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ABSTRACT

Context. The management of many economic and other “service” systems of random flows of “requirements” is based on the
prediction of their efficiency, based on an estimate of the system states probability distribution. In a number of important practical
cases, the input flow may have random composition groups of requirements, which determined the applicability of linear algebra
numerical methods for searching probabilities, and also made it difficult to build queuing systems that are effective in a range of
conditions and made it impossible to obtain probability estimates for systems with an infinite number of places to wait for service.
The objects of the study are Markov models of three types of queuing systems: with refusals, with a limited and with an unlimited
number of places to wait in the conditions of the input flow of a random composition groups of requirements.

Objective. The goal of the work is to obtain an analytical description of the final state probabilities which are necessary to
predict the values of efficiency indicators for three types of Markov multichannel queuing systems: with refusals, with a limited and
with an unlimited number of places to wait in the conditions of the input flow of random composition groups of requirements.

Method. In the general case, the probabilities of states in queuing systems with input flow random groups of requirements are
described by Kolmogorov differential equations. The Kolmogorov equations, in the stationary state of the queuing system, are
transformed into a linearly dependent homogeneous system of algebraic equations. The final probabilities of the states of a queuing
system can be found by numerically solving a system of equations using methods well known in linear algebra: complete exclusion,
the inverse matrix, and the matrix method of Ramaswami [3], [38], which takes into account the repeating block structure of the
system of equations matrix. The infinite number of unpredictable combinations for the set of numerical values of the considered
queuing systems parameters makes it difficult to control the operation of such systems and to build systems that are effective in a
range of conditions.

In queuing systems with an unlimited number of places to wait, the number of equations becomes infinite, and numerical
methods become unsuitable for final probabilities searching and for solving problems of analysis, synthesis and control of queuing
systems. Analytical expressions for the final probabilities of queuing systems are obtained by equivalent transformations of
homogeneous systems of algebraic equations in the general case of each type of queuing system mentioned above.

Results. The obtained analytical expressions for the final probabilities of the queuing systems states for three noted system types
are not previously known and therefore required verification of their correctness. Such a check was performed by the way of
degenerate the flow of random groups of requirements in the input of the system to the simplest flow of requirements. As a result of
verification, analytical expressions for the final probabilities of the considered systems states were automatically transformed into the
corresponding well-known models of queuing systems with the simplest input flow of requirements. This effect allows us to consider
the well-known models of queuing systems of the simplest input requirements flow — to be a particular case of the obtained models of
queuing systems with an input flow of groups of requirements.

Conclusions. To further verify the correctness of the results and to assess the degree of influence of requirements random
number in groups of input flow onto the system efficiency, a numerical example is given for the critical conditions of a constant
intensity of requirements flow equal to the total performance of the system’s service channels. In this case, only the average number
of requirements in groups changed. The results of the numerical experiment testify in favor of the correctness of the obtained
analytical expressions for the final probabilities and in favor of the possibility of their practical application in real queuing systems
when solving problems of forecasting efficiency, as well as analyzing and synthesizing the parameters of real queuing systems.

KEYWORDS: Markov models, Queuing systems, Requirements groups.

ABBREVIATIONS M/ /M/n/eo is a designation of the queuing system
QS is a queuing system. noted above but with an infinite number of places to wait,
it means M=oo;
NOMENCLATURE M /M/n is a designation of the queuing system noted
L is a maximum number of requirements in a group; above but with no places to wait and it means with
M/M/n/m is a designation of queuing system; refusals;
M is a designation of Poisson input flow of groups of | is a flow intensity of requirements at the input of the
requirements of random composition with the maximum  queuing system;
number L of requirements in a group; t is a current time;
M is a designation of an exponential distribution of the f,( is a density distribution of the requirements flow

random service time of each requirement;

n is a number of identical channels (devices) in the
queuing system;

m is a number of places to wait;

at the input of the queuing system;

e=2,71... is a second remarkable limit;

Tar 18 @ mathematical expectation of requirement’s
duration of service by the service device;

u is a performance of one service device;
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f, () is a distribution density of service duration;
i is the number of requirements in the group;
v is a number of occupied places to wait;
a; is a probability of a group consisting of exactly i
requirements at the input of the queuing system;
) is a parameter of requirements groups flow at the
input of the queuing system;
A is a parameter of requirements groups input partial
flow that consists of exactly i requirements in the group;
Py is a probability of a queuing system state in which

exactly k devices are occupied,;

Prsy is a probability of a queuing system state in
which exactly n devices are busy by servicing and exactly
y waiting places are occupied by requirements;

p is a load factor of a queuing system with a simplest
flow of requirements;

p;i is a load factor of queuing system by a part of the

input flow of requirements groups;
fi is a non-ordinary function, which deforms the

probability p of the k-th state of the queuing system

when groups appear in the input flow of requirements;
My 4 is the mathematical expectation of the busy

devices number;
M[i] is the mathematical
requirements number in groups;
A is an absolute system capacity;
P.ervice 18 @ service probability of queuing system;

expectation of the

P.fusal 1S @ refusal probability of service;
Sy is a system state, at which exactly k requirements

are under maintenance;
fi is a non-ordinary function.

INTRODUCTION

In industry, science, medicine, commerce, information
networks, management systems, and in other areas, there
is often appears repeated massive demand (flow of
requirements) for various services. To work out such
requirements, the corresponding “service” systems are
created.

The wide distribution and diversity of such systems
has caused the need to develop appropriate models of
queuing systems (QS) for solving problems of analysis,
synthesis and control of real systems. The moments of
occurrence of each requirement and the duration of its
working out (service) are not known in advance (are
random). Therefore, most models are stochastic

In real systems, as a rule, the conditions of the central
limit theorem of A. Ya. Khinchin [18] are satisfied, and
an input flow of requirements, that is close to the simplest
one, is automatically generated. For such conditions, there
are well-known models, for example, in [45]. However,
requirements can often enter the system in groups with an
unknown (random) quantity in the group. In queuing
systems, shock loads occur, the effectiveness of systems
decreases.
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To perform a forecast of the effectiveness in such
system and in such conditions its possible only by
numerical methods for specific numerical values of the
conditions parameters. Unfortunately, the probability of
“guessing” the exact values of the future set of continuous
random variables (the parameters of the conditions) is
strictly zero. Therefore, numerical analysis can be
adequate to the real process only a posteriori, which
sharply reduces its scientific significance and at the same
time makes it important to search not numerical, but
analytical descriptions of state probabilities and efficiency
indicators of queuing systems with an input flow of
groups with random composition of requirements.

