with a symbol at the top, implement the operation of bit
multiplication and registers marked with a symbol @& —
the operation of adding the contents of the register on
module 2.

Note that if the generators of PRN, which are shown
in Fig. 9, the feedback circuits are “twisted” in a clock-
wise direction, and in the conjugate generators (Figures
10) — in a counter-clockwise direction. The binary se-

quences, formed by these generators, are given in Ta-
bles 3 and 4.

Table 3 — The multiplicative group formed by the PRN genera-
tor (Fig. 9 or matrix G}“; from (17))

Degree (or step) | Deduction ranks
k 4131211
0 0J]0]0]1
1 0Ol 1 111
2 1|0 [1]0
3 1/]0[0]0O
4 01110
5 1 1101
6 00110
7 1 1 110
8 101 ]1
9 1 1 1 1

10 1|]1]0]0
11 0]1]0]1
12 0]J]1]07]o0
13 010111
14 1]0]0]1
15 0]0]0]1

Table 4 — The multiplicative group formed by the PRN gen-
erator (Fig. 10 or matrix * F ;47) from (17))

. . . Degree (or step) | Deduction ranks
The general rules of conversion of linear operating k 2131211
systems of a known generator to feedback circuits of any 0 0jlo0]o0]1
of the remaining generators are shown in Table 2. 1 0]1]0]1
2 1 1 110
Table 2 — Conversion operators of feedback in LFSR-generators 3 ol1]1]o0
of PRN 4 0|1]0]O0
G F ‘¢ | F 5 1Jo[1]1
6 110100
G - 1ol ol lo 7 o T o110
F 1o1 - 1o ol 8 1 1 1 1
‘G | ol [ 1o | - [0l 9 010t yl
10 110]11]0
'F | 1o | ol [ 1ol | - 11 1l1]o0]1
12 1 110]0
13 110]0]|1
14 0|1 1 1
15 0]0]0]1

® ® ® ®

> 0 » 1 > 1 » 0

» 0 @ » 0 ® > 1 ® > 1 = ®
—> 1 —> 1 —> 1 0 .
>0 {1 1 1
4 <« 3 «— 2 o L 1

Figure 9 — The structural scheme of the Galois generalized generator G ;»4% of PRN

® ® ® ®
0 |« 0 |« 1| 0 |«
®1: o1 Sy e paiy
1 1 Je— 1 e 1 e
0 1 1 0 | 1 [
4 — b5 3 b 2 = b o1 J

Figure 10 — The structural scheme of the Fibonacci generalized conjugate generator of PRN
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From the comparison of this Tables 1, 3 and 4 we can
easily see that the binary sequences formed in the differ-
ent bits of generators differ only in the order of the cyclic
shift and satisfy all the postulates of Golomb [20], as it
should be.

The meaning of the term “feedback schemes” of PRN
LFSR-generators (by the example of generators, the struc-
tural schemes of which are presented in Fig. 4, 5) can be
explained by referring to their stylized representation
shown in Fig. 11.

Let’s pay attention to such peculiarities of the links
presented in Fig. 11. Feedback in the registers of basic

generators G and F is done in a clockwise direction,
while in the registers of conjugate generators ‘G and

*F — counterclockwise.

Let’s clarify the physical meaning of transformation
operators in Table 1. The operator o1 means that the
feedback scheme indicated by the symbol undergoes rota-
tion on 180 relatively vertical axis. The operation ol is
similar to the operation of inverse permutation of matrix
columns M , which is realized by multiplying it by the
inverse permutation matrix 1 on the right. In turn, the
operator 1o rotates the feedback scheme relative to the
horizontal axis. This operation is similar to the operation
of inverse permutation of matrix lines M , if you multiply
it by the inverse permutation matrix 1 on the left. The
specified transformations of feedback take place in pairs

of generators (G, 'F) or (F, G). Finally, the operator

101 means that the feedback scheme is rotated on 180°
both vertical and horizontal axes. Such transformations of
feedback circuits are performed in pairs of generators

(G, F) or (G,'F).

