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ABSTRACT

Context. The equivalent transformation method is examined in the given article. Its essence lies in changing of a certain class of
non-stationary systems with the stationary ones, for which optimization methods are well processed. Urgency of the method is
determined by the fact that in most optimal control methods, developed for continuous systems, tasks are considered in the temporary
space using the states space and the matrix theory. All real control objects are known to be non-linear and non-stationary in one way
or another. Analysis and synthesis of control systems for such objects is a complex mathematical issue, and its solution is received
for some separate occasions for now.

As a result of using the suggested method, when the variable coefficients matrix is known, the task of the non-stationary system
optimal control is reduced to the task of the equivalent stationary system optimal control for which solution methods are well-known
and well processed.

Objective. Reducing energy intensity and improving the quality of products of various technological processes is an urgent task
of the national economy of Ukraine.

Methods. To achieve this goal, we propose a method of modal synthesis of optimal stabilization laws using the method of
uncertain coefficients, developed by the authors

Results. Algorithm of synthesis of the optimal controller in the absence and presence of delay in the control loop is developed.
The method of selection and correction of the desired spectrum of roots is proposed. To eliminate self-oscillations in the presence of
a delay in the control circuit, the R. Bass method is used.

Conclusions. The modal synthesis of optimal laws of stabilization of technological processes is proposed on the basis of the
original method of uncertain coefficients. The complexity of the choice of the desired eigenvalues is overcome by the proposed
procedure of construction and correction of the spectrum of roots in a closed system of optimal control. To eliminate the occurrence
of stable self-oscillations (in the presence of a delay) in the stabilization process near a given trajectory, the Bass’s method is
proposed to be used. The simulation results confirm the correctness and effectiveness of the results.

KEYWORDS: technological process, linear-quadratic optimization task, AKOR method, modal synthesis, method of uncertain
coefficients, choice and correction of roots spectrum, R. Bass’s method.

ABBREVIATIONS
ACOR - analytic construction of the optimal
regulators;
ACS — automatic control system.

€ is a real part of the complex root;

& is a degree of vibration damping;

¢ is a phase shift;

o is a circular frequency of oscillation;
W is a some ratio;

NOMENCLATURE
I (x,u) is a functional;
T is a the symbol of transposition;
t is a current time;
U is a vector of control actions;
pi are the feedback coefficients;
A is a roots of the characteristic equation;
i,jis a indexes;
a;j are the coefficients of the matrix A;
b; are the coefficients of the matrix B;
Cij, fi, diisa auxiliary variable;
col is a column vector;
K is a gain ratio;
X is a extended state vector;
D is a determinant;
D,, is a determinant of dimension n x n;

Dy is a matrix with (n+1)x(n+1) coefficients and

X(t) is a state vector;
u(t) is a scalar control;

0 is a delay in the control loop;
o is a circular frequency;
fi is a coefficient of the i-th open characteristic

determinant.

A* is a matrix of constant coefficients of dimensions

(n+1)x(n+1);

B is a the column vector of dimension (n x 1);
Q= {qij }‘ is a diagonal matrix (nx n);

H(X) is a characteristic polynomial;
gql1=022=q33=1;
det(A+ BBT —1A) is a the characteristic determinant

of a closed optimal system.

INTRODUCTION
Systems synthesis task is one of the key tasks of both

pIN are column vectors with dimension (n+1);
automatic control theory and practice. Its solution results
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in definition of the structure of the automatic control
system (ACS) and its parameters from the condition of
the system sustainability and quality of transient
processes (achieving the required performance, the
inadmissibility of the considerable overshoot) improving
control accuracy in steady-state conditions etc [1].

Linear controllers are an effective way to ensure
dynamic performance of not only linear control objects of
arbitrarily high order, but also of objects that contain non—
linear and discrete units, which have a significant, but not
a determining influence on dynamic processes.