The object of study is a steady-state process of
servicing a flow of requirements groups in M /M/n
queuing systems with refusals, as well as with limited
M./M/n/m and with unlimited M /M/n/eco number of places
to wait.

The subject of study is the distribution laws of the
final state probabilities in queuing systems M,/M/n with
refusals, as well as with limited M/M/n/m and with
unlimited M /M/n/eo number of places to wait and in input
flow conditions groups of requirements with a random
number of requirements in groups.

The purpose of the work is to obtain an analytical
description of final probabilities for the general case of
the M /M/n model of a queuing system with refusals as
well as for queuing systems with waiting M /M/n/m,
M/M/nfoo and with a non-ordinary input flow of
requirements. The noted final probabilities are a complete
description of the systems operation and allow estimating
the expected values of all known indicators of the queuing
systems efficiency.

1 PROBLEM STATEMENT
The flow of non-ordinary requirements with intensity

I and density f;(t)=1le"'" enters the queuing system.

Service duration is random and has exponential

distribution f,(t)=pe™ . By virtue of the
distribution densities, a Markov process with continuous
time and discrete states arises in the system.

This paper relies on a system of statements about the
properties of a non-ordinary (general stationary) flow [18,
pp. 14, 40, 41], which we present without proof.

The stationary flow of time points for the arrival of
groups of events without aftereffect is the simplest and is
called the General Stationary Flow or non-ordinary flow.

Non-ordinary flow includes groups of i requirements
(i=1,2,..,L) in a group. The flow can be determined by

noted

setting the probabilities distribution law (a; ) of appearing

exactly i requirements in any group of input flow. Then
the flow parameter A will be less than the flow intension

(I,r<1) and will include partial flows with
parameters A :
L L ]
Ai=hai; A= Ay =Dl (1)
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A. Ya. Khinchin limit theorem [18] for random time
intervals between groups of events in a non-ordinary flow
is preserved and the form of the exponential distribution
of time intervals is preserved too, but with the
parameter A :

fy=re™, t>0. )

At the same time, to fulfill equality (A=1) it is
necessary and sufficient to havea; =1. In this case, the

flow of events becomes the simplest. For all other (non-
ordinary) stationary flows without an aftereffect, the
intensity of the flow is always greater than its parameter
(I>n).

2 REVIEW OF THE LITERATURE

The first model for calculating the part of calls that
receive service at a telephone station was described by A.
K. Erlang [12] in 1909. The process of the telephone
station included the receipt and service of applications
from subscribers to switch communication channels with
other subscribers. The service of each application
consisted in connecting the subscriber — the source of the
application to the free channel of communication with the
required subscriber. After the end of the call, the channel
was released and could be used to service the next
request. The application that arrived at the telephone
station at the time when all channels were busy received a
denial of service. The moments of receipt of applications
and the end of their service were random.

The Erlang-developed model of the mass service
system of requests at the telephone station turned out to
be a universal tool for describing the processes of service
in different systems and in different fields of human
activity. Each of these areas and systems has its own
peculiarities, which led to the development of more
complex models and to the appearance of an independent
scientific direction — the queuing theory.

Currently, queuing system models are being actively
used for analysis, for predicting efficiency and for
optimizing decisions made in various areas. These include
the following areas: telecommunication networks [8, 13,
23, 25, 42, 43], socio-economic systems [11, 24],
production systems [2, 21, 32, 46] and logistic systems
[15, 34, 35], computing systems [5, 19], traffic
management systems [1, 4, 17, 37].

An interesting direction in the theory of queuing
systems is the construction of models with an infinite
number of devices, since it is these models that make it
possible to describe complex technical systems for which
the number of devices can be relatively large. For
example, L. Brown, N. Gans, A. Mandelbaum, and A.
Sakov [8] use such systems to simulate a call center in
which agents provide telephone services almost no
refusals. In such a company, customer service should start
immediately. Therefore, the number of working operators
should be large enough and should be monitored using the
appropriate model.
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Infinitely linear systems are also used as an
approximation for multiline systems in cases where the
probability of denial to service is negligible [14, 26, 27,
31, 36, 39].

At the initial stage, most studies of the queuing theory
were performed under the assumption that the incoming
flow of requests is the simplest [9, 40].

However, the development of computer and mobile
systems has led to the need to create new mathematical
models of requirements flows at the system input, which
are not Poisson or non-ordinary flows. This was the
reason for the increased interest in the study of systems
with more complex incoming flows. Systems with non-
Poisson flows were studied by such authors as G. P.
Klimov [20], G. Sh. Tsitsiashvili [44], P. P. Bocharov, A.
V. Pechinkin [6], A. N. Moiseev and A. A. Nazarov, [29],
S. P. Moiseeva [30], E. A. Doorn and A. A. Jages [10],
V. F. Matveev, V. G. Ushakov [28] and others.

So, in the book of Matveev V. F. and Ushakov V. G.
[28] was obtained generating function of the requirements
number in the system for which the incoming flow is a
superposition of independent flows with the same number
of requirements in packs. For non-Poisson input flows in
a system with an unlimited number of service channels
E. A. Doorn and A. A. Jagers [10] obtained estimates of
the variance for the number of busy servers.

Another important direction in the development of the
queuing theory is the study of the systems operation in the
conditions of the incoming flow, which includes groups
of requirements with previously unknown composition.
Thus, groups of motorcade cars can arrive at a gas station,
visitors can arrive at a roadside restaurant in groups at the
time of vehicles arrival, and the customers flow to the
hotel includes both single customers and groups of several
people, families for example. Such a flow is called non-
ordinary.