4 EXPERIMENTS
The attempt to increase the crypto-resistance of LSFR-
generators by increasing the order of registers and, ac-
cordingly, the degree of PrP used in the feedback circuits,
comes up against a known problem [13]. The essence of it
consists is as follows. In the open literary sources are
given, as a rule, strongly rarefied IP of high orders. The

use of such polynomials reduces the cryptographic
strength of PRN generators. Besides, classic LFSR-
generators are subject to BM attacks, which narrows the
scope of their applications.

The cryptographic strength of PRN LFSR generators
is the ability of generators to withstand attacks, which
allow us to calculate the minimum IP used in the feedback
circuit of the shift registers. There are various ways to
increase the cryptographic security of PRN generators. To
their number concern: an introduction of nonlinear trans-
formations, use of multi-register generators and several
others.

Below it will be shown, that the transition from classi-
cal LFSR-generators of PRN to generators based on gene-
realized matrixes of Galois and Fibonacci leads to the
fact, that the algorithm of BM loses the ability to deter-
mine the IP is generating the generator of PRN. The rea-
son for the noted feature of such generators is that the
series of bits formed by them depends not only on the
chosen IP, but also on the primitive constituent element
involved in the formation of the feedback chain of the
generator.

For experimental confirmation of the stated statement, and
the basic theoretical positions concerning properties of ma-
trixes of a feedback, we shall address to results of computer
modelling (reduced in Table 5) of the generalized eight-
digit Galois generator of PRN. The PrP f=100011101 was

chosen as the polynomial forming the feedback loop of
the generator.

According to Table 5, the eight forming elements lo-
cated in the top row of the table is such that each of them
leads to the correct solution produced by the BM tester.
We will call such forming elements “weak keys” of the
flow code, the encrypting gamma of which is formed by
the analyzed PRN generator. It is quite easy to eliminate
weak keys. For this purpose, it is enough to choose a
polynomial that is not primitive.

> S o >

G- | k4 Y 4 I
« D= DD

» (D) » (D) (1) >

ALY ALY AL -

F: ‘ A A A |
-+ -« -+ -+

G*: Y Y ¥ I

>D > »D >
< P Pe—<

F*; A A A I

> > »

>

Figure 11 — A stylized representation of feedback in PRN LFSR-generators
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Table 5 — BM tester solutions on many primitive elements of the field generated by the PrP f =100011101

TP: 100011101 Forming element
e PrP I 2 3 4 5 6 1 7 ] 8
1 100011101 002 004 020 | 035 114 | 137 | 205 | 235
2 100101011 006 015 024 | 121 207 | 302 | 321 | 332
3 100101101 113 033 210 | 130 | 220 | 227 | 300 | 336
4 101001101 112 123 211 | 233 307 | 313 | 322 | 325
5 101011111 037 122 110 | 232 306 | 312 | 323 | 324
6 101100011 036 102 111 133 215 | 225 | 237 | 311
7 101100101 022 103 030 | 132 214 | 224 | 236 | 310
8 101101001 022 023 030 | 031 134 | 135 | 200 | 201
9 101110001 011 036 101 107 203 | 216 | 314 | 330
10 110000111 050 064 071 | 074 077 | 171 | 273 | 345
11 110001101 052 060 143 | 151 242 | 274 | 367 | 370
12 110101001 043 161 166 | 172 245 | 252 | 260 | 340
13 111000011 042 160 167 | 173 244 | 253 | 261 | 341
14 111001111 157 176 262 | 267 354 | 360 | 363 | 372
15 111100111 062 155 257 | 343 350 | 352 | 356 | 376
16 111110101 053 061 142 | 150 243 | 275 | 366 | 371
5 RESULTS —
The main research results achieved in this work are as F -

follows. Firstly, the so-called generalized matrixes of Ga- F

lois and Fibonacci are offered, which essentially expand

the set of classical matrixes, involved in the construction

of PRN generators in the corresponding configurations.

Expansion of a set of matrixes is reached in two ways. In

the first of them, the synthesis of matrixes is carried out G

using not reducible polynomials at all primitive. In classi- G

cal PRN LSFR generators, only PrP can be used as gen-

erators. The second way of construction of matrixes it is
supposed that as a forming element of matrixes any ele-
ment (different from value 10), is a primitive element of
the expanded field of Galois generated by the chosen IP
can be accepted.