One of the important classes of dynamic objects are
various technological processes. Stabilization of
technological processes is the basis for the development
of optimal control systems. As the result of successful
stabilization and remote manual control, it is possible to
facilitate the withdrawal of equipment and machinery to
open areas, which leads to a significant reduction in
specific capital costs when creating new production
capacities. The task of the regulators stabilizing the
technological process is to counter the perturbation by the
introduction of restorative effects. The problem of
automation is especially acute for enterprises of chemical
and petrochemical industry [2].

The majority of industrial controlled objects have
delays. The presence of the delay is due to the final velocity
of information flows propagation in the technological
objects. The delay may also occur due to time spent on
signal transmission or, as in happens more often, in can be
caused by the phenomenon of simplifying assumptions, by
virtue of which it is considered that action of intermediate
and reinforcing links in the controlled object is reduced to a
signal transmission with delay. In these cases it is called
transport delay systems [3].

Inertia of the operator himself has a significant impact
on the management quality in addition to the delay in the
signal transmission. Therefore, it’s imperative to have
optimal (reference) dynamic implementation (control
laws) in preparation of the operator taking into account
the inertia and delay in the control loop.

In this article authors propose a procedure for the
synthesis of the optimal modal law stabilization of linear
stationary systems with delay based on the method of
undetermined coefficients, which is proposed by the
authors below.

1 PROBLEM STATEMENT
Let the dynamics of the process have the form:

X(t) = AX(t) + Bu(t — 0), )

Boundary conditions:

The most common for the stabilization of
technological processes is a quadratic criterion of shape
quality:

1(X,u) = j(‘)’o [i(t)T Qx(t)+u? (t)]dt . )

The choice of the quality criterion (2) is due to the fact
that it reflects the accuracy of tracking the normative
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indicators of technological processes and
consumption for the stabilization process.

The General statement of the problem of stabilization
of technological processes is as follows:

— it is necessary to find a control that translates the
system (1) from an arbitrary initial state to a zero finite

state and minimizes the quality criterion (2).

energy

2 REVIEW OF THE LITERATURE

There are two main deterministic approaches to create
the control system for the object’s state vector — analytical
design of optimal controllers and modal control.

Professor A. M. Letov [4] published his work in 1960,
in which the analytical solution of the problem of linear
stationary object’s optimal stabilization with a quadratic
quality functional was obtained, it was later called
“analytic construction of the optimal regulators” (ACOR).

Problem of linear non-stationary objects optimization
is also solved in Kalman’s work [5] published in 1960.

ACOR has the ultimate goal of obtaining control law
purely analytically, based on the requirements for
management quality.

Synthesis of the desired optimal closed loop control
system using ACOR depends on the designer choice of
suitable coefficient values of quality criterion is not quite
convenient because of absence of obvious relationship
between selected coefficients and transients in a closed—
loop system.

In addition, the application of the ACOR method leads
to the necessity of solving nonlinear matrix Riccati
equation, which is a non-trivial task and requires the use
of special numerical procedures [6].

The essence of the modal synthesis of optimal control
is to determine the numerical values of the delayless
feedback transmission coefficients in all the variables of
the technological processes state in order to ensure a
predetermined distribution of the characteristic equation
roots (eigenvalues) in the closed-loop control system [7].

For optimal stabilization of the technological
processes proposed modal synthesis using the method of
uncertain coefficients. Let us first consider the case when
there is no delay in the control loop.

3 MATERIALS AND METHODS
It is known [6] that for systems (1)in the case of a
quadratic quality criterion (2), extreme control is a linear
function of state variables:

T=p X 3)

Moreover, if the vector of feedback coefficients is
chosen in such a way that the poles of the closed system
(1) are located at preassigned arbitrary points, then the
required dynamic properties will be provided in the closed
system [4]. Thus, this problem is reduced to the choice of
the optimal location of the poles and determination of the
feedback coefficients.