A description of queuing system models with non-
ordinary input flow can be found in works of A. A.
Shakhbazov [41], Jung-Shyr Wu and Jyh-Yeong Wang
[16], N. O. Kutselay and S. V. Safonov [22], O. Yu.
Bogoyavlenskaya [7], V. B. Monsik, A. A. Skrynnikov,
and A. U. Fedotov, in works of A. V. Pechinkin [33] and
A. G. Tatashev, M. Akhilgova, S. A. Shchebunyaev.

In the general case, the probabilities of states in
queuing systems M/M/n/m with a non-ordinary input
flow of requirements are described by Kolmogorov
differential equations.

The Kolmogorov equations, in the stationary state of
the queuing system, are transformed into a linearly
dependent system of algebraic equations. The final
probabilities of the queuing system states can be found by
numerically solving the system of algebraic equations
using the methods well known in linear algebra [45] —
complete exclusion, inverse matrix, Kramer determinants.
It should be noted that in this case the determinant of the
algebraic equations system is always zero. Therefore, it is
impossible to apply the Kramer determinant method
directly.
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One of the variants of the noted system algebraic
equations numerical solution is the well-known matrix
geometric method of Ramaswami [3]. This method is
characterized as a method for the analysis of quasi-birth-
death processes, continuous-time Markov chain whose
transition rate matrix has a repetitive block structure. In
this method, the final probabilities of the queuing system
states are found using numerical calculations of the
elements of the Neut’s rate matrix [38].

Analytical description of models is sometimes
possible to find for some performance indicators, as a
rule, for single-channel systems (N. O. Kutselay and S. V.
Safonov [22], O. Yu. Bogoyavlenskaya [7]) with a
specific composition of requirements in input flow groups
(V. B. Monsik, A. A. Skrynnikov, A. U. Fedotov and
A. V. Pechinkin [33]).

The search for regularities that could provide an
analytical description of the final probabilities in the
general case of a queuing system with a non-ordinary
input flow of requirements were engaged in A. A.
Shakhbazov [41], Jung-Shyr Wu and Jyh-Yeong Wang
[16]. In all the studies noted, it was concluded that the
final probabilities sought could ultimately be found only
by numerical methods for a specific flow structure.

One of the reasons for the lack of success in finding
an analytical description of the final probabilities is that
any change in the structure of the input flow of
requirements or in the queuing system leads to a change
in the composition and in the structure of the algebraic
equations system. The number of options that appear is
unlimited. Attempting to identify and describe regularities
of emerging changes is faced with the need to take into
account the enumerated set of combinations in the marked
conditions, which goes beyond the scope of analysis.

However, if numerical methods allow to obtain the
value of final probabilities for queuing systems M /M/n/m
with a limited number of service devices and with a
limited number of waiting places, then for a situation with
an unlimited number of them, for example, for a system
M_/M/n/eo, numerical methods are not suitable due to the
infinite number of algebraic equations.

In addition, the infinite number of variants of
combinations for the numerical values of the M, /M/n/m
system parameters makes it difficult to control the
operation of such systems in real time.

As a result, the relevance of the task of finding an
analytical description for the states final probabilities in

}\.2 }"2 7\‘2
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queuing systems with a non-ordinary input flow of
requirements becomes obvious.

3 MATERIALS AND METHODS

In order to demonstrate the logic of obtaining an
analytical description of the final probabilities, let us
consider a relatively easily visible example for the
M,/M/n system (Fig. 1).

At the entrance of the My/M/n queuing system with
refusals, a non-ordinary flow is coming consisting of two
(L=2) partial flows with parameters A,=21a; and

}\,2 :7\.3.2.

The model’s graph is shown in Fig. 1 and can be
described by Kolmogorov differential equations system

3):
Po(t) =—=Apo(t) +upy(t);
Pr® =-A+kWp®+2Apy_ )+
+h Pk O+ (K+Dup (), 0<k<n;
Pr® =-nup O +Ap O+ A=A ) pPpra(®).

3

Let’s perform a sequential summation of the left and
right sides of the equations in the system (3), we get:

k k
2P =3 [~ +iwpi®+2pi (D) +
i=0 i=0

: “
AP+ A+Dppiy®], 0<k<n.
After identical transformations, the system of
equations (4) takes the form:
k
2 PO =—Kup+ iy +2) Py +AaPk2s 0<k<n.  (5)
i=0

For the conditions of the steady state from formulas
(5) we find:

_7\.1 +7\.2

Kpg (6)

Pkt +%pk_2, 0<k<n.

Let’s call a group of requirements as a request and
introduce the notation for the coefficients (p;, i=0;1) of

the system load by a part of the input flow of requests:

A+ A A
Po =12, P ==2 7
u u
Ao Ao
—
Ay I

XX Sn—l

k+Dp  (n-D)p

kp

Figure 1 — The model graph of queuing system M,/M/n with refusals
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Then we’ll write down the equation:

Kpx =poPk-1 +P1Pk-2,  O<k<n. ®)

For further reasoning, we recall the well-known
Erlang formulas [12] for the queuing system M/M/n with
refusals:

-1
k n oK |

p=F—po, k=L,..n; po=[ 22| ;5 p=—. (9
k! u

k=0 k!

We’ll seek the final probabilities p, of system states

in a form close to well-known Erlang formulas (9):

k
p
Py =—2po fy.

0<k<n.
k!

(10)

Substituting the formulas of the final probabilities (10)
into the expression (8), we get:

po ps”! P’
k o Po fk =Po m]pofklﬂh m}pofkr (11)

After equivalent transformations we obtain a recurrent
expression for the non-ordinary functions values:

fio="Fea+fia p—;(k -1).
Po

(12)

Then let’s find the expression for the probability of
the zero state using the probability normalization
condition, in which we substitute formulas (10), we
obtain:

To determine the value of the first non-ordinary
function ( f,), we substitute the value k=0 in formula

(10) and then we get:

Po="po-fo- (13)

From equation (13) follows the equality f,=1. The
value of the non-ordinary function ( f;) is found from

formula (12) with the valuek =1, we get:

[
fi=fia+ fio2xd-D=f. (14)
Po
Thus, forL=2 the first two non-ordinary functions
turned out to be equal to one unit: f, = f, =1. In this case,

the analytical expressions become definite for all the
desired final probabilities p), which make it possible to
consider the problem is solved.

