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ABSTRACT

Context. The problem of decision tree model synthesis using the fractal analysis is considered in the paper. The object of study is
a decision trees. The subject of study is a methods of decision tree model synthesis and analysis.

Objective. The objective of the paper is a creation of methods and fractal indicators allowing jointly solving the problem of deci-
sion tree model synthesis and the task of reducing the dimension of training data from a unified approach based on the principles of
fractal analysis.

Method. The fractal dimension for a decision tree based model is defined as for whole training sample as for specific classes.
The method of the fractal dimension of a model based on a decision tree estimation taking into account model error is proposed. It
allows to built model with an acceptable error value, but with optimized level of fractal dimensionality. This makes possibility to
reduce decision tree model complexity and to make it mo interpretable. The set of indicators characterizing complexity of decision
tree model is proposed. The set of indicators characterizing complexity of decision tree model is proposed. It contains complexity of
node checking, complexity of node achieving, an average model complexity and worst tree model complexity of computations. On
the basis of proposed set of indicators a complex criterion for model building is proposed. The indicators of the fractal dimension of
the decision tree model error can be used to find and remove the non-informative features in the model.

Results. The developed indicators and methods are implemented in software and studied at practical problem solving. As results
of experimental study of proposed indicators the graphs of their dependences were obtained. They include graphs of dependencies of
number of hyperblocks covering the sample in the features space from size of block side: for whole sample, for each class, for differ-
ent set error values and obtained error values, for varied values of resulted number of features and instances, also as graphs of de-
pendencies between average and worst tree complexities, decision tree fractal dimensionality and tree average complexity, joint crite-
rion and indicator of feature set reduction, and between joint criterion and tree fractal dimensionality/

Conclusions. The conducted experiments confirmed the operability of the proposed mathematical support and allow recommend-
ing it for use in practice for solving the problems of model building by the precedents.

KEYWORDS: decision tree, sample, fractal dimension, indicator, tree complexity.

NOMENCLATURE <Dc> is a correlation dimension;
€ is a maximum acceptable error value; Dy, 1s a data fractal dimension relatively the accu-
® is a set of model parameters; racy (error) of the synthesized model;
¢j' is a complexity of achieving of i-th leaf node; D is a fractal dimension of k-th class;

D is a fractal dimension of the sample;
E is a model error;
fis a model quality criterion;

¢; 1s a complexity of checking for i-th node it’s can
be obtained as number of i-th node’s successors;

Ciree 18 @ worse complexity of computations for the F() is a model structure;
tree model; Fi... 1s a joint multiplicative criterion for decision

i, is an average complexity of computations for the ~ tree model;

tree model: Iy 1s a coefficient of features reduction;

D is a fractal dimension; Jj 1s a number of feature;
K is a number of classes;
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K is a number of classes;

L a number of intervals on which the ranges of feature
values will be separated;

[ is a hypercube side length;

[ is a length of the interval;

L is a number of intervals;

N is an number of input features;

N is a feature subset size;

n(/) is a number of hyperblocks of side with the / size
covering the sample;

n;4 is a number of instances belonging to a rectangular
hyperblock formed by feature intervals;

n;qx 18 a number of k-th classes exemplars, which are
given in each rectangular hyperblock formed by features
intervals;

n(/) is a number of hyperblocks with the side of / size

covering the sample;
ni(I) is a number of hyperblocks with the side of /

size covering the sample for k-th class;

gy is a number of hyperblocks with the side of /-size

covering the k-th class of the sample;
opt is a symbol of optimum;
Q is a number of clusters;
7 is a heuristically defined cut-off radius;
r1s a Euclidean distance between pair of points;
S' is a subsample size;
S'is a number of precedents;
tree is a tree recognizing model;
U is a total number of tree nodes;

u, is a type of the i-th node of the tree;

X is a data sample;

x; is a j-th input feature;

x* is a s-th instance of a sample;

x'; is a value of j-th input for s-th instance;

X7 is a maximal value of x;;

X7 is a minimal value of x;;

Y' is a class of majority of instances hit to the i-th
node, which is a leaf;

y is an output feature vector;

' is a value of output feature values for s-th instance.

INTRODUCTION

Decision trees are a popular tool for solving problems
of building models on precedents in diagnostics, pattern
recognition, and forecasting in various practical areas [1—-
4]. One of the most significant advantages of models
based on decision trees is their interpretability (conven-
ience for human perception and analysis).

The object of study is a decision trees.

