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ABSTRACT

Context. The problem of automation synthesis of artificial neural networks for further use in diagnosing, forecasting and pattern
recognition is solved. The object of the study was the process of synthesis of ANN using a modified genetic algorithm.

Objective. The goals of the work are the reducing the synthesis time and improve the accuracy of the resulting neural network.

Method. The method of synthesis of artificial neural networks on the basis of the modified genetic algorithm which can be im-
plementing sequentially and parallel using MIMD — and SIMD-systems is proposed. The use of a high probability of mutation can
increase diversity within the population and prevent premature convergence of the method. The choice of a new best specimen, as
opposed to a complete restart of the algorithm, significantly saves system resources and ensures the exit from the area of local ex-
trema. The use of new criteria for adaptive selection of mutations, firstly, does not limit the number of hidden neurons, and, secondly,
prevents the immeasurable increase in the network. The use of uniform crossover significantly increases the efficiency, as well as
allows emulating other crossover operators without problems. Moreover, the use of uniform crossover increases the flexibility of the
genetic algorithm. The parallel approach significantly reduces the number of iterations and significantly speedup the synthesis of
artificial neural networks.

Results. The software which implements the proposed method of synthesis of artificial neural networks and allows to perform
the synthesis of networks in sequentially and in parallel on the cores of the CPU or GPU.

Conclusions. The experiments have confirmed the efficiency of the proposed method of synthesis of artificial neural networks
and allow us to recommend it for use in practice in the processing of data sets for further diagnosis, prediction or pattern recognition.
Prospects for further research may consist in the introduction of the possibility of using genetic information of several parents to form
a new individual and modification of synthesis methods for recurrent network architectures for big data processing.

KEYWORDS: data sample, synthesis, artificial neural network, genetic algorithm, neuroevolution, mutation.

ABBREVIATIONS
ANN is an artificial neural net;
EA is an evolutionary algorithm;
ESP is an enforced subpopulations;
MGA is a modified genetic algorithm;
NEAT is a neural evolution through augmenting to-
pologies;
PMG is a parallel modified genetic algorithm;
RAM is a random access memory;
RV is a random value;
SANE is a symbiotic adaptive neuroevolution.

G is a generation of the individuals;

Oing 1s a genes (genetic information) of the individ-
ual;

Ind is an individual from the population (generation);

Ny, is a hidden neuron;

N; is an input neuron;

Ng is an output neuron;

NN is a neural net or individual from the population

(generation);
P is a population of the individuals (neural nets);

NOMENCLATURE
FB is a feedback connection between neurons;

fcompaiff is a criterion which characterizes the condi-

tional complexity of the network;
feon is a criterion which characterizes the degree of

connectedness of neurons in the network;
f fitness 18 @ fitness function of the individual;

fiop.diff is a criterion which characterizes the com-

plexity of the network;

Pconvergene 18 @ probability of early convergence of
the method;
Pmut is a probability of mutation;

W is a connection between neurons.

INTRODUCTION
The choosing of topology and configuration the
weights of connections of the ANN are the most impor-
tant stages in the use of neural network technologies for
solving practical problems [1-7]. From these stages de-
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pends on the quality (adequacy) of the obtained neuronet
models, control systems, etc.

Synthesis of ANNs by the traditional method is per-
formed, in fact, through trial and error. The researcher sets
the number of layers of neurons, as well as the structure of
connections between them (the presence/absence of recur-
rent connections), and then analyzes the result. That is,
ANNE is trained using any method, and then tested on a test
sample. If the results of the synthesis meet the specified
criteria, the task of building the ANN is considered to be
completed successfully; otherwise, the process is repeated
with other values of the output parameters [8—15].

Of course, the rapid development of the theory and
practice of the using of genetic algorithms, forced re-
searchers to look for ways to apply them to the problem
of searching optimal structure of ANN (the evolution of
neural networks or neuroevolution). This decision be-
comes even more logical if drawing a parallel with the
real world, that is, if the idea of ANNSs is borrowed from
the nature, then the evolution of the nervous system with
the subsequent formation and development of the brain is
an example of solving such a problem [16, 17].

The object of study is the process of synthesis of
ANN using a modified genetic algorithm.

For the decision of tasks of choosing the topology of
ANN, and settings of the weights of all neurons and rig-
orous methods to date do not exist. The proposed solu-
tions are aimed at solving local problems, through which
the structure of the ANN is unsatisfactory, and the train-
ing time is large. In this case, it must to create a network
and make calculations again. Even less attention is paid to
the construction of multilayer asymmetric ANNSs, charac-
terized by complexity and multivariance.

The subject of study is the sequential and parallel
method of synthesis of ANNs.

To date, there are several methods for the synthesis of
ANN:S, based on the use of evolutionary algorithms, how-
ever, it should be noted that most of these methods have
similar disadvantages: a considerable time and a highlyit-
erative nature. Therefore, the paper proposes two ap-
proaches: a MGA and PMGA for the synthesis of ANNs.

The purpose of the work is to reduce the synthesis
time and improve the accuracy of the resulting ANN. Ad-
ditionally, determine the feasibility of using parallel im-
plementation of MGA.

1 PROBLEM STATEMENT

The basis of ANNs are neurons with a structure simi-
lar to biological analogues. Each neuron can be repre-
sented as a microprocessor with several inputs and one
output. When neurons are joined together, a structure is
formed, which calls a neural network [18]. Vertically
aligned neurons form layers: input, hidden and output.
The number of layers determines the complexity and, at
the same time, the functionality of the network, which is
not fully investigated.