In the general case, the input of the queuing system
receives a flow of groups of requirements, which consists
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of L partial flows with parametersi; =ia;,i=L...,L.
Then expressions (7) and (8) take the form:
1 L
pi=— 27\,], 0S|<L,
K j=1+i
kpk =poPk-1 +P1Pk2 +-FPk-1Po-

15)

After substitution (10) in (15) we get:

K Pl i
f = fi_ fusi—[[k=-D|; k=2,...,n;
k k1+2{k| —11( 1)1 n (16)

i=2 po j=l
f() = fl :1 .

In these conditions, for the general case of the M /M/n
queuing system with refusals, expressions of the final
probabilities (10) and (13) are retained, but in which
instead of the formula for the non-ordinary functions (12)
it is necessary to use formula (16).

To verify the correctness of the solution obtained,
we’ll find the value of non-ordinary functions f, for the

case of degeneration of a non-ordinary input flow of
requirements into the simplest flow:a; =1; a; =0, i>1.1In

this case, the parameters of the partial flows of requests
with two or more requirements are equal to zero
(Aj=2a;=0,i>1). Then, from formulas (9), (1) and (15)

it follows: py =p; p; =0;i>0.
Substituting the obtained values p; into formulas (12)
and (16), taking into account the equality f,=f, =1we

see that, the second term vanishes and formulas (12) and
(16) take the form:

szfk_lzl; k=1,..,n. (17)

As a result, the expression (10) for the final
probabilities is converted to the well-known Erlang
formulas (9). This result argues in favor of correctness of
the study and of the expressions obtained for the non-
ordinary functions (12), (16) and for final probabilities
(10) in the M;/M/n system with a non-ordinary input flow
and with refusals. At the same time, there are appearing
grounds to consider the Erlang M/M/n queuing system
model as a particular case of the M /M/n model.

The law of states’ probability distribution in a queuing
system allows finding calculation formulas for the
following characteristics: the mathematical expectation of
the busy devices number My,; the mathematical

expectation of the requirements number in groups MJi];
absolute system capacity (A); service probability ( Peyice )

and for service refusal probability ( Prefysal ):

n
Mpg =2 k-Py;

A=p-Mpgq:
“ (18)
Pservice = T; Prefusal =1 = Peervice’
. L . -
MI[il=>i-a; > I =2 -M[i]. (19)

i=1
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In the next step let’s consider the possibility of
obtaining analytical expressions for the final probabilities
of the queuing system with input flow of requirements
groups M /M/n/m and with m places to wait.

Direct application of Kolmogorov’s systems of
differential equations [45] and then their algebraic
analogues up to date has not allowed obtaining analytical
expressions for the final probabilities of states in a
queuing system with the input flow of requirements
groups and with the waiting of M /M/n/m

Therefore, we’ll first try to get analytical describing
the final probabilities for the system M,/M/n/m, then for
analytical describing the final probabilities in the systems
ML/M/n/m and M /M/n/co.

Let’s preserve all the conditions of the queuing system
operation and all designations presented earlier and in
relations (1) — (7).

Additionally, we note that if all n devices in the
system are occupied, then the next request gets in the
queue and can be served by the first released device. The
number of places in the queue is limited to m. If all places
in the queue are occupied, the requirement is denied in
service and it leaves the system. The marked graph of the
queuing system model My/M/n/m is shown in Fig. 2.

For the My/M/n/m queuing system (Fig. 2), the first
group of Kolmogorov differential equations (20)
corresponds to the absence of queue and coincides with
the considered case (10)—(16) of the queuing system with
refusals (Fig. 1).

The second group of Kolmogorov differential
equations (21) corresponds to the condition of having a
queue in the queuing system M,/M/n/m (Fig. 2). And in
all together, we get:

Pk =—A+kwp O +Apyg D)+

20

P ®+ K D@, 0<ksn; 20
Py == +nwP e O+A Ppy O+
APy O +NpP (D), O<y<m;

(21

Prem®==nppnim®O+A P pima O+
+A 2P nim-2 (t)

Let’s do the summation of the marked differential
equations (20) and (21).

YPi=3 -
i=0 i=0
AP O+ (A +Dppi®]+

A+TWPi O+ PO+

<

S

j=1

A+nWPpjO+A 1 Ppyja O+
(22)
AP j2 O +nUp ] O<y<m;

Prem®==Npuppim® +A ppimy O+
+A 2Pnim-2 (t)

The value of the first sum on the right-hand side of
equality (22) can be determined using expression (5) for

the conditionsK =n:

Zpl(t)_ Nupp+ Qg +iy)Pna+AaPns-
i=0

(23)

Then, after identical transformations, the system of
equations (22), for the conditions of stationary operation
of the queuing system M,/M/n/m (Fig. 2), takes the form:

O0==npPpy + A +25)Phoy i +05Pn 0, v=1.,m. (24
Equality (24) can be transformed taking into account
the introduced notation (7) of load factors:

nP :popn+y_1+plpn+y_2, 'Y:L...,m (25)

n+y

The expression for the final probabilities of states

Poiy> ¥=1.om will be sought in the following form:
n Y
nay =%[%°j Pofyys 7=l m;
(26)
Py pkO'POfk, 0<k<n.
After substituting formulas (26) into (25) and

performing equivalent transformations, we obtain a
recurrent expression for calculating the non-ordinary
functions:

p
friy = friya +_é'n' froy—2, v=L..m 27

Po

A
AR g

No queue
A
4 \ M
Zu np ny

Figure 2 — Graph of the M,/M/n/m queuing system model
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The probability of the zero state in the M,/M/n/m
model is found taking into account the probability
normalization condition and the chosen form of
representation of the final probabilities (26), we obtain:

n m
2Pkt 2 Py =15
k=0 y=l1

-1
n Ak N m Y
Spo=| 2Pl Lo [ Lo 28
Po [Eok! k+n!£ n n+y (28)
Thus, the analytical description of the final

probabilities for the queuing system M,/M/n/m with input
flow of requirements groups includes expressions (7),
(12), (26), (27), (28), where f,=f, =1. At the same time,

performance indicators can be found using expressions
(18) and (19). However, to get the mathematical
expectation of the busy devices number (M ) we can

use a more simple expression:

n
Mpg=n-2(n-K)py .
k=0

(29)