Another one significant scientific result can be formu-
lated as follows. Unlike classical LSFR of PRN general-
ized generators are not subject to hacking according to
BM algorithm. The reason for this property is that an at-
tack on generalized generators can only be successful if,
in addition to calculating the generating polynomial, the
forming element of the generalized matrix is also deter-
mined. This pair of parameters together determine the
structure of the feedback chain in the generator.

However, the BM algorithm is not designed to calcu-
late both of these characteristics. This precisely explains
the fact that the generalized PRN generators are not sub-
ject to BM-attacks and, thus, have a crypto-resistance that
exceeds the crypto-resistance of classic PRN generators.

6 DISCUSSION
Visual perception of vectors adjoining the main diagonal
of the square in Fig. 6, may give rise to an erroneous as-
sumption. Indeed, the hypothesis that these vectors can be
positioned relative to the auxiliary diagonal of the square (as
shown, for example, in Fig. 12) may seem consistent.

© Beletsky A. Ya., 2019
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Figure 12 — Alternative arrangement of vectors
of forming elements

None of the variants of vectors placement on the aux-
iliary diagonal of the square can be considered as an al-
ternative to their placement on the main diagonal. The
reason for this conclusion is as follows. Let us consider,
for example, the classical of Galois matrix represented by
expression (2). Having unfolded this matrix relative to the
vertical axis, we obtain

= (4
G = (18)

S o o =
—_— 0 O
S = O O
S O = O

The PRN sequence, generated by the matrix (18) and
ratio (1), is presented in Table 6.

Table 6 — The sequence of generator states (18)

Step | Deduction ranks
k 413121
0 00011
1 0j1]0]0
2 0J]0jJO0]1

As it follows from Table 6, the sequence of PRN
formed by the generator (18) does not produce a multiplica-
tive group. In addition, the sequence length equal to two is
not a divider of the maximum order, which is 15 for the
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considered four-digit generator. Therefore, the variant of
arrangement of vectors of forming elements in the vicinity
of the auxiliary diagonal (as shown in Fig. 12) is unaccept-
able for the construction of generating matrices.

CONCLUSIONS

The main problem with the stream ciphers, whose
gamma function is generated by LFSR-generators (such
as A5 ciphers used for encoding in GSM standard), is the
following. The cryptanalyst with the help of the BM algo-
rithm has an opportunity to reconstruct the PrP, using
which a one-loop feedback circuit is formed in the LFSR-
generator under test. This attack on the LFSR-stream ci-
phers is easily eliminated. For this purpose, it is enough to
refuse from the use of classical registers with single-loop
feedback circuits, having replaced them with generalized
LFSR with multiline feedback circuits. Such multiline
circuits can easily be constructed using generalized Ga-
lois, Fibonacci matrices or their associated variants.

The scientific novelty of obtained results is that the
unlike classical LFSR-generators of PRN, the scheme of
single-circuit feedback in which is defined by a PrP, in
the developed generalized LFSR-generators of PRN
multi-circuit feedback in registers of the shift are formed
not necessarily PrP. Feedback polynomial can be an ordi-
nary IP. However, the element participating together with
the IP in the formation of generalized matrixes of Galois
and Fibonacci, using which the multi-circuit feedback
circuits are created, should be a primitive element of the
expanded field of Galois, generated by IR. The main ad-
vantage of the proposed PRN generators is that they are
free from BM attack.

The practical significance of the obtained results is
that the development of purely software algorithms for
generating PRN basis on generalized Galois and Fibo-
nacci matrices or their associated variants. Such way of
construction, the generators PRN, unlike hardware LFSR-
systems, provides the possibility of more flexible control
the parameters of the generator, such as not reducible
polynomials and primitive forming elements, which gives
the basis to recommend the offered algorithms for use in
practice.