For researchers, the first stage of creating a network is
the most difficult task. The following recommendations
are given in the literature [10].

1) the number of neurons in the hidden layer is de-
termined empirically, but in most cases used the rule
Np <N +Ng;

2) increasing the number of inputs and outputs of the
network leads to the need to increase the number of neu-
rons in the hidden layer;

3) for the ANNs modeling multistage processes re-
quired additional hidden layer, but, on the other hand, the
addition of hidden layers may lead to overwriting and the
wrong decision at the output of the network.

Based on this, we present the problem as follows: for
the synthesis of ANN (NN ) it is necessary to determine

the set of neurons N :{Ni,No,Nh}, what consists of
subsets of input N; ={Ni1,N- Nin},n=1,2,...,|Ni|,

[REIRED

output N ={Ng, N, .sNg fn=12,...N| and hidden

neurons Np, = {Np, N, s Ny fn=12,...|Np| and a lot

of weights of connections between neurons w={w;}.

Having determined the values of the elements of the sets,
we can consider the synthesis of ANN — complete.

2 REVIEW OF THE LITERATURE

The combination of ANNs and EA makes it possible
to combine the flexibility of setting ANNs and adaptabil-
ity EA, which allows to implement a largely unified ap-
proach to solving a wide range of problems of classifica-
tion, approximation and modeling [19-29].

The first work on the use of EA for training and set-
ting up ANN’s, appeared about 20 years ago [30-31].
Research in this area is usually associated with the fol-
lowing tasks:

—searching for the values of weights of connections
ANNSs with a fixed structure;

— setting the structure of the ANN without first finding
the weights of connections;

— setting the parameters of the training algorithm;

— setting parameters of neuronal activation functions;

— filtering training data;

— various combinations of the above tasks.

Neuroevolution approach for simultaneous solution of
two main tasks of the synthesis of ANNs: setting the
weights of connections and the structure of ANN, allows
compensating to some extent the disadvantages, inherent
in each of them separately and combining their advan-
tages [32-35]. On the other hand, the price of it is a huge
searching space, as well as combining a number of disad-
vantages caused by the using of the evolutionary ap-
proach. Summing up, we list the advantages and disad-
vantages.

The advantages include:

1) independence from the structure of ANN and char-
acteristics of neuronal activation functions;

2) the ability to automatically search for the ANN to-
pology and obtain a more accurate neural network model.
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As noted, the synchronous solution of two problems
avoids some difficulties. So the appearance of individuals
in the population, which correspond to ANNs with differ-
ent topologies, reduces the importance of the problem of
competing solutions, and the availability of information
about the weights of connections allows to bypass the
problem of subjective assessment of the structure of ANN
[33], due to the fact that the structure of the neural net-
work is not estimated, but the entire ANN completely.

However, there are other disadvantages:

1) the complexity of fine-tuning the connections
weights in the later stages of evolutionary search;

2) large, compared with gradient algorithms, the re-
quirements for the amount of RAM through the use of the
population of ANNs;

3) the complexity of the organization of search topol-
ogy ANN.

Despite the fact that in most of the works devoted to
the neuroevolutionary approach, only a theoretical ap-
proach to solving the problems of neural network optimi-
zation is proposed, several methods can be found that are
recognized as promising and worthy of attention [32—-39].

From the early works of noteworthy cellular Frederick
Gruau method [40-42] uses a special grammar for the
representation of neural network structures. One individ-
ual represented an entire neural network, with each neu-
ron considered as a biological cell, and the growth of the
network was determined through the mechanisms of se-
quential and parallel “division” of neurons i.e. cells.
However, this method involves the implementation of a
large number of specific operators that provide simulation
of cell activity.

The SANE [43, 44] method uses a different approach.
It is consider the development of two independent popula-
tions, one of which individuals are separate neurons, and
the other contains information about the structures of an
artificial neural network. The disadvantages of this meth-
od include the fact that the number of hidden neurons and
connections is limited.

The ESP method [45, 46] is a development of the sane
method. Its main difference is that the network structure is
fixed and is given a priori. The population of neurons is
divided into subpopulations, in each of which the evolu-
tion is independent. Due to parallelization of the solution
search, as well as simplification of the problem due to the
rejection of the evolution of the artificial neural network
structure, ESP works much faster than SANE, sometimes
by an order of magnitude, but for the successful operation
of the method it is required to choose the appropriate
structure of the neural network [47].

One of the most potentially successful attempts to get
rid of the disadvantages of direct coding while preserving
all its advantages is the method proposed in 2002, called
NEAT [48, 49]. Designed by Kenneth Stanley, the NEAT
method allows customizing the structure of the network,
and without restrictions on its complexity. The solution
proposed by the authors is based on the biological concept
of homologous genes (alleles), as well as on the existence
in nature of the synapsis process — the alignment of ho-
mologous genes before the crossover. The technique as-
sumes that two genes (in two different individuals) are

homologous if they are the result of the same mutation in
the past. In other words, with each structural mutation
(gene addition), a new gene is assigned a unique number,
which then does not change during evolution. The method
uses a number of techniques, such as historical labels and
specialization of individuals, to make the process of evo-
lution significantly more efficient [50].