In the general case of M /M/n/m queuing system with
waiting, the input of QS receives a flow of requirements
groups, which consists of L partial flows with
parameters A; =Aa;,i=1,.,L. Then an expression (25)

takes the form:

=2
NPnpy = 2P Pmep)-1-j +
=0
n J (30)
+ 2Pk Puks  ¥=1.m.
k=0
After substitution (26) into (30) we get:
72 pi
fn” = f(n+Y)—1 + jzllfnw—l—j pji1 nJ1+
- 0
1 3D
Y=l n B
+n n.z fn—k{j}/;k, 0<Y§m-
Py k=0l po(n—k)!

In this general case of the M /M/n/m queuing system
with waiting, expressions of the final probabilities (26)
and (28) are retained.

For the case of M, /M/n/o queuing system with
waiting and with an infinite number of places to wait and
with (| < np ) there are no service refusals.

Absolute performance equals to intensity of input flow
of requirements (A=1). Then, to calculate the
probability of the zero state of the queuing system and the
mathematical expectation of the number of busy devices,
instead of formulas (28) and (29), we find:

-
n K

Mb.d:i; po:[n_LJ{Z{(n_k)'p_O' kU . (32)
il n) (k=0 k!

From formula (32) it follows that the condition for the
possible occurrence of a stationary mode in the queuing
system M| /M/n/w is the inequality:

I<(n-p). (33)

Inequality (33) determines the need to exceed the total
performance of service devices over the flow intensity of
the requirements at the system input. Otherwise, the
average queue length in the system will increase
indefinitely. All other formulas coincide with the
formulas previously noted.

4 EXPERIMENTS

To evaluate the performance of a queuing system with
refusals, the input flow of requirements groups sometimes
is replaced with the simplest flow and the Erlang model
M/M/n (9) is used.

Let’s consider the admissibility of such replacement
using the example of the M, /M/n queuing system with the
following  parameters: | =7 [requirements/minute];
n=7; L=8; a=1/L, i=1.,L; uzl[minute’l]. In
such a system, the total performance of service devices
coincides with the intensity of the input requirements flow
(1 =n-p). Therefore, in the case of deterministic input
flow, all requirements must be served. The marked graph
of the model is presented in Fig. 3.

Figure 3 — The model graph of queuing system M; /M/n with refusals (n=7; L=8)
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The probabilities of the model states (Fig. 3) in the
steady state are described by the formulas (1), (10), (13),
(15) and (16). These formulas we repeat for ease of
analysis:

L L
Mi=hap, i=lo,L; A=Y2i; 1=YiA;;
i=1 i=
L K
pl—l ijy 0<i<lL; pk—p—opofk,0<k<n,
Hjlhi k!
-1
K
Sp
po—{zk—ﬂka ; fo="1=1;
k=0 K'

5 RESULTS
Non-ordinary functions f, are described by formula
(16) in the case of an example (Fig. 3) will take the
following form:

fo=fi=l; f=fi+f2l@-1);
PG

fy=fh+ i G-n+{,P2G-nE-2):
Po Po

f=fy+ o 2h@-n+ f 22 @-n@-2)+
Po Po

+ 1 22 (4-n@-2)@-3);
Po

fo=forf; Plar £, 024351 22 4304
Po Po Po
DR PRSP R
Pd

fo=fs+fy Phoss 102004 1, P2 604
Po Po Po
+ £ 24120+ £, P2 120,
Po Po

fr=fo+ fs 2L+ 1, 2230+ £, 22120+
Po Po Po

+1,22.360+ £, 22720+ £, 2¢. 720,
Po Po Po

We use formulas (9) and estimate the probabilities
( px) of the system states and the probability of servicing

the requirements in the Erlang model for the conditions of
the simplest input requirements flow with the parameters
noted above (| =7 [requirements/minute]; p=1; n=7).
The calculated results of the final probabilities and
probabilities of requirements servicing in the M /M/n and
M/M/n queuing systems are presented in Table 1, Table 2
(No. 1-36) and on Fig. 4. From the quantitative estimates
(Table 1, Fig. 4a), we can draw the following conclusion.

6 DISCUSSION
The appearance of groups in the input requirements
flow of the same intensity changes the probability
distribution of the system states (Table 1 No. 27-34) and
leads to a decrease in the probability of service (Table 1
No. 36 Peepyice gr = 0.547) compared with the probability

of service in the Erlang model (Tablel No. 37-44 and
Table 1 No. 45 Psepyice er =0.751).

The influence of the requirements groups’
composition on the changes in the final probabilities is
concentrated in values of the multiplicative (10) non-
ordinary functions (16) (Table 1 No.19-26). The noted
discrepancies are increasing significantly with an increase
in the maximum number of requirements in groups
(Table 2, No. 4, No. 28-34, Fig. 4b). At the same time,
the non-ordinary functions (Table 2 No. 19-26) allow
taking into account changes in the probabilities of the
queuing system states and can be increased up to values
of 10° and more (Table 2 No. 26).

We watch, that an increasing in the mathematical
expectation of the requirements number in groups
(Table 2 No. 37-45, Fig. 5) leads to an asymptotic
tending to zero of the requirements servicing probability.

In the natural environment, an analogue of such
processes can be the interaction of a group of predators
(service devices) with large groups of victims — grass-
feeding animals on land or fish in the sea.