We prove the following statement.
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Statement. We show that the unknown coefficients of
the characteristic determinant of a closed optimal system

[7]:
det(h)=|A+Bp~T — 1A=

arp +bypy—A--agjpjeran +by py
= aj1+bj pla” +b] pJ —X"‘ajn +b] pn .
any +bnPree-@nj +0y P @pn +bppp =2

linearly enter into the expression for the coefficients
of the characteristic polynomial of a closed system.

Proof. Indeed, let’s suppose that. Then, subtracting
the k-th line from the j th line, multiplied by we get a
determinant equal to the original, in which the feedback
coefficients enter the k th line. Expanding it along this
line and grouping the terms with the corresponding
powers, we finally arrive at the following expression of
the characteristic polynomial of the closed system (4a) or
(4b):

HO=2" +[ch1,i Pi "'dnl}”nl +[Z¢o,i Pi +d0} (4a)

i=1 i=1

HO) =" +(EL p+dn_1)x“’1 +,,,+(ggg+d0)' (4b)

We define the unknown parameters Cjj and

di(j :0,n—1;i:l,_n), in ntl n+l step using the
undetermined coefficients method. To do this, we put

pi =0(i=1,n) in the characteristic determinant at the

first step and reveal it by one of the known numerical
methods and find that the coefficients found for different
powers of A determine the unknown coefficients

dj(i :m) in the expressions for the characteristic
polynomial of the closed system for the corresponding
powers of A. In the next n steps, setting sequentially one
of the coefficients pj(i = I,_n) equal to one while others
remain zero and revealing the characteristic determinant,
we obtain expressions for the unknown parameter ¢ i 0

2 (j=0,n=1) or the  corresponding  power
Xj(j =0,n—1) in the characteristic polynomial of the

closed system.
Cji:fi_di' (5)

On the other hand, the characteristic polynomial of a
closed system with the desired roots A;,A,,...,A, has the

form [7]
n n-1 .
FOO[T %) = D150 +20. (6)

i=1 j=0
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As a result, to determine the feedback coefficients pi
in expression (2), we equate the expressions for the
coefficients for the same powers in (4) and (6) and obtain
a system of linear algebraic equations:

CO(ET,ET,...,ET )‘p=i_a, ™

where
1= (1n_1 ,1n_1,...,10),d = (dn_l,dn_z,...,do)y.

Now consider the procedure for modal synthesis based
on the undefined coefficients method proposed for linear
dynamical systems with transport delay [5, 6].

Let the dynamics model (1) of the technological
process is described as

X = AX + By, ®)

where iz(xl,xz,...,xn)T is fully measured vector of

system states deviation from a predetermined trajectory of
movement; A,B is a coefficient matrix with dimension
nxn, nxl; y is a scalar, characterized by deviation of
controls, taking into account the reaction of the operator,
the dynamic model has the form

y=~ryy+dyut-0), 9)

where constants  determined by

(and Dbesides

%y,du,e are

psychophysical features

1 k
Ay=——;d, ==
S R |
will be sought in the form (2). The objective is to
)T

of operators

u(t) is a scalar control action, which

determine the coefficients p =(py, P2,...Pn) , providing
some predetermined dynamic characteristics of the
stabilization — process and achieving sustainable
programmed movement of the system (8).

As the operator delay 0 is sufficiently small value,

we’ll write the equation (9) as a
y(®) =2y y(t)+dyu(t)—dybu(t). (10)

In that case if in some way estimate or measure the
condition of the operator y(t), the system (8), (10) is fully
observed and the problem is solved as follows.

We take into consideration the advanced phase vector.
Then the closing equation has the form

v T
X =X, X900 Xy X1 = Y) -

u=pTi,

an
and the characteristic polynomial of the closed-loop
system (8), (10) takes the form:
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A-1r ‘

- B
a7 -7 A|

det(A" = h) =

(12)

—T —
Ay +dyPpy —6P B_}\‘ =0,

1+dy0 P 1+did P

* .
where A is a matrix

(+1)x(N+1), P = (Py, PasenePp) s
A=A =2 =4y.

The multiplication of all the