Summing up, it can be noted that the joint use of evo-
lutionary methods and artificial neural networks allows us
to solve the problems of configuration and training of
artificial neural networks both individually and simulta-
neously. One of the advantages of this synthesized ap-
proach is largely a unified approach to solving a variety of
problems of classification, approximation, control and
modeling. The use of qualitative evaluation of the func-
tioning of artificial neural networks allows the use of neu-
roevolutionary methods to solve the problems of the study
of adaptive behavior of intelligent agents, the search for
game strategies, signal processing. Despite the fact that
the number of problems and open questions concerning
the development and application of neuroevolutionary
methods (coding methods, genetic operators, methods of
analysis, etc.) is large, often for the successful solution of
the problem with the use of neuroevolutionary method
adequate understanding of the problem and neuroevolu-
tionary approach, as evidenced by a large number of in-
teresting and successful works in this direction [33-36].

3 MATERIALS AND METHODS

The paper proposes a consistent implementation of
MGA for the synthesis of ANN.

In the method, which is proposed to find a solution us-
ing a population of neural networks:
P={NN;,NN,,.,NN_}, that is, each individual is a
separate ANN Ind; — NN; [51]. During initialization
population divided into two halves, the genes
Oind, = {gl, gz,...,gn}of the first half of the individuals is

randomly assigned
Oind; = {91 =Rand, g, =Rand,...,g, = Rand}. Genes of

the second half of the population are defined as the inver-
sion of genes of the first half

Jind; = {91 =Rand, g, = Rand,..., g, =Rand}. This al-

lows for a uniform distribution of single and zero bits in
the population to minimize the probability of early con-
vergence of the method: pgynyergenc e = min -

After initialization, all individuals have coded net-
works in their genes without Ny, and all N; are con-
nected to each N, . That is, at first, all the presented

ANNSs differ only in the weights of the interneuron con-
nection W;. In the process of evaluation, based on the
genetic information of the individual under consideration,
a neural network is first built, and then its performance is
checked, which determines the fjyess Of the individual

[51-53]. After evaluation, all individuals are sorted in
order of reduced fitness, and a more successful half of the
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sorted population is allowed to cross, with the best indi-
vidual immediately moving to the next generation. In the
process of reproduction, each individual is crossed with a
randomly selected individual from among those selected
for crossing. The resulting two descend-ants are added to
the new generation: G = P'={Ind;, Ind,,..., Ind,, } . Once a

new generation is formed the mutation operator starts
working. However, it is important to note that the selec-
tion of the truncation significantly reduces the diversity
within the population, leading to an early convergence of
the algorithm, so the probability of mutation is chosen to
be rather large: py, =15-25% [51].

If the best individual in the population does not change
within a certain number of generations (by default, it is
proposed to set this number at seven), a new best individual
is selected from the queue. This approach significantly
saves time and resources of the system, in contrast to the
complete restart of the method, but also allows implement-
ing the exit from the area of local extrema due to the relief
of the objective function, as well as a large degree of reli-
ability of individuals in one generation.

It should be noted that the number of hidden neurons
is theoretically unlimited. To regulate the size of the re-
sulting networks, three criteria are used: the criteria for
regulating the size and direction of development of the
network, allowing at the stage of mutation to adaptively
choose which type of structure transformation is more
suitable for this network.

Obviously, the chosen method of coding requires spe-
cial genetic operators that implement crossover and muta-
tion.

The uniform crossover operator is one of the most ef-
ficient recombination operators in the standard genetic
algorithm [54-56].

Uniform crossover is performed according to a ran-
domly selected pattern that indicates which genes should
be inherited from the first father (other genes are taken
from the second parent). That is, the General rule of uni-
form crossing can be represented as follows:

Crossover(Ind;, Ind,, DataofCros) = Ind,

Oind, = {91 = Rand(glndlaglndzl
9, = Rand (glnd1 »91nd, )7:

9i = Rand(glndlagln%)}'
An example of a uniform crossover is shown in Fig. 1.
parent1:[001100111010]]  eossoer  [1011011110 10]: child 1
{parentZ:[lOlOllOllOll} [0010100110 11]: child 2

4 5 6 7 8 9 10 11 12
1101 11 0 1 1

(1

locus :

12
etalon : 0 1

3
0
Figure 1 — Example of a uniform crossover

It has long been known that setting the probability of
transmission of the parent gene to the offspring in uni-
form crossing can significantly improve its efficiency [54,
55], and also allows you to emulate other crossing opera-
tors (single-point, two-point). It is also known that the use
of the operator of uniform crossover allows the use of the

so-called multi-parents recombination, when more than
two parents are used to generate one offspring. Despite
this, most studies use only two parents and a fixed prob-
ability of gene transfer is 0.5 [54].

Uniform crossover gives more flexibility when com-
bining strings, which is an important advantage when
working with genetic algorithms.

When using the proposed method, such types of muta-
tion operator can be used:

1) adding a hidden neuron with an index assignment
[N, —1]. The new neuron is added along with the input

and output connections. In this case, the output connec-
tion of the neuron can not bind it to the input neuron;

2) removal of a randomly selected hidden neuron
along with all input and output connections. In this case,
if a gap is formed in the remaining indices of neurons, the
correction of indices in accordance with the above algo-
rithm. The input and output neurons of the network can-
not be removed,;

3) adding a connection. Randomly determine the start-
ing and ending indexes of the neurons in ANN submitted
by mutating individual. In this case the connection can’t
end the input to the neuron. The link weight is also deter-
mined randomly with: [N}, —1]. If the ins already has a

connection with similar input and output neurons, its
weight is replaced by a random,;

4) delete a randomly selected connection. In this case,
a situation may arise when the last connection in the hid-
den neuron is removed. In this case, the neuron is re-
moved, and, if necessary, the correction of neuronal indi-
ces of the network;

5) changing the weight of a randomly selected connec-
tion to a random value from the range [-0.5; 0.5].