It is now known a large number of methods to synthe-
size a model based on decision trees [5—11]. However, as
a rule, the known methods in their goal functions (the
criteria for the training quality) do not take into account
the characteristics of the training sample. This in practice
can lead to the construction of non-optimal models.
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On the other hand, the model synthesis for big data
sets unusually requires the preliminary reduction of the
data dimensionality size, which is explained by the high
iterativity of the known training methods, as well as the
need to obtain a model that provides a good generaliza-
tion of the data. At the same time, the traditionally used
methods of informative feature selection [12—15] and of
sample formation [16-21] have such common disadvan-
tage as they are not directly related to each other and
come from different points of view on the informativeness
of features or instances.

The subject of study is methods of decision tree
model synthesis and analysis.

One of the promising areas of data analysis is a fractal
analysis [22-31]. There are various approaches to the
definition of fractal parameters for data [25, 27]. How-
ever, they are also not interconnected with each other and
with the decision tree model training process.

The objective of the paper is a creation of methods
and fractal indicators allowing jointly solving the problem
of decision tree model synthesis and the task of reducing
the dimension of training data from a unified approach
based on the principles of fractal analysis.

1 PROBLEM STATEMENT

Let we have an original data sample X = <x, y> a set
of S precedents (instances. exemplars, observations) char-
acterizing dependence y(x), where x={x'}, y={)'}, s=1, 2,
... S, characterized by the set of N input features {x;},
j=1,2,...,N, and output feature y. Each s-th precedent
can be noted as <x’, y">, x'={x";}, ' € {1,2, .., K}, K>1.

Then the problem of model synthesis of the depend-
ence y(x) will be considered in a search of such structure
F() and adjusting such values of parameters ® of a model
<F(), ®>, which will satisfy the model quality criterion
AF(), o, <x, y>) — opt. Usually, the model quality crite-
rion is defined as a model error [2]:

S
E :%Z(ys — F(o,x*))*> - min.

s=1

2 REVIEW OF THE LITERATURE

The key concept in a fractal analysis is a fractal di-
mension, which is defined as coefficient describing the
fractal structure or the set on the basis of a quantitative
assessment of its complexity as the coefficient of varia-
tion in details and with a scale conversion.

The Hausdorff-Besicovich dimension according to
[25, 28] is defined as

1< Jog(n()
10g(1)
[

One of the most affordable ways to determine the
Hausdorff-Besicovich dimension is box-counting method
[29, 30], which consists in repeating fractal object coating
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by hypercubes of equal size and counting minimum num-
ber of hypercubes which contain points of the object.

By consistently reducing the hypercubes size [ we will
get a set of points with coordinates (log(n(/)), 10g(l*1)),

which define a curve, which slope determined by the lin-
ear regression, is a fractal dimension:

Dzlimw.

-0 log[lj
/

The Takens’” method [31] is used to determine the cor-
relation dimension:

(Dc) = _{ﬁi’%} .

where R ={ry| r, < r}, |R| is a cardinality of the set R, >0.

The common disadvantage of considered methods
[22-31] for determining the fractal dimension is that the
cardinality of the set must satisfy the inequality
N<2log,S, which shows that the number of data points S
required for accurate dimension estimation of the

N
N-dimensional set must be at least 102 . It leads to large N
values even for small sets.

The common feature of all above described methods
for determining the fractal dimension is that sample di-
mension and dimension of the model trained on its basis
are defined with no connection to each other. It limits
their practical application.

In [32] the methods for estimating the fractal dimen-
sion allowing characterize properties of the sample. The
sample instances are represented as points in the feature
space. Then clusters will correspond to the compact areas
in a feature space, which will be combined into classes.
Different geometric shapes can describe clusters. Fractal
analysis of the sample in the feature space can be per-
formed by setting the elemental form for clustering and
varying the size of the cluster for partitioning the sample
into fragments. For the sample fractal dimension analysis
the method [32] contains following stages.

Initialization stage. Set a learning sample <x,> and L
the number of intervals on which the ranges of feature
values will be separated.

Sample normalization stage. If feature values are non-
normalized, they should be normalized by mapping to the
inerval [0, 11: ] = —xp" o™ =7

Clustering stage. Divide the range of each feature val-
ues on L intervals of length /: /=1/L . Form clusters as
rectangular blocks at the different features interval inter-
section.