Table 1 — Evaluation of the influence of requirements groups in the input flow on the state’s probabilities
in the queuing system (see Fig. 3. Fig. 4a)

Model M, /M/n (names and values of model parameters) Model M/M/n

# | Name Value # | Name Value # | Name Value # | Name Value # | Name Value

1 n 7 10| M[i] 451 19 fy 1| 28 P, 0.105| 37 Py 0.002
2 n 1 11 Po 1.556| 20 f) 1] 29 P, 0.128] 38 P, 0.011
3 | 7 12 P1 1.361] 21 f, 1.56| 30 P, 0.141] 39 P, 0.037
4 L 8 13 P2 1.167] 22 fs 3311 31 P, 0.145] 40 Py 0.087
5 A 1.556| 14 P3 0.972| 23 fy 8.8 32 Ps 0.144| 41 P, 0.152
6 a 0.125] 15 Pa 0.778 | 24 fs 28.1] 33 Pg 0.139] 42 Ps 0.213
7 i 0.194] 16 Ps 0.583| 25 fo 104| 34 P, 0.129] 43 Ps 0.249
8 |p=l/pn 7 17 Ps 0.389| 26 f; 437| 35| Mg 526| 44 P, 0.249
9 [l/np 1 18 p7 0.194| 27 Py 0.068 | 36| Peerver 0.547| 45| Py 0.751
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Table 2 — Estimation of the tendency in the probabilities of states in the queuing system M, /M/n and the probability Pgi.. of the
requirements servicing with an increase in the maximum number of requirements L in groups of input flow (see Fig. 4b. Fig. 5)

Calculation of the state’s probabilities in QS M /M/n (see Fig. 4 b) Peerv.e=f(M[i]) (see Fig. 5)
# | Name |Value | # |Name |Value | # [Name |Value |# [Name |Value|#|L| & Ai IMIi]|Pserv.er|
1l n 7[10{M[i] 18]19] fo 1{28] P, 0.16)37| 1 1 7 110.751
2] w 1111] po 0.3920] f 1{29] P, 0.11]38| 5| 0.2 2.333 3/0.618
3 | 712 py 0.38[21| f, 3.86{30| Ps 0.09]39(10] 0.1 1.273| 5.5|0.507
4] L 35 [13] p» 0.37|22| f5 259(31| Py 0.07]40(15]0.067 0.875 8]0.429
5| A 0.39(14] ps 0.36/23| f4 247|32| Ps 0.06]41(20] 0.05 0.667|10.5|0.371
6/a=1/L|0.0286[15| p, 0.34|24| f; 3066|33| Ps 0.05]42(25] 0.04 0.538| 13]0.327
70 M |0.0111[16] ps 0.33125| fs 46746|34| P, 0.05]43(30]0.033 0.452|15.5|0.293
8| I/u 7117] pe 0.32126| f; | 845472|35| Myq 1.69]44(35]0.029 0.389| 18]0.265
9| I/nu 1118 py 0.31{27| Py 0.41|36| Psr, | 0.27]45[40]0.025 0.341/20.5|0.242
Pk MyM/n QS with regard to Pk M3s/M/n QS with regard to
0.3~ groups of requirements 0.57 groups of requirements -

Erlang M/M/n ‘."'1“.” 0.4 / Erlang M/M/n QS

021\ Q8 4= 0.3 \
\ o 0.2

0.1

0 1 2 3 4 5 6 7k 0 1 2 3 4 56 7k

Figure 4 — Probabilities Py of the states of the same queuing system — without taking into account the groups of requirements in the
input flow (Erlang model M/M/n) and — taking into account the groups of requirements in the composition of the real input flow with
at the same intensity | =7 [requirements/minute] (n=7; p=1 [minute ']; Peervice Erlang = 0.751)

Pservice

0.7
0.5
0.3

e
0.1 .~ ——

0.0

—
o

20 40 60 80

MIi]

Figure 5 — The change in the probability of service (Pgice) in the queuing system M, /M/n with constant flow intensity of groups of
requirements (I =7 requirements/minute; n=7; p=1 [minute ']; a=1/L) and with increasing mathematical expectation M[i] of the
number of requirements in groups

The increase in the number of victims reduces the
probability of their death (service), which can be
evaluated within the model M, /M/n.

The considered features determine the need to take
into account the composition of groups in the input flow
of requirements when making assessments and when
managing the corresponding queuing systems.

CONCLUSIONS
In the course of solving an actual scientific problem,
analytical expressions were first obtained for the final
state probabilities in M;/M/n queuing systems with

© Gorodnov V. P., 2019
DOI 10.15588/1607-3274-2019-4-0

refusals, as well as with limited M /M/n/m and with
unlimited M/M/n/c number of places to wait in the
conditions of input flows of requirements groups with a
random number of requirements in groups.

The scientific novelty of obtained results consists in
creating possibilities for predicting the efficiency of three
types of Markov queuing systems with an input flow of
requirements groups with random requirements number in
groups. At the same time, the well-known Markov models
of servicing the simplest flow of requirements turned out
to be a particular case of the considered models with an
input flow of groups of requirements. In new formulas, all
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the features of servicing groups of requirements are
localized in recurrent expressions for non-ordinary
functions.

The practical significance of obtained results
consists in creating conditions for the directed solution of
problems of analysis, synthesis and control of Markov
queuing systems in the general case of an input flow of
requirements groups with a random number of
requirements in groups. The obtained formulas for
calculating the values of the non-ordinary functions are
recurrent and convenient for practical calculations. The
numerical values of these functions clearly show the
deformation of the state’s final probabilities in queuing
systems with an input flow of requirements groups
compared to the known queuing systems with the
simplest input flow of requirements.

Prospects for further research may include building
models of queuing systems of requirements groups with
the departure of requirements from the queue of queuing
systems and models of systems with incomplete
availability of service devices. Each of these systems is an
actual model of real systems in the economy, in medicine,
in modern communication systems and in other areas.
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AHAJITAYHUAN OIAC ®THAJBHAX IMOBIPHOCTEM CTAHIB CUCTEM MACOBOI'O
OBCJIYT'OBYBAHHA 3 BXIJIHUM IOTOKOM I'PYII BUMOI'

T'opoanoB B. II. — n-p BiiicekoBux Hayk, npodecop, mpodecop Hamionamsroi akamemii HamiomampHol rBapaii Ykpaiuu,
XapkiB, YkpaiHa.