Thus, using mutations of points it is possible to
change the parameters of the structure of ANN.

Chaotic addition (removal) of neurons and connec-
tions can lead to situations where, for example, the net-
work has many neurons and few connections. More logi-
cal would be to use different types of mutations depend-
ing on the characteristics of the network architecture pre-
sented mutouch individual. For this purpose, three criteria
were introduced that regulate the size and direction of the
network development [57, 58].

The first of them characterizes the degree of connect-
edness [57] of neurons in the network and is calculated by
the formula:

feon = A @
27BN (N 1)~ Ni (N 1) (1= FB)No (No ~ 1)

It is worth noting that connections from hidden neu-
rons to the output can appear in any case. Thus, the small-
er the more likely it is that a new connection will be add-
ed as a result of the mutation.

The use of the second coefficient is based on the as-
sumption that the more elements in the sum of the input
and output vectors of the training sample (the more the
total number of input and output neurons), which is likely
the more complex should be the ANN required to solve
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the problem [57]. The second coefficient is calculated by

the formula:

Ni + NO
N, 3

That is, the more neurons in the network, the lower the
value of the criterion fio it and the less likely the mu-

ftop.diff =

tation will be chosen, which adds a new hidden neuron.
The third criterion is also based on the assumption that
a more complex network should be used to solve more
complex problems. However, this criterion characterizes
the conditional complexity of the network. This criterion is
based on the concept of cyclomatic complexity [59], [60].

N; +N
fcomp.diff = IN—O~ 4)
s
For any of the described cases, a ligament
feon * frop.diff * fcomp.diff s used in the method, since the

degree of connectedness of existing neurons must be
taken into account for use.

Removing connections in ANN gives a side effect:
may appear hanging neurons that have no incoming con-
nections, as well as dead-end neurons, i.e. neurons with-
out output connections. In cases where the function of
neuronal activation is such that at zero weighted sum of
inputs its value is not equal to zero, the presence of hang-
ing neurons makes it possible to adjust the neural dis-
placement. It is worth noting that, in addition to ensuring
the diversity of the population, the removal of connec-
tions can contribute to the removal of some of the unin-
formative and lowinformative input features.

> ftop,diff.zfcon*fcomp.dfff >

false

In the developed method, it is proposed to use an
adaptive mutation mechanism [57, 59, 60], which pro-
vides for the choice of the mutation type depending on the
values of the criteria fcon , fiop it and feomp gif -

The choice of mutation type is determined based on
the value of the multiplication feon - fiop diff - fcomp.diff -

This approach on the one hand does not limit the number
of hidden neurons, on the other, prevents the immeasur-
able increase in the network, because the addition of each
new neuron in the network will be less likely. A mutation
of the weight of a randomly existing bond occurs for all
mutating individuals with a probability of 0.5.

Fig. 2 shows a schematic representation of the muta-
tion type selection process.

Given the features of the proposed MGA synthesis of
neural networks, its parallel form can be represented as in
Fig. 3. All stages of the method can be divided into 3
stages, separated by points of barrier synchronization. At
the first stage, the main core initializes the population P,
and adjusts the initial parameters of the method, namely:
the stopping criterion, the population size, the criteria for
adaptive selection of mutations. Next, the distribution of
equal parts of the population (subpopulations) and initial
parameters to the cores of the computer system is per-
formed. Initialization of the initial population cannot be
carried out in parallel on the cores of the system, because
the generated independent populations intersect thus in-
creasing the search for solutions. The second stage of the
proposed method is performed in parallel by the cores of
the system. All cores perform the same sequence of op-
erations on their initial population. After the barriersyn-
chronization, the main core receives the best solutions

Removing a

true random connection

Removing a
random neuron

false

N

Adding neuron

false

/
- g
\ Ny>0 trueP
~.
S
false
_
T o
_><\\RV>fcomp.diﬁ
S Adding a random

Removing a
random neuron

neuron

Figure 2 — The choice of the type of mutation
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from the other cores and checks the stopping criterion. If
it is, then the next G is formed. Otherwise, after chang-
ing the initial parameters, allowing the cores of the system
getting the other solutions, return to the distribution of the
initial parameters to the cores on the system is performed.

Population initialization
P={NN,, NN,,..., NN,;}

'

A\ 4

Setting initial parameters

Assignment of the genes
of a population
Gind={81: &2---&nl

|

Setting the value of the
weights of neural
connections w;

'

Evaluation of genetic
information of individuals
Ind;

'

Choosing the best
individual

'

Sorting of the individuals

'

Crossing of individuals

'

Choosing new best
individual

NN,

NN,

A 4

Assignment of the genes
of a population
Gind={81, &2---8n}

|

Setting the value of the
weights of neural
connections w;

'

Evaluation of genetic
information of individuals
Ind;

'

Choosing the best
individual

'

Sorting of the individuals

'

Crossing of individuals

'

Choosing new best
individual

NN,

Assignment of the genes
of a population
Zind={81 &2---&nl

.