Data analysis stage. Determine the number of in-
stances belonging to a rectangular hyperblock formed by
feature intervals #,,. Determine the number of k-th classes
exemplars, which is given in each rectangular hyperblock
formed by features intervals 7; .
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Determine the number of hyperblocks with the side of
I-size covering the k-th class of the sample in the N fea-
tures space:

N L
I’l(k) = 2 z {1 | ni,q’k > 0}
i=lg=1

Determine the number of hyperblocks with the side of
I size covering the sample in the N features space:

n(l) = %i{l mq > 0= %i{l ini,q,k > 0} .

i=lq=1 i=lg=1| |k=l

Stage of fractal dimension estimation. Determine at a
given / the fractal dimension of k-th class, k=1, 2, ..., K:
p®) = 1og(n(,())/1og(r1)-

Determine the fractal dimension of the sample at a
givenl: D = 1og(n(1))/1og(r1).

This method operates with rectangular blocks of the
same size, covering the feature space by them. The single
controlled parameter of the method is defined by the
number of intervals L, which are divided in ranges of the
feature values.

It is obvious that number of clusters Q> K, O=L", and for
each feature L>2. To provide generalization properties of
clusters we impose restriction O < NS.

Thus, we obtain K<L"<NS, L>2. Taking logarithms
log(K) < Nlog(L) < log(NS) we obtain after transformations:

2<L< m . Note that minimum step for varying the L
values is 1. If the upper limit value 4/ns is less than 2, it
can be replaced with S. This is due to the fact that on the
each feature axis will not be more than the S points and
feature axis partition on more than S intervals will obvi-
ously lead to occurrence of the empty intervals. For large
N values, the given number of partitions S on each feature
will lead to forming of a huge number of blocks equal S,
which make a computation very hard, and in some cases
practically non-realizable. Therefore, it is reasonable in
this case to set the value of the upper limit of L by the
round(log(S)), where round is function of rounding to the
nearest integer number. Evaluation of indicator D for
small values of L requires high cost of computing re-
sources and computer memory resources than for large L
values. However, the analysis accuracy for small L values
will be lower while the generalization level will be higher
than for large L values.

Consider possible ways to implement this method. If
we assume that the data structure will be created contain-
ing the counters of instances numbers belonging to each
of rectangular hyper-block in the feature space, it will
require at least 2L" memory cells where 2 bytes will be
given to represent L" integers. In turn, for each hyper-
block we need to evaluate belonging of the sample in-
stances, which would require about 2SL" comparisons.
This approach, obviously, is practically applicable only
for small N. Since to determine the fractal dimension it is
not important to know how many instances hit in each
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block, but it is important to know how many blocks con-
tains instances, then to reduce the computational and
memory costs are encouraged to use the following ap-
proach.

The advantage of the described method and of the
sample quality indicator determined on its basis is the fact
that they does not depend of the model synthesis method,
and of the results of its work and allow to evaluate the
properties of the single sample.

The disadvantages of this method are the uncertainty
in the choice of the L parameter value, and absence of
relation between the method and the quality of the synthe-
sized model.

3 MATERIALS AND METHODS

The decision tree model consists of nodes connected
by the links. The node can be a root (having no parents), a
leaf (having no successors), or an internal (having parent
and successors nodes). Each node of the tree (excluding
leafs) contains check on one of the features. As a result of
checking the recognized instance on this node, it will be
redirected to one of the successor nodes of this node, de-
pending on what interval of checked feature values it falls
into.

For a decision tree based model, we define the fractal
dimension as the minimum number of rectangular blocks
in the feature space needed to cover the training data set.
Since the leaf nodes of the model based on the decision
tree correspond to rectangular areas in the feature space,
and the instances of the training sample belong by the
model only to these areas, the number of leaf nodes in the
tree is the fractal dimension of the decision tree.

Let u, is a type of the i-th node of the tree (u;, = 1 if

i-th node is a leaf; u; = 0, otherwise), U is a total number

of tree nodes. Then the number of hyperblocks with the
side of / size covering the sample in the normalized fea-
ture space can be evaluated as:

U
n(l)= ZM,- .
i=1
By analogy for &-th class in the sample we can define:
U .
ny (1) =Z{1|u,- =LY’ =k}, k=1,2,... K,
i=1

where Y’ is a class of majority of instances hit to the i-th
node, which is a leaf, K is a number of classes.
It is obviously, that

K
()= m (D).

k=1

To estimate the fractal dimension of a model based on
a decision tree, we will use an approach similar to neural
networks [33-35].