AHOTAIIA

AKTyalnbHicTh. PO3IIISIHYTO TpH THIIM CHCTEM MacoBOrO OOCIYTrOBYBaHHS: 3 BiIMOBaMH, 3 OOMEXEHOIO i 3 HEOOMEXEHOIO
KIUJIBKICTIO MICIb ISl OYIKYBaHHS B YMOBaxX BXIJHOTO IIOTOKY IpYIl BUMOT BHIIQJKOBOTO ckiamy. OO’€KTOM HOCIIDKEHHS Oyin
MapKOBCbKM MOJENI 3a3Ha4eHHX CHUCTEM MAacoBOro 00CIyroByBaHHs. Mera poOOTH — 3HAWTH aHANITHYHUKA OmMUC (iHATBHHX
HMOBIpHOCTEI, 1110 JO3BOJISIE BUPIIIYBaTH 3aBIaHHs IPOrHO3Y e()eKTHBHOCTI, aHAJI3Y 1 CHHTE3y MapaMeTpiB 3a3HaYCHHUX CHCTEM.

Merton. /g nomyky ¢iHanbHUX HMOBIPHOCTEH BHKOPHUCTAHUI METOJ €KBIBaJICHTHHX MEPETBOPEHb CUCTEM JIHIMHO 3aJIe)KHUX
anreOpaiyHuX PiBHSAHb, OTPUMAHUX TPAHWYHUM IEPEX0J0M 3 AudepeHmialbHuX piBHIHb KOIMOropoBa, 10 OMUCYIOTh KOXKHY 3
CHCTEM MacoOBOT0 OOCIyroByBaHHs. IT0Ka3aHO, II0 METOIHM YHCEJIBHOTO PIllICHHS, SKi BUKOPHCTOBYIOTHCS, 3aCHOBaHI HAa TOYHHX
3HAYEHHSX YHCJIOBUX MapaMeTpiB yMOB poOOTH cucTeM. Taki mapaMeTpH BIANOBIOAaIOTH KaTeropii Oe3HepepBHUX BHIIAJKOBHX
BEJIMYMH, TOYHI 3HAYCHHS SKHX MOXKHA TEPeIOa4YUTH 3 BIPOTIAHICTIO CTPOTO PIBHOK HYJIIO, IO POOUTH YUCETBHUI PO3B’A30K
1030aBJICHUM HPOTHOCTHYHHX BJIACTUBOCTEH 1 HE MPHAATHUM JUIs TIPAKTHKH aHAJi3y, CHHTE3y 1 yIpaBiiHHS POOOTO 3a3HaYEHUX
cucrteM obcimyroByBanHsa. KpiM Toro, B cucreMax OOCIyroByBaHHsS 3 HEOOMEKEHHM YHCIOM MiCIb Ul OYiKyBaHHS KiJTbKiCTh
PIBHSIHb HE OOMEXEHa, 110 BUKIIIOUAE MOXKIIUBICTD X YHCETBHOTO PillICHHSI.

PesyabTatn. KopekTHicTh 3HalileHMX aHANITHYHAX BHUPa3iB (iHAJBHUX HMOBIPHOCTEH A CTaHIB TPHOX THIIIB CHCTEM
MacoBOT0 00CIIyrOByBaHHS TMEPEBipeHa IIISIXOM BUPOHKEHHS MMOTOKY TPYI BUMOT Ha BXOZ1 KOXKHOI CUCTEMH B HAUIPOCTIMINIA MOTIK
BUMOT. Y BCIX BHIIAJIKaX BHPAKEHHSI AaBTOMATHYHO NEPEXONWiIN B AoOpe Bimomi QopMyim Ui cuUCTeM OOCIyrOBYyBaHHS
HaWMpPOCTILIOro MOTOKY BUMOr. HaBeaeHO NPHKIaA pO3paxyHKIB, sSKMH BIIEpLIC YHCEIBHO IEMOHCTpYe (i3HYHHN 3MICT 3MiH B
po6oTi cucTeM 00CITyTOBYBaHHS IIPH IOSIBI TPYII BUMOT B CKJIa/{i BXiJHOTO TIOTOKY.
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BucHoBku. J[o TenepimHboro 4acy crpoOu OMHCY CHCTEM MacoBOrO 0OCIYroBYBaHHs 3 BXiJHHMM IIOTOKOM I'pyIl BUMOT BiJOMi
TITBKU JUISL OMMHUYHUX OKPEMUX BHIAJKIB CTPYKTYPH CHCTEMH i CTPYKTYPH BXIJHOTO IOTOKY. PO3IUIsIHYTHI METOX i pe3ysbTaTu
MICTSITh TOBHUN aHANITHYHUN omuc (iHATBPHUX HWMOBIPHOCTEH CTaHIB Ui ILIJIOTO KJIacy CHCTEM MAacOBOTO OOCIYrOBYBaHHS 3
BXiJIHUM MOTOKOM T'PyIl BUMOT: CUCTEM 3 BiZIMOBaMH, 3 0OMEKEHHUM YHCIOM MICIb JUIsl O4iKyBaHHS 1 3 HECKIHYEHHUM YHCIIOM MiCIlb
Juis ovikyBaHHA. Lli pe3ynbTaTi BigKpUBAIOTh MOMIIHBICTD MPOTHO3Y €(EKTUBHOCTI CHCTEM MAacOBOTO OOCIIyrOBYBAaHH B Jliarna3oHi
YMOB 1 I03BOJIIIOTH BBJKATH IOCTABICHY METY JOCIIDKEHHS — OCSATHY TOIO.

KJIFOYOBI CJIOBA: mozeni MapkoBa, cHCTeMH MAaCOBOTO 0OCITYTOBYBaHHSI, TPYIIH BUMOT.

YK 519.872
AHAJIUTUYECKOE OITUCAHUE ®UHAJIBHBIX BEPOSATHOCTEN COCTOSTHUM CUCTEM
MACCOBOI'O OBCJIYKUBAHUSA C BXOAHBIM IIOTOKOM I'PYIIII TPEBOBAHUHA

I'opoanos B. Il. — 1-p BoeHHbIX Hayk, podeccop, npodeccop HaunonanbHoi akanemin HaunoHanbHOM rBapani YKpauHsl,
XapbKoB, YKpauHa.