Setting the value of the
weights of neural
connections w;

'

Evaluation of genetic
information of individuals
Ind;

'

Choosing the best
individual

'

Sorting of the individuals

'

Crossing of individuals

'

Choosing new best
individual

Changing initial
parameters

false

A 4

Synchronization of the
best individuals in the
populations

he stop criterion is
reached

Formation of a new
generation G=P’

Figure 3 — Schematic representation of PMGA

And then the cores perform parallel calculations accord-
ing to the second stage of the method.

The proposed parallel method for ANN synthesis can
be applied both on MIMD-systems [61] (clusters and su-
percomputers) and on SIMD (for example, GPU pro-

grammed with CUDA technology).
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4 EXPERIMENTS

The proposed methods for MGA and PMGA were
compared with existing analogues: ESP, SANE and
NEAT.

Also note that testing the MGA, ESP, SANE and
NEAT will occur using the following hardware and soft-
ware: the computing system of the Department of soft-
ware tools of National University ‘“Zaporizhzhia Poly-
technic” (NUZP), Zaporizhzhia: Xeon processor E5-2660
v4 (14 cores), RAM 4x16 GB DDR4, the programming
model of Java threads.

The experimental verification of the proposed PMGA
will additionally be performed with the additional use of
the Nvidia GTX 960 GPU with 1024 cores, which are
programmed using CUDA technology.

This testing technology will further compare the speed
and performance of the PMGA on the MIMD-systems
and SIMD.

For testing it used a training sample of Physical Un-
clonable Functions Data Set from the open repository UCI
Machine Learning Repository [62, 63]. General informa-
tion about the sample are given in table 1.

Table 1 — General information about data set

For ANN training, 5 million instances were used, and
testing of the resulting ANN occurred on 1 million in-
stances from the sample.

5 RESULTS

Table 2 presents the overall results of the proposed
MGA in comparison with the results of existing ana-
logues. Particular attention is paid to the determination of
the time needed for the synthesis of ANN, the value of the
average error in training stage and the value of the aver-
age error when working in test mode.

Tables 3—5 show the results of testing PMGA using
different hardware and using different number of CPU
and GPU cores during operation.

Table 3 shows how the time spent on the synthesis of
ANN changes when the number of CPU or GPU cores is
increased.

Table 4 shows the speedup changes depending on the
number of CPU or GPU cores used.

Table 5 shows the changing the communication over-
head with the increase in used CPU or GPU cores.

For more clarity, the dependence of the speedup on
the number of CPU cores used in the form of a diagram is
shown in Fig. 4, for the GPU at the Fig. 5.

s tcg}tlerimi — (i}/}a?“er@:“ Fig. 6 shows the efficiency graph of NUZP computing
A;r?bu:e Chzrrzcctzrrﬁ,tllccss l;ng;;a ¢ systems when executing the proposed method.
Number of Instances: 6000000
Number of Attributes 129
Table 2 — General results of the testing
Method Training time (time for synthesis ANN), s Average error in training stage Average error when in test mode
ESP 30923.87 2.72 2.88
SANE 53498.30 3.02 3.39
NEAT 99506.83 1.71 2.09
MI'A 86132.26 1.01 1.47
Table 3 — Dependence the execution time of the proposed method to the number of involved cores
Using CPU
Number of involved cores 1 2 4 8 16
Execution time 86132,26 46660,08 24587,93 13830,56 8053,90
Using GPU
Number of involved cores 60 120 240 480 960
Execution time 86764,77 52492,69 33857,78 24039,03 20192,78

Table 4 —Dependence the speedup to the number of involved cores

Using CPU
Number of involved cores 1 2 4 8 16
Speedup 1,00 1,85 3,50 6,23 10,69
Uding GPU
Number of involved cores 60 120 240 480 960
Speedup 0,99 1,64 2,54 3,58 427
Table 5 — Dependence the communication overhead to the number of involved cores
Using CPU
Number of involved cores 1 2 4 8 16
Communication overhead 0.00 0.08 0.14 0.24 0.41
Using GPU
Number of involved cores 60 120 240 480 960
Communication overhead 0.16 0.21 0.29 0.42 0.68
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6 DISCUSSION

As can be seen from the results in Table 1, consistent
implementation MGA at the time of synthesis of ANN to
the two existing analogues namely ESP and SANE, but is
far ahead NEAT. If we compare the value of the average
error in the synthesis of ANN, then using MGA it was
possible to minimize it to 1.01%, which is significantly
ahead of the results of analogues. It should also be noted
that when testing is synthesized ANN in the case of
MGA, the results are much better than analogs, so the
average error value of the output of the ANN is 2.3 times
less than, for example, in ANN synthesis by the method
SANE. Therefore, it is possible to make a conclusion that
the proposed MGA significantly exceeds the existing
methods in the accuracy of the synthesized neural net-
work.

As already noted, the testing of PMGA was carried
out under a different scenario for a more complete study
of the applicability and feasibility of the method on dif-
ferent parallel computing systems.

As can be seen from Table 3, the proposed method has
an acceptable degree of parallelism and is effective on
both MIMD-systems and SIMD. So on when using CPU
cores it was possible to reduce execution time of a method
from 86132.26 seconds (on one core) to acceptable
8053.90 seconds on 16 cores. However, it should be noted
that when using a slightly different MIMD system, such
as a cluster, there would be significant performance dif-
ferences due to architectural features. In the cluster, the
cores are connected using the InfiniBand Communicator,
and in the multi-core computer they are located on the
single chip, which explains the smaller impact of over-
head (transfers and synchronizations). In addition, the
processor model in a multi-core computer supports Turbo
Boost [64] technology, so that the execution time of the
method on one such core is much less than the execution
time on the cluster core, which does not support such
technology.