Initialization stage. Set the training sample <x, y>, the
model synthesis method, the model training quality crite-
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rion as error function E, and the maximum acceptable
error value €.

Sample normalization stage. If feature values are non-
normalized, they should be normalized by mapping to the
interval [0, 1].

Formation and analysis of data partition stage. Se-
quentially changing the value of L =2, ..., S

— determine the length of the interval /;

—quantize the sample features, partitioning their
ranges of values on L intervals;

— determine the number of hyperblocks of side with
the / size covering the sample in the space of the N fea-
tures n(/);

— prune a recognizing model tree by a given method,
minimizing the error function £ to achieve an acceptable
level ¢;

— estimate the error £ of the constructed recognizing
model tree.

The fractal dimension determining stage. For every /,
for which the model error E is acceptable, determine the
data fractal dimension relatively the accuracy (error) of
the synthesized model tree:

log(n())

o)

This method operates by rectangular blocks of equal
size, covering by them the feature space. The single con-
trolled parameter of the method is given threshold value
of the model error €.

Obviously, the smaller the given & value, the more
detailed model should be, i.e., it will need to form a larger
number of clusters Q, and hence the greater should be the
L value. Accordingly, with a decrease of the given ¢, the
cost of computing resources and computer memory re-
sources will increase for the sample analysis.

The advantage of the proposed method and sample
quality indicator determined on its basis is the fact that
they are related with quality indicator of the synthesized
model, and automatically sets the optimum value of the L.

The disadvantages of the proposed method are the un-
certainty of & parameter values choice and its depend-
ence on the training quality and model functioning princi-
ples on which it is defined. It should also be noted that the
error function used in the method is only one of the syn-
thesized model characteristics, but it does not take into
account the model dimension and generalizing properties.

Therefore, the fractal dimension of the trained model
is proposed to be determined on the basis of the below
method taking into account the model dimension.

In addition to the tree fractal dimensionality we can
take into account complexity of calculations.

For i-th node it’s complexity of checking c¢; can be

Djyoe = E(tree)<¢

obtained as number of i-th node’s successors.
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For i-th leaf node the complexity of achieving ¢j' can

be evaluated as a sum of complexities of checking of all
nodes in the path from the tree root to the i-th leaf node.

For the tree model the worse complexity of computa-
tions can be estimated as the maximal complexity of the
leaf nodes:

Clree = Max {c¢j' |u; =1}
i=1,2,..,.U

For the tree model the average complexity of compu-
tations can be estimated as the average complexity of the
leaf nodes:

U
Ctiee :LZ{CI.” lu; =1}
n(l) ;5 l

Generally, when the model error is acceptable, we
need to minimize the average computational complexity
of leaf nodes reaching, as well as minimize the worst
complexity of leaf nodes reaching.

For the decision tree model synthesis the proposed set
of fractal indicators allows to define a system of criteri-
ons:

Dype — min
a N . .

Ctree min
w .

Cfree — Min

Since in the general case the number of features in the
original set and the number of features used by the model
based on the decision tree may differ, it is advisable to
consider it as a characteristic of the model quality. Then it
is possible to determine on its basis the coefficient of fea-
tures reduction as:

N
Iy=—]1<N'<N.
N N

Obviously, the greater the coefficient of feature reduc-
tion, the simpler the model, provided that acceptable ac-
curacy is achieved. In the best case 7, = N, in the worst

case [, =1.

It is possible also to define one joint multiplicative cri-
terion for decision tree model synthesis based on the frac-
tal analysis as:

D

a w
F _ treeCtreeCtree
tree —
Iy

— min.

Using proposed fractal indicators as individual, and as
combined it is possible to solve different tasks in the
process of decision tree model synthesis from unified
point of view.

4 EXPERIMENTS
To study the complex of proposed sample and
model fractal indicators they were implemented in
software. The developed software was used in compu-
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tational experiments to study the applicability of pro-
posed indicators for solving the problems of automatic
classification.

Several datasets for different tasks [4, 36—38] charac-
terized in Table 1 were used for experimental study.

Table 1 — Characteristics of the tasks for methods experi-
mental study

Task Source N S K
Fisher Iris [36] 4 150 3
Agricultural plant classification on [37] 55 248 2
remote sensing data
Diagnosis of Arrhythmia [38] 279 | 452 2
Air-engine blade diagnosis [4] 10240 | 32 2

For this datasets several series of experiments were
conducted.