Prospects for further research are too focused on
the generalization of BM algorithm in such a way that to
provide the possibility of calculation not only IP of feed-
back but also the forming element of the generalized ma-
trix of Galois or Fibonacci.
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VK 004.056, 032.817
CUHTE3 KPUIITOTPA®UYECKH CTIMKAX TEHEPATOPIB IICEBJIOBHUIAIKOBUX IMOCJAIIOBHOCTEN HA
OCHOBI Y3ATAJIBHEHUX MATPHUIIb 'AJIYA I ®IBOHAYYI

Bineuskuii A. SI. — n1-p TexH. Hayk, mpod., mpodecop kadeapu enekrponiku HamioHanbHOro aBialliiHOTO YHIBEpCHUTETY,
VYkpaiHa.

AHOTANLIA

AxTyanbHicTh. Po3rmsinyTo 3agady GopMyBaHHS y3aralbHEHHX MPUMITHBHUX MaTpuih [ anya i ®iboHaudi Oy/1b-5IKOTO MOPSII-
Ky Haj ITOJIEM XapaKTepPHUCTUKH 2 I MOOYyXOBH TeHepaTopiB raMMa-(pyHKIIH KpUITOrpadmIecKy CTIKUX aIrOpUTMIB IIOTOKOBOTO
mudpyBaHHS JaHUX, BUIBHUX Bi ataku beprnexemma-Mecci.

Merton. JliniiiHi perictpu 3cyBy 3 miHiiHUME 3BopoTHUMH 3B s3kamu (PCJI33) cami no cobi € XOpomrMu reHepaTopaMu MceB-
nosumnaakosux yucen (IIBY), ane BoHn MaroTh HeGaXkaHi BIACTUBOCTI, 110 3HWKYIOTh €(DeKTUBHICTH 1X BUKOpUCTaHHS. [lyist perict-
PiB 3cyBY IOBXHHHU 1 iX BHYTpILIHIN cTaH € (QYHKII€IO MOMEpeHiX BUXIAHUX OiTiB reHepaTopa. HaBiTh SIKIIO cxeMa 3BOPOTHOTO
3B’SI3KY TPUMAEThCS B CEKPETi, ii MOXKHA BM3HAUUTH 10 27 BHXIOHHMX OiTax reHepaTopa 3a JOIMOMOTOI0 alroputMmy beprexemma-
Mecci, 1110 3MEHIITy€ KPUIITOCTIHKICTh TeHEPaTopa MCeBA0BHIIAAKOBIX dnces. OCHOBY OHOKOHTYpPHHX JIAHIIOT1B 3BOPOTHOTO 3B’ 53~
Ky, akuMH oxoruieHi knacuydi PCJI33-reneparopu [1BY, ckinanaroTe NpUMITHBHI OTiHOMH.

IcHyt0TH pi3Hi criocobu migsumenHs kpunToctiiikocti PCJI33-renepartopis I1BY. [lo ix umcia BiXHOCSTHCS: BBEACHHS HEIiHIN-
HUX TIEPETBOPEHb, BUKOPUCTAHHS MOJIPETiCTPOBUX T€HEPATOpiB (SIK, HANPUKIAMA, B AITOPUTMI MOTOYHOTO mudppyBaHHs AS) 1 psn
inmmx. IMepexin Bin knacuanux PCJI33-renepatopis 10 reHepaTopiB Ha OCHOBI y3aralbHEHUX MaTpuub [amya i @iboHaydi npusBo-
JIUTH JI0 TOTO, 0 ainroput™ beprexemna-Mecci BTpadae 31aTHICTh BU3HAYATH HE3BiJHI IOJIHOMH, IO MOPOUKYIOTH 0araToOKOHTY-
pHi naHioru 38opotHoro 3B’s3ky B PCJI33-reneparopax [IBY. [Ipuunna 3a3Ha4eHOi 0COOIMBOCTI MOJISITAE B TOMY, IO cepist OiTiB,
L0 MTOPOIXKYETHCS y3aralbHEHUM TeHEePaTOPOM, CTA€ 3aJIeKHOI0 He JIMILE BiJf 0OpaHOro HE3BiTHOTO MOJIHOMY, & i BiJ MPUMITHBHO-
rO eNeMEeHTa, SIKHii Oepe yyacTh y CTBOPEHHI JIAHILIIOTa 3BOPOTHOTO 3B’ 3Ky TeHeparopa.