On the GPU with 960 cores involved in the execution
time became 20192.78 seconds that can be adequately
compared with the four cores of the computer.

From Table 4 and the graphs in Fig. 4 and 5 it can be
seen that the speedup, though not linear, but approaches
to linear. This is due to the fact that the share of overhead
(Table 5) communication overhead execution of the pro-
posed method in computer systems is relatively small, and
the number of parallel operations significantly exceeds
the number of consecutive operations and synchroniza-
tions. In communication overhead we understand the ratio
of the time spent by the system on forwarding and syn-
chronization between cores, in the time of target calcula-
tions on a given number of cores.

The graph of efficiency of computer systems NUZP is
presented in Fig. 6. It shows that the using of even 16
cores of computer systems for the implementation of the
proposed method retains the efficiency at a relatively ac-
ceptable level and indicates the potential, if necessary and
possibly, to use even more cores.

Thus, the proposed method is well developed on mod-
ern computer architectures, which can significantly re-
duce the time of the task of synthesis of ANN. The paral-
lel approach significantly increases the efficiency of se-
quential MGA and makes it even more acceptable for the
synthesis of ANNSs, through a significant reduction in
time costs and maintaining high accuracy of the obtained
neural networks.

CONCLUSIONS

The urgent problem of the synthesis of the ANNs us-
ing for diagnosis and future forecasting has been solved.

The scientific novelty lies in the fact that for the syn-
thesis of ANNSs is proposed to use a modification of the
classical GA. So the input of the high probability of muta-
tion allows to increase the diversity within the population
and to prevent early convergence of the method. The
choice of a new best individual, as opposed to a complete
restart of the method, significantly saves system resources
and ensures the exit from the area of local extrema. The
use of new criterias for adaptive selection of mutations,
firstly, does not limit the number of hidden neurons, and,
secondly, prevents the immeasurable increase in the net-
work. The use of uniform crossing significantly increases
the efficiency, as well as allows you to emulate other
crossover operators without problems. Moreover, the use
of uniform crossover that increases GA flexibility. The
parallel approach significantly reduces the number of it-
erations and significantly accelerates the synthesis of
ANN:G.

The practical significance of obtained results in the
fact that the practical problems of synthesis of ANNs are
solved, which can later be used for diagnosis and pattern
recognition. The experimental results showed that the
proposed synthesis methods allow to obtain accurate
ANN based on the input data and can be used in practice
to solve practical problems of diagnosis, prediction and
pattern recognition.

Prospects for further research are the introduction
of the possibility of using genetic information of several
parents to form a new individual and modification of syn-
thesis methods for recurrent ANNs architectures for big
data processing [65—68].
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MOJUPIKALIS TA ITAPAJIEJIBAIIA TEHETUYHOI'O AJITOPUTMY JJIsI CMHHTE3Y
IMTYYHUX HEAPOHHNX MEPEX

Jleomenko C. [I. — acmipanT kadenpu nporpaMHux 3aco6iB HamionamsHoro yHiBepcutety «3amopizbka [Tomitexnikay, 3amnopi-
HOKsL, YKpaiHa

Ouiiinuk A. O. — KaHA. TEXH. HayK, JOIIEHT, AOLCHT Kadeapu mporpaMHuX 3acobiB HarionansHoro yHiBepcuTeTy «3amopi3bka
[omnitexnikay, 3anopixoks, YKpaiHa.

Cy66o0tin C. O. — 1-p TexH. HayK, mpodecop, 3aBigyBay kKadenpu mporpaMHuX 3aco0iB HamioHansHOTO yHIBEpCUTETY «3amopi-
3pka [lomitexHikay, amopixoks, YkpaiHa.

Jluteun B. A. — acnipanT xadenpu nporpamMuux 3aco6iB HanioHansHoro yHiBepeuTeTy «3anopizbka [lomiTexHikay, 3amopixoks,
VYkpaina.

Hlxapynuao B. B. — kaHx. TexH. HayK, IOLEHT, JOLEHT Kadepu KOMIT FOTEpPHUX CHCTEM i Mepexx HarioHansHoro yHiBepcuTeTy
GiopecypciB i MPUPOJOKOPUCTYBaHHS Y KpaiHH.

AHHOTAIIA

AKTyasnbHicTb. BupinieHo 3agauy aBromMaTH3anii CHHTE3y IITYYHHX HEHPOHHHX MEPEX Ul MOAAIBLIOTO BUKOPUCTaHHS IPH
JlarHOCTYBaHHI, IPOTHO3YBaHHI Ta po3Mi3HaBaHHI 00pa3iB. O0’€KT JOCIIKEHHS — POLeC CHHTE3y MTYYHUX HEHPOHHUX MEpEex 3a
JIOIIOMOTOI0 TEHETHYHOTO alNropuTMy. IIpenMeT qociikeH s — IOCTIIOBUH Ta MapajielbHIi METOAN CHHTE3Y IITYYHHX HEHPOHHUX
Mepex. MeTa poG0oTH — 3MEHIINTH Yac CHHTE3Y Ta MiABUIIUTH TOYHICTh OTPUMAHOI HEHPOHHOT MEepexi.