The first series of experiments were devoted to study
the methods of data dimensionality reduction using fractal
indicators for model synthesis. Here it is needed to evalu-
ate fractal dimensionalities of original datasets and their
classes. Then is possible to study dependencies of n(/)
from /' for the entire sample and the classes, for different
given ¢ values and obtained values of error £ , as well as
dimensions of the formed data subsample: subsample size
S" and feature subset size N'.

The second series of experiments were concerned to
study the methods of decision tree model synthesis using
fractal indicators. For each task we need to built a tree
model and study dependencies between sample properties
and proposed indicators.

5 RESULTS

For each data set as a result of the experiments, the
fractal dimensions of the data and the decision tree mod-
els constructed on their basis are calculated.

For example, the computed fractal dimension of the
sample for the Fisher Iris data set [36] is D =0.59034,
and fractal dimension assessments of the classes:
D =0.68223, D® = 0.6212, DY = 0.53407.

Graphs of dependencies from /" in a logarithmic sys-
tem of coordinates for the entire sample and the classes
are shown in Fig. 1 and Fig. 2, respectively. On Fig. 2

markers of different sizes encode the different classes.
5

SR T

log(n(l))

05 1 15 2 25 3 35 4 45
log(I'™)

Figure 1 — Graph of dependency of (/) of a sample from from /"

"in a logarithmic coordinate system
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]
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log(n(1)
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05 1 15 2 25 3 35 4 45

log(7™)

Figure 2 — Graphs of dependencies of n,(/) of classes from /™' in
a logarithmic coordinate system

Fig. 3 shows the schematic graph of generalized de-
pendencies of (/) of sample from /"' in a logarithmic sys-
tem of coordinates for different set values of € and ob-
tained values E.

Fig. 4 presents the schematic graph of generalized de-
pendency of n(/) from /"' in a logarithmic coordinate sys-
tem for varied values of V' and S'.

Fig. 5 shows the schematic graph of generalized de-
pendencies between ¢, and ¢" ..

Fig. 6 presents the schematic graph of generalized de-
pendencies between D, and ¢” ..

Fig. 7 shows the schematic graph of generalized de-
pendency between Fi,.. and 1.

A
n(l)

»
!

)

Figure 3 — Schematic graph of generalized dependency
of n(l) from /"' in a logarithmic coordinate system

A

A
n(l)

»

0

Figure 4 — Schematic graph of generalized dependency of n(/)
from /"' in a logarithmic coordinate system
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a
c tree

>

4 tree

Figure 5 — Schematic graph of generalized dependencies
a w . a —_ W a w
between C iree and C tree- 1 —Cpree C trees 4 2 —-C tree< C ree

-

A
D tree

cutre;
Figure 6 — Schematic graph of generalized dependencies
between D, and ¢“;,...:
1 — basic relation; 2 — for decreasing of / or n(/) or U or ¢"jyee;
3 — for increasing of / or n(l) or U or ¢" .

A
F tree ]

Figure 7 — Schematic graph of generalized dependency
between F,, and Iy :
1 — for increasing of model complexity of computations (¢,
and/or ¢"},.), 2 — for decreasing of model complexity of compu-
tations (¢” ;.. and/or ")

Fig. 8 presents the schematic graph of generalized de-
pendencies between F,., and D,

D tree
Figure 8 — Schematic graph of generalized dependency
between F,,, and D,
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6 DISCUSSION

As it can be seen from Fig. 1 and Fig. 2 the proposed
indicators of the fractal dimension allow show the differ-
ences between classes. These indicators can be used in
methods of sample selection, defining quality criteria of
formed subsamples on the base of the proposed indicators
of the fractal dimension.

If formed subsample or its classes on indicators of the
fractal dimension are significantly differ from similar
parameters of the original sample, it is possible that, the
sample does not have the representativeness relative to the
original sample. Also the proposed indicators at the sev-
eral subsamples-candidates comparing could be used as
their quality measures: among subsamples-candidates
should be preferred that which have indicators of the frac-
tal dimension with closest values to the original sample
indicators values.

As it can be seen from Fig. 3, a change of the speci-
fied components of formed subsample dimension (num-
ber of features N' and the number of instances '), also as
E and € affect the position of the straight line connecting
points of dependence n(/). The greater the € value the
greater the n(/) and the less the E value the greater the
n(l).

From the Fig. 4 we can see that the less S' value and
the bigger the V' value the bigger the n(/) value,

As it can bee seen from thr Fig. 5 the bigger the " ..
the bigger the .. The smaller ¢, comparing with
¢" ree the slower ¢, grow.

Fig. 6 indicates that the bigger ¢“,.. value the bigger
the D,.. value. If we have decreasing of / or n(/) or U or
" ree; then Dy, value will grow slowly comparing with
increasing of [ or n(/) or U or ¢"yee

From the Fig. 7 we can bring that the bigger the Iy
value the less the Fy.. value. If model complexity of
computations (cye. and/or c¢"..) increased then the
bigger Fi,..and vice versa.

As it can be seen from the Fig. 8 the Ftree indicator
will receive the greater value the greater the Dy, /,
n(l), N', ¢ yees €*"ee and the less the Iy indicator value.

CONCLUSIONS

The urgent problem of decision tree model synthesis
using the fractal analysis is considered in the paper.

The scientific novelty of obtained results is that the
fractal dimension for a decision tree based model is de-
fined as for whole training sample as for specific classes.
The method of the fractal dimension of a model based on
a decision tree estimation taking into account model error
is proposed. It allows to build model with an acceptable
error value, but with optimized level of fractal dimension-
ality. This makes possibility to reduce decision tree model
complexity and to make it mo interpretable.

The set of indicators characterizing complexity of de-
cision tree model is proposed. It contains complexity of
node checking, complexity of node achieving, an average
model complexity and worst tree model complexity of
computations. On the basis of proposed set of indicators a
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complex criterion for model building is proposed. The
indicators of the fractal dimension of the decision tree
model error can be used to find and remove the non-
informative features in the model.

The practical significance of obtained results is that
the developed indicators and methods are implemented in
software and studied at practical problem solving. The
conducted experiments confirmed the operability of the
proposed software and allow recommending it for use in
practice for solving the problems of model building by the
precedents.

The prospects for further study may include the op-
timization of software implementation of proposed meth-
ods and indicators, also as experimental study of proposed
indicators on the larger complex of practical problems
having different nature and dimension.
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AHOTAIISA
AKTYaJIbHICTb. Y CTaTTi pO3MIIAAAETHCS MpoOIeMa CHHTE3y MOJICI Ha OCHOBI JIepeBa PillleHb 3 BUKOPUCTAHHIM (PPaKTaIbHOTO
aHanizy. O0’€KTOM JIOCIIKEHHS € JiepeBa pimieHb. [IpeMeToM JOCTiPKeHHS € METOIM CHHTE3y Ta aHali3y MoJieliel Ha OCHOBI Je-
PEB pilleHb.
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MeTa po6oTH — CTBOPCHHS METO/IB i ()paKTAIBHUX IHIUKATOPIB, IO JO3BOJSIOTH CIIJIBHO BHPIMIUTH 3aady CHHTE3y MOJEeNi Ha
OCHOBI JiepeBa pillleHb 1 3aBIaHHs CKOPOYEHHS PO3MIPHOCTI HAaBYAJbHUX JaHUX 3a JOIOMOIOI0 €MHOTO IiIXOIY, 3aCHOBAHOTO Ha
MIPUHLMIAX (PAKTAIBHOTO aHAII3Y.

Meton. ®pakranbHa PO3MIPHICTB /I MOJIENI Ha OCHOBI JiepeBa pillleHb BU3HA4YEHa K Uil BCiel HaB4anbHOT BHOIPKH, Tak i s
KOJKHOTO KJIacy. 3allpOlOHOBAHO METO/] BU3HAYCHHs (paKTaabHOI pO3MIpPHOCTI MOJIElNi, 3aCHOBaHHUI Ha OL[IHIOBaHHI JepeBa pillleHb
3 ypaxyBaHHsIM noxuOku Mmoneni. Ile no3Bossie moOyayBaTH MOJENb 3 HPUAHATHUM 3HAYCHHSM IIOMHJIKH, aje 3 ONTUMi30BaHHUM
piBHEM (pakTaIbHOI PO3MIPHOCTI, IO AO3BOJISAE 3MEHIIUTH CKIAIHICTh MOJIENi JepeBa pilieHb 1 3poduTH ii Oinpm 3po3yminoro. 3a-
IIPOIIOHOBAHO HAOIP MOKA3HMKIB, 1[0 XapaKTepHU3yIOTh CKIAIHICTh MO/ Ha OCHOBI JepeBa pimeHb. BiH MiCTHTb CKIaIHICTE Hepe-
BIPKH BY3IIB, CKJIQIHICTh JOCSATHEHHS BYy3JIa, CEPEHIO 1 HAWTIpIIy CKJIAJHICTh 004nCIeHs Mozeli aepeBa. Ha ocHOBI 3ampomnoHoBa-
HOTO HabOpy IMOKA3HUKIB 3aIIPONOHOBAHO KOMIUICKCHHUI KpHUTepiil moOynoBu Moneni. [naukaTopu (ppakTanbHOT po3MipHOCTI ITOMUII-
KH MOJIeJIi JiepeBa pillieHb MOXKYTh OyTH BUKOPHCTAHI JUISl MIOIIYKY i BUJaJeHHs HeiHGOpMaTHBHUX O3HAK B MOJEIII.