PesyabTaTn. Po3pobneni y3aranmsaeni PCJIOC-renepaTopu NCeBIOBUIIAIKOBAX YUCET MOXKYTh 3HAHTH IMIMPOKE 3aCTOCYBAHHS B
cucTeMax MM(ppyBaHHS IOTOKOBOI iH(popMaIii.

BucnoBkn. CTaTHCTHYHI TeCTyBaHHS po3poOieHuX y3aranbHeHuX P3JI33-renepaTopiB NCeBIOBHUIIAIKOBHX YMCEN, BUKOHAHI 3a
nonomoroto naketiB HICT CTC ta [lixapa, HiITBEpAMIN BHCOKY SKIiCTh T'€HEPYIOTHCS MOCIHITOBHOCTEH. BinbIr Toro, reHepaTtopu
BHSIBIJINCS] KPHIITOrpaUIECKH CTIHKMMU 10 atak bepiexemmna-Mecci. [lepcrieKTHBHEM € BUKOPHCTAHHS IIMX T€HEPATOPIiB JUIs Lijei
(opMyBaHHS KJIIOYiB BEIHUKOi PO3MIPHOCTI, HEOOXIHUX, HANPUKIAMA, B MpoTokonax udpyBanHs RSA i B iHmmx gomaTtkax. Sk
HanpsMKH HOJAANBIINX JOCIIDKEHb mepeadavyaeTbcs po3poOka y3arambHeHnx P3JI33-reHepaTopiB NCEBIOBHIAIKOBHX YHCEN HaJ
nonem ["amya nOBiNBHI XapaKTePUCTHKH.

KJIFOYOBI CJIOBA: He3BifHI NOTIHOMH, MIPUMITHBHI MaTpull, nois ['amya, pericTpu JiHIHHUX 3CYBiB, TEHEPATOPHU TICEBIO-
BUTIAJKOBHUX YHCEIL.
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CHHTE3 KPATITOTPAGHUYECKA CTOMKAX TEHEPATOPOB IICEBJIOCIYYAWHBIX
MOCJEJIOBATEJILHOCTEN HA OCHOBE OBOBIIEHHBIX MATPHUIL T'AJIYA 1 ®HUBOHAYYN

Benenxwuii A. fI. — 1-p TexH. Hayk, mpod., mpodeccop kadenpsl MMEKTPOHNKH HalnMoHaNbHOrO aBHALIOHHOTO YHHBEPCHUTETA,
Ykpauna.

AHHOTALUA

AxTyanbHocTh. PaccMoTpena 3agada hopMupoBanus 0000IIEHHBIX TPUMUTUBHBIX MaTpuIl [ anya u @uboHAYIN TPOU3BOIBHO-
TO TIOpsIZIKa HaJ MOJIEM XapaKTepHCTHKHU 2 IS MOCTPOCHUS TeHEPaTOPOB raMMa-(QyHKIUH KPUITOTpaUIeCKH CTOMKHX aJITOPHTMOB
MIOTOYHOTO MM(POBaHUS JaHHBIX, CBOOOJHEIX OT aTtaku bepnexamma-Meccu.

Merton. JIuneiiHsle perucTpsl caBura ¢ TMHeHHBIMU o0OpaTHbIME cBsi3siMu (PCJIOC) camu 1o cebe SBISFOTCSI XOPOIINMH TeHepa-
Topamu ricepnociy4aiinbie uncen (IICY), Ho oHM 00JIaIaI0T HEXKENATSIBHBIMUA CBOWCTBAMH, KOTOPBIEC CHIKAIOT S3((PEKTUBHOCTH MX
UCIIONIB30BaHMsA. J{JIs pEerncTpoB CABUra JJIMHBI # UX BHYTPEHHEE COCTOSHHUE SBISAETCS (DYHKLHMEH NpeablaylnX BBIXOIHBIX OUTOB
reHeparopa. Jlaxke ecii cxema oOpaTHOW CBSA3H JIEPKUTCS B CEKPETE, €€ MOXKHO ONPENEINTh 110 271 BBIXOJHBIM OMTaM TeHepaTopa ¢
moMoIIsio anroput™ma bepnexamna-MeccH, 4TO yMEHbBIIAET KPUIITOCTOMKOCTh T€HEpaTopa MCceBAOCTyYaHbIX uncen. OCHOBY OIHO-
KOHTYpHBIX Ieneii oOpaTHOH cBs3M, KOTOpbIMU oxBadeHbl Kinaccmyeckue PCJIOC-reneparopsl [ICU, cocTaBisioT NPHUMUTHBHBIC
TIOJTMHOMBEL.