AHHOTAIUSA

AKTya/lbHOCTb. PaccMOTpeHBI TpPH THIA CHCTEM MAacCOBOTO OOCITY)KHBAHHSA: C OTKa3aMH, C OIPAaHHYEHHBIM U C
HEOTPAaHWYIEHHBIM KOJIIMYECTBOM MECT IJISI OXHAAHMSA B YCIOBHSIX BXOAHOTO IOTOKAa TPyHI TpeOOBaHMIl CIIy4alfHOTO COCTaBa.
OOBEKTOM HCCIIeIOBaHNUS SIBISUINCH MApPKOBCKHE MOJETH OTMEUEHHBIX CHCTEM MaccoBOTrO ooOciyxwBaHus. Llens paboTel — HaiiTi
AQHAINTHYECKOE ONHMCAHHE (QHMHAIBHBIX BEPOSTHOCTEH, MO3BOJIAIONIEE PENIaTh 3aJa4l MPOrHo3a 3P HEeKTHBHOCTH, aHATIN3A M CHHTE3a
NapaMeTpPOB OTMEUYEHHBIX CHCTEM.

Metoa. [l mowcka (UHAIBHBIX BEPOSTHOCTEH HCIIOIB30BaH METO]| SKBHBAJICHTHBIX NPeoOpa3oBaHUIl CHCTEM JIMHEHHO
3aBHCHMBIX aIreOpandecKuX ypaBHEHHMH, MOIyUeHHBIX MpeJeIbHbIM IepexonoM u3 auddepeHnnanbHbIx ypaBHeHuii Konvoroposa,
OMHUCHIBAIOIUX KXyl W3 CUCTEM MaccoBoro obcmyskuBaHMs. IlokazaHO, YTO HCIOIB3yEeMBIE METOJbI YHCIEHHOTO PEIIEHHUS
OCHOBAaHBI Ha TOYHBIX 3HAYCHUSX YHCIOBBIX MapaMETPOB ycloBuil paboThl cucteM. Takue mapameTpbl COOTBETCTBYIOT KaT€rOPHU
HETIPEPBIBHBIX CIyJaifHBIX BEIWYMH, TOYHBIC 3HAUEHUS] KOTOPBIX MOXHO MPEIBUJIETH C BEPOSTHOCTHIO CTPOTO PAaBHOW HYIIO, UTO
JeTaeT YHCICHHOE pEeHIeHHEe JMIIEHHBIM INPOTHOCTHYECKMX CBOWCTB M HE IPUTOJHBIM JUIS TIPAKTHKH AaHalN3a, CHHTE3a U
yTpaBiIeHHs: paboTOH OTMEYEHHBIX CHCTeM oOciykuBaHHs. Kpome Toro, B cucreMax OOCTyKHBaHHS C HEOTPAaHHYECHHBIM UHCIIOM
MECT AJIs1 O’KU/IaHKs KOJIMUECTBO YPAaBHEHUI HE OTpaHUUEHO, YTO UCKII0YAEeT BO3MOKHOCTh UX YUCICHHOTO PELICHUSL.

Pe3yabTaThl. KOoppeKTHOCTD HalIEHHBIX aHAJTUTHYECKUX BBIPAKCHUI (UHAIBHBIX BEPOSTHOCTEH IS COCTOSIHUH TpeX THIIOB
CHCTEM MacCOBOTO OOCIy’)KMBaHHUs IIPOBEPEHa IyTEM BBIPOXKIECHHS IOTOKAa Ipynn TpeGOBaHMI Ha BXOJE KaXIOH CHCTEMBbI B
NpoCTeHIINi MoTOK TpeGoBaHUil. Bo Beex cilydasix BhIpa)KeHHs aBTOMATHYECKH IEPEXOIMIM B XOPOILIO W3BECTHBIC (hOPMYJIBI s
CHCTEM OOCIYXMBaHUs MPOCTEHIIEro MOTOKa TpeboBaHMid. [IpuBeneH mpumep pacueToB, BIEPBBIE YHCIEHHO AEMOHCTPHPYIOLIUN
(u3udecKuii CMBICT H3MEHEHHUH B paboTe cHCTeM 00CITy KUBAHHS IIPH TOSBICHUH TP TPeOOBAaHMI B COCTaBE BXOJHOTO ITOTOKA.

BoiBoabl. Jlo HACTOSIIETO BPEMEHM IIONBITKH ONHCAHHSA CHCTEM MAaCCOBOTO OOCIY’KMBAHUSI C BXOJHBIM IIOTOKOM TpPYIII
TpeOOBaHMH W3BECTHBI TOJNBKO JUI EOWHWYHBIX YaCTHBIX CIIydaeB CTPYKTYPBI CHCTEMBI M CTPYKTypHl BXOJHOTO IIOTOKA.
PaccMOTpeHHBIH METON M pe3yNbTAaTHl COAEPKAT IIOJHOE AaHATUTHIECKOE OIMCAaHHE (MHAIBHBIX BEPOSTHOCTEH COCTOSHUH IS
LIEJIOr0 KJIacca CUCTEM MAacCOBOTO OOCITY>KMBaHMS C BXOZHBIM ITOTOKOM TIPYIIT TPEOOBAHMIA: CHCTEM C OTKa3aMH, C OTPaHWYEHHBIM
YHCIIOM MECT I OKHJIAHUS U ¢ OECKOHEYHBIM YHCJIOM MECT JUIS OKHJAHUsL. DTH PEe3yJIbTaThl OTKPHIBAIOT BO3MOXKHOCTH IPOTHO3a
5(Q(}EKTUBHOCTH CHUCTEM MAacCcOBOrO OOCIY)XMBaHUS B JHMANa30HE YCIOBUH M MO3BOJIIOT CUMTATh IIOCTaBJICHHYIO LEJb
HCCIIEA0BAHUS — JOCTUTHYTOM.

KJIFOYEBBIE CJIOBA: MapKOBCKHE MOJENH, CHCTEMBI MaCCOBOTO OOCITYKHBAHUSI, TPYIIIBI TPEOOBAHHH.
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