Pe3yabraTi. Po3po06iieHi MOKa3HUKH | METOIM pealli3oBaHi B IPOrpaMHOMY 3a0e3MeueHHi i BUBYCHI PU BUPIIICHHI IPAKTHIHUX
3aBaaHb. B pe3ysbrari eKCIepuMeHTaNnbHOro JOCTiKSHHS 3alPONIOHOBAHUX TTOKAa3HUKIB OTpUMaHi rpadiki 3aIe)KHOCTEH MiX HH-
MH, BKIIIOUAIO4X Tpadiku 3aJIe)KHOCTEH YHCIia TinepOIoKoB, M0 OXOIUTIOIOTH BHOIPKY B MPOCTOPI O3HAK, BiZl pO3Mipy OOKy OIOKy:
Ut Beiel BUOIPKH, IJIs1 KOXKHOTO KJIacy, AJsl PI3HUX BCTAHOBIICHHX 3HAYEHBb MOMIJIOK 1 OTPUMAaHUX 3HAYCHb MOMIUIOK, AT PI3HHX
3HAUCHb Pe3yJbTYIOUHX UYHCEN O3HAK i €K3eMIUIAPIB, TaKoX rpadikiB 3aJeKHOCTEH MK CEpeIHBOIO 1 HAWTIPIIO CKJIAJHOIAMU
JepeBa, (hpakTanbHOI PO3MIPHICTIO AepeBa pillleHb 1 cp AHIB CKIAIHICTIO IepeBa, 00’ e AHAHUM KPUTEPIeM 1 IHIMKATOPOM CKOPOUCHHS
Habopy O3HAK, a TAKOX MIX CIIJIBHUM KpUTepieM i ppakTaiabpHOi po3MipHICTIO JepeBa.

BucnoBku. [IpoBeneHi excriepuMEeHTH MiATBEPAWIHM MPAIe3JaTHICTh 3alIPOIIOHOBAHOTO0 MaTEMAaTHYHOTO 3abe3ledeHHs Ta J0-
3BOJIAIOTH PEKOMEH/IyBaTH HOr0 [JIst IPAKTUYHOTO BUKOPUCTAHHS IS BUPIILCHHS 3aBaHb 100y J0BH MOJENEH 110 IPEeLeACHTaX.

KJIFOYOBI CJIOBA: nepeBo piuiens, BUGipka, (ppakranbHa po3MipHICTh, iIHIUKATOP, CKIAAHICTh JepeBa.
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AHHOTALUA

AKTyanbHOCTB. B craThe paccMarpuBaercst mpobiaemMa CHHTE3a MOJENN Ha OCHOBE JiepeBa PELIeHHH ¢ UCTIOIb30BaHNEM (hpak-
TanbHOro aHanm3a. OOBEKTOM HCCIIeOBaHMS SBIISIIOTCS JepeBbsl penieHui. [IpeameToM rccie1oBaHus SIBISIOTCS METOIBI CHHTE3a U
aHajaM3a MoJieJiel Ha OCHOBE JIEPEBBEB PEILICHUMH.

Ileab paGoThl — cO3aHNE METOIOB M (PPaKTAIBHBIX UHIMKATOPOB, MO3BOJIIOIINX COBMECTHO PEIINTD 3aa4dy CHHTE3a MOJIEIH
Ha OCHOBE JIepeBa PEIEHU 1 3a/1auy COKpAILEHUs] pa3MEPHOCTH 00yUarouX AaHHBIX C IOMOIIbIO €ANHOTO MOAX0/1a, OCHOBAHHOTO
Ha NPUHLMIAX (PAKTAIEHOTO aHAIU3A.

Meton. @pakransHas pa3MepHOCTH AJISI MOJEIH Ha OCHOBE JiepeBa PElIeHH onmpeaereHa Kak sl Beceil oOydaromiell BEIOOPKH,
TaK W IS KaxJoro knacca. IIpenmoxen MeTon onpeneneHust (pakTanbHOH pa3sMEpPHOCTH MOJIEIH, OCHOBAHHBIN Ha OILEHKE JepeBa
pelIeHui ¢ y9eTOM HOTPEITHOCTH MOJETIH. DTO MO3BOJIIET IIOCTPOUTH MOZEINE C IIPUEMIIEMBIM 3HAUYSHUEM OIIMOKH, HO C ONTUMU3H-
POBaHHBIM YpOBHEM (ppaKTaJbHON Pa3MEpPHOCTH, UTO ITO3BOJISIET YMEHBIIUTH CIIOXKHOCTh MOJENH JIepeBa PEIICHUI U cIelaTh ee
Oonee nonsATHOH. [Ipemnoxen Habop MokaszaTesel, XapaKTEPU3YIOLIUX CJI0KHOCTb MOJZIENIM Ha OCHOBE JiepeBa perieHnid. OH conep-
KUT CIIOXKHOCTH IIPOBEPKHU Y3JI0B, CI0XKHOCTh JTOCTI)KEHUS y3/1a, CPEIHIO U HaUXyALIYI0 CJIIOXKHOCTb BBIUMCIICHUI MOJENHU JepeBa.
Ha ocHoBe mpemiokeHHOro Habopa MoKa3zaTeNnei MpeiokeH KOMIUIEKCHBIH KpUTepuil mocTpoeHus Monenu. Muaukatops! ¢pak-
TaTbHON Pa3sMEpHOCTH OLIMOKM MOJEIH AePeBa PEIICHUH MOTYT ObITh MCIIOJIB30BaHbI IS TMOUCKA U yJadeHHs HEMH()OPMATUBHBIX
MIPU3HAKOB B MOJIETIH.

Pe3yabTarhl. PazpaboTanHble MOKa3aTeNy M METOABI PEANN30BaHBl B IMPOrPAMMHOM OOECIEYCHHH M M3YYEHBI IPH PELICHUN
MIPaKTUYECKHX 3a7ad. B pesynbprare sKCIIEpHMEHTAIBHOTO HCCISIOBaHUS TIPEIJIOKEHHBIX [T0Ka3aTeNei MoaydeHs! rpauky 3aBUCH-
MOCTEeH MeXly HUMH, BKIIOYAIOIHe TpaduKN 3aBUCHMOCTEH dHciIa THUIEpOIOKOB, OXBATHIBAIOIINX BEIOOPKY B IPOCTPAHCTBE IPH-
3HAKOB, OT pa3Mepa CTOPOHBI OJIOKA: JUIsl BCeil BBIOOPKHY, IS KQXKAOT0 Kiacca, IJIsl Pa3IMYHBIX YCTAHOBICHHBIX 3HAYEHHH OIINOOK 1
HOJIyYESHHBIX 3HAUCHUH OMIMOOK, JUIsl Pa3iMYHBIX 3HAYCHUH PEe3yJIbTHPYIOLIMX YUCEN IPU3HAKOB U SK3EMIUIIPOB, TAKXKe rpauKoB
3aBUCHMOCTEH MEXIy CpeaHeil W HauxyALIeil CIOXKHOCTSIMHU JaepeBa, (QpakTaabHON pa3MEpHOCTBIO JepeBa peUIeHHH W CpeqHeit
CIIO’KHOCTBIO JIepeBa, 00bEeANHEHHBIM KPUTEPUEM U MHAMKATOPOM COKpaIleHHs Habopa NMPHU3HAKOB, a TAKKE MEXKIY COBMECTHBIM
KpHTEpHEeM U (PpaKTaTbHON Pa3MEPHOCTHIO AEPeBa.

BriBoasl. IIpoBeieHHBIE SKCIEPUMEHTHI HOATBEP N pabOTOCIIOCOOHOCTh PEIOKEHHOTO MATEMATHIECKOTO 00eCIeUEeHHS 1
MO3BOJIIOT PEKOMEHI0BATh €r0 sl IPaKTUYECKOI0 UCIONb30BaHUs I PELICHUS 3a4au IOCTPOCHUS MOJIENIEH 110 IpeLeIeHTaM.

KJIFOUEBBIE CJIOBA: nepeBo pemenuii, BEIOOpKa, (hpakTaabHas pa3sMEepPHOCTb, HHIUKATOP, CII0KHOCTh JiepeBa.
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