CymecTByIOT pasiudnsle criocoOs! nossimeHus kpunrocroiikoctn PCIIOC-renepatopos IICU. K nx unciy oTHOCSTCS: BBEICHHUE
HEJIMHEIHBIX MpeoOpa3oBaHMi, MCIOIb30BAaHNE HOJIMPETUCTPOBBIX I'eHepaTopoB (Kak, HapUMep, B aITOPUTME TIOTOYHOTO IIH(ppoBa-
Hust AS) u psin apyrux. [lepexox ot kiaccuueckux PCJIOC-reHepaTopoB K TeHepaTopaM Ha OCHOBE 00OOIICHHBIX MaTpwil [anya u
®uboHaY4IM NPUBOAUT K TOMY, 4TO anroputM bepiexsmmna-Meccu TepsieT CliOCOOHOCTD ONpPEENATh HEMPUBOIUMBIE ITOJIMHOMBI, IIOPO-
JKIAIOIe MHOTOKOHTYpHbIe enu obparHoit cesizu B PCJIOC-reneparopax I[ICY. Ilpuunna yka3aHHONH OCOOCHHOCTH 3aKIIFOYAeTCs B
TOM, 4TO CepHs OUTOB, TTOpOskAaeMasi 0OOOIIEHHBIM F€HEPATOPOM, CTAHOBUTCS 3aBUCHUMOI HE TOJIBKO OT BHIOPAHHOTO HEMPHBOANUMOTO
MOJINHOMA, HO U OT MPUMHUTHBHOTI'O 3JIEMEHTA, KOTOPBIH Y4acTByeT B CO31aHUM LTI 0OPATHOH CBSA3U IeHepaTopa.

Pe3yasTatsl. Paspaborannsie 0606menHsie PCJIOC-reHepaTops! IICeBIOCTyYaifHBIX YHCET MOTYT HalTH MMHPOKOE MPUMEHEHHE
B CHCTE€Max MOTOYHOTO MU(POBaHUS HHOOPMAIIUHL.

BreiBoasl. CraTuctuueckne TecTHpOBaHUS pa3paboTaHHbIX 0000meHHbIX PCJIOC-reHepaTopoB NCeBOCITyYaliHBIX YMCEN, BBI-
nosineHHbIe ¢ nomouipto naketoB HUCT CTC u [Juxapa, NoATBEpAMIIM BRICOKOE KaueCTBO IT'€HEPUPYEMBIX IOCIIEI0BATEILHOCTEM.
Bosnee Toro, renepatopbl oKa3ajiuch KpUNTOrpadMyeckd CTOWKHUMHU K atakam bepiexkammna-Meccu. [lepcrnieKTHBHBIM SIBJISETCS UC-
MOJIb30BAaHKE 3TUX T'EHEPaTOPOB VIS Iiejiell (OpMHUPOBaHUS KIFoUuel OOJIBIION pa3MEepPHOCTH, HEOOXOAUMBIX, HAIIPUMED, B IIPOTOKO-
nax mudpoBanus RSA u B apyrux npunoxkeHusx. B xauecTBe HampaBieHUS JadbHEHIINX HCCIENOBAHMI MPEAIIONaraeTcsl paspa-
6otka 0600meHHbIX PCJIOC-reHepaTopoB IceBIOCTyYaiHBIX YrceN Hal mosieM ["amya mpon3BOIbHON XapaKTEepUCTUKY.
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