Metopa. 3anpornoHOBaHO METOJ| CHHTE3y IITYYHHX HEHPOHHHX MEpeX Ha OCHOBI MOAM(IKOBAHOTO I'€HETUYHOTO aIrOPHUTMY,
KU MOXKke OyTH peasi3oBaHO IOCIIIOBHO Ta HapaiensHo BukopuctBytodi MIMD- ta SIMD-cucremu. Beenenus Benankoi i#MoBip-
HOCTi MyTauii J03BoJIsiE 30UTBIIMTH PI3HOMAHITHICTh BCEPEIMHI MOMYJIALil Ta MEePeKOAUTH 3aB4acHiil 30DKHOCTI MeTtony. Bubip
HOBOIT Kpaioi 0cOOMHH, Ha BiIMiHYy BiJl TOBHOTO MEPE3alyCKy METOIY, 3HAYHO €KOHOMHTBH PECYpCH CHCTEMH Ta TapaHTye BUXIH i3
00J1aCcTi TOKaTbHUX EKCTpEeMyMiB. BHKOpHCTaHHS HOBHX KPHUTEPiiB /IS aIalTUBHOTO BUOOPY MyTallii, mo-mepiue, He 00Mexye Kilb-
KICTh NIPUXOBAHHUX HEHPOHIB, a, IIO-APYyTe, EePEIIKoKae 6e3MIpHOMY 301IBIICHHIO Mepexi. BukopuctanHs piBHOMIPHOTO CXpeIy-
BaHHS iICTOTHO HiJBHIIy€E eeKTHBHICTB, a TAKOXK Oe3 MmpoOJieM J03BOJISIE eMYJIIOBAaTH iHINI ONEepaTopu cxXpelryBaHHs. bixpmr Toro,
caMe BUKOPUCTaHHS PIBHOMIPHOTO CXpPEIIyBaHHs ITiIBUIIYE THYYKICTh F€HETUYHOTo anroputMy. [lapanenpHuid miaxig 3HA4YHO CKO-
poUye KiIbKIiCTb iTepalliif Ta iCTOTHO IPHCKOPIOE BUKOHAHHS CHHTE3Y LITYYHUX HEHPOHHUX MEPEK.

PesyabTaTi. Po3pobiieno nporpaMHue 3a0e3mnedeHHs, sike peaizye 3ampolOHOBAaHUI METO CHHTE3y IITYYHHX HEHPOHHHX Me-
PEeX i 103BOJIAE BUKOHYBAaTH CUHTE3 MEPEX IOCIIIIOBHO Ta MapajlesibHO Ha spax LEHTPAIBHOTO Ipolecopy abo rpadidHoro mporie-
copy.

BucnoBku. IIpoBezieHI €KCIIEPUMEHTH IMiATBEPANIN TIPALE3AATHICT 3aIPOIIOHOBAHOIO METOAY CHHTE3Yy IITYYHHX HEHPOHHHX
MepeK 1 T03BOJSIOTH PEKOMEHTyBaTH HOTO JUIsi BUKOPUCTAHHS HA MPAKTHULI IpH 00poOIli MacHBIB JaHHUX IUIS TTOJAJIBIIOTO JiarHOC-
TyBaHHsI, IPOTHO3YBaHHs a00 po3Mi3HaBaHHS 00pas3iB. [IepcrieKTHBY MONANBIINX JOCHIIKEHb MOXKYTh IIOJISITaTH Y BBEACHI MOKIIU-
BOCTI BUKOPUCTaHHs TeHeTHYHOI iH(popMalii JeKiIpKkoX 0aThKiB 111 GpopMyBaHHS HOBOI OCOOMHM Ta MOAMG(IKYBaHHI METOMIB CHUH-
Te3y JI1 MEPeX PEeKYPEHTHHX apXiTeKTyp AJIsi 0OpOOKH BEIHMKUX JJAHUX.

KJIIOYOBI CJIOBA: Bubipka, CHHTE3, IITyYHA HEHPOHHA MeperKa, TeHeTUYHUH aJIrOpPUTM, HEHPOEBOJIIOLIs, My Tallis.

YK 004.89
MOINPUKALIUA U MAPAJIIEJTU3AIUA TEHETHYECKOT O AJITOPUTMA VIS CHHTE3A
HNCKYCCTBEHHBIX HEMPOHHBIX CETEHN

Jleomenko C. JI. — acimpanT Kadeapsl MporpaMMHBIX cpencTB HanmoHansHoTo yHUBEpcHuTeTa «3amopokckas [lonnTexHukay,
3anopoxbe YKpauHa.

OueitHuk A. A. — KaHJ. TEXH. HayK, JIOLIEHT, JOLIEHT Kadeapbl NporpaMMHBIX cpenctB HanmoHanabsHOTO yHUBEpCUTETa «3ario-
poxckas [Tonurexuuka», 3anopoxbe YKpanHa.

Cy66orun C. A. — 1-p TexH. HayK, podeccop, 3aBeaAyrounii kadeapoii mporpaMMHbIX cpeacTB HaloHaIBHOTO yHUBEPCUTETA
«3anopoxckas [loaurexaukay, 3amopoxne YKpanHa.

JlutBun B. M. — aciupaHT Kadenpsl IporpaMMHBEIX cpeacTB HammonanpHOro yHHBepcuTeTa «3amoposkckast [lonnTexHukay,
3anopoxbe YKpauHa.

Mlxapynuno B. B. — kanp. TexH. HayK, IOLEHT, JOIEHT, Kadeapa KOMIIBIOTEPHBIX CHCTeM U ceTel, HanmonanbHeI yHUBEpCH-
TET OMOPECYPCOB M IIPUPOIOTIONE30BaHHs Y KPaUHBI

AHHOTANUS
AKTyaJIbHOCTB. PelieHa 3aja4ya aBTOMAaTU3aluy CUHTE3a HCKYCCTBEHHBIX HEMPOHHBIX CETEH Uil JaJIbHEHIIIEro MCI0JIb30BaHUs
IIPU ANArHOCTHPOBAHUH, IIPOTHO3HPOBAHUN U PACIIO3HABAHUH 00pa30B. OOBEKT NCCIENOBAHMS — MPOIECC CHHTE3a NCKYCCTBEHHBIX
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HEHPOHHBIX CeTel C MOMOIbI0 TeHETUYECKOro ajlropurMa. Ilpenamer uccaeqoBaHys — MOCIEIOBBIA U IapauIeIbHbIA METObI CUHTE-
3a UCKYCCTBEHHBIX HEHPOHHBIX ceTel. Llenab paboThl — yMEHBIIUTL BpeMsl CHHTE3a U MOBBICHTh TOYHOCTB ITOJIY4YEHHON HEWPOHHOI
ceTu.

Merton. IIpeanoxes MeTOa CHHTE3a UCKYCCTBEHHBIX HEHPOHHBIX CETell Ha OCHOBE MOANU(HIMPOBAHHOIO '€HETHYECKOrO ajro-
pUTMa, KOTOPBI MOXXET OBITh pealn30BaH IOCIEIOBATENbHO M MapamienabHo ucrnoiabdyd MIMD- u SIMD-cuctemsl. Beenenue
0010l BEPOATHOCTH MYTAllMM IO3BOJISET YBEIUYUTh Pa3sHOOOpaszue BHYTPH MOMYJSIIHUU WM NPEeAyNpPEeIuTh NMPEXIEBPEMEHHYIO
CXOJIMMOCTh MeToa. Beibop HOBO# mydrieit ocoOH, B OTIMYHE OT MOIHOTO MEpPe3alycka aNropuTMa, 3HaIUTEIbHO SKOHOMUT Pecyp-
CBI CHCTEMBI M TapaHTUPYET BBIXOA U3 00JACTH JOKAJIBHBIX SKCTPEMyMOB. VICIIoIbp30BaHIe HOBBIX KPUTEPHEB JUIS QIAIITUBHOTO BBI-
Oopa MyTaIuH, BO-IIEPBHIX, HE OIPAHUYMBACT KOJIMYECTBO CKPBHITHIX HEHPOHOB, a, BO-BTOPHIX, IPEIATCTBYET OE€3MEPHOM yBEIHYe-
HHIO cetH. McIonp30BaHNe paBHOMEPHOI'O CKPEIIUBAHHS CYIIIECTBEHHO NOBBIIAET 3G (PEeKTUBHOCTD, a TaKXkKe 0e3 IpodiIeM 03BOIIs-
€T SMyJIMpOBaTh JPyrUe OIepaTopbl CKpelluBaHUA. bojee TOro, UMEHHO HCIOJIB30BaHUE PAaBHOMEPHOIO CKpEIUBAHUS IOBBIIIAET
rHOKOCTh TeHeTHUeCcKoro anroputMa. IlapannenbHblil MOAX0MA 3HAYNTENBHO COKpANaeT KOJMYECTBO UTEPAIMil U CYIIECTBEHHO yC-
KOpsIET CUHTE3 UCKYCCTBEHHBIX HEMPOHHBIX CETEH.

PesyabTathl. Pazpabotano mporpamMmmHOe oOeclieueHHe, pealn3ylomee MpeaaoKeHHbII METO CHHTE3a MCKYCCTBEHHBIX HEii-
POHHBIX CETEH M MO3BOJSET BBHINONHATH CHHTE3 CeTeil MOCIe[0BaTebHO U MapauIebHO Ha SAPaxX IMEHTPATBHOTO MPOIEccopa HiIH
rpaduaeckoro nporeccopa.

BriBoasl. [IpoBeneHHbIE SKCIIEPHMEHTH! MOATBEPAMIN pabOTOCIOCOOHOCTD NMPEATIOKECHHOTO METO/Ia CHHTE3a MCKYCCTBEHHBIX
HEWPOHHBIX CETeH U IMO3BOJISIIOT PEKOMEHJIOBATh €ro JUIsl HCIIOJIB30BaHMUs Ha IPAKTUKE IPU 00pabOTKe MacCHBOB JaHHBIX JUIS Jajlb-
HEWIIero AUarHOCTHPOBAHUS, IPOTHO3MPOBAHUS WM Paclio3HaBaHHs 00pa3oB. [lepcrieKTHBBI NadbHEHIINX HCCIEJOBAHUA MOTYT
COCTOSITh B BBEICHUM BO3MOXHOCTH HCIOJIb30BAHUS F€HETHYECKOH NH(OPMALIMU HECKOJIBKUX pOAUTEIIeH Ul (JOPMUPOBAHUS HOBOI
0co0u 1 MoAN(UKAIIMK METOJIOB CHHTE3a ISl pEKYPPEHTHBIX apXUTEKTYp ceTeil 11 00paboTKu OONMBIINX JaHHBIX.

KJIFOUYEBBIE CJIOBA: BriOOpKa, CHHTE3, HCKYCCTBCHHAS! HEUPOHHAS CETh, TEHETUYECKUH aJrOpUTM, HEHPOIBOIIOIHS, MyTa-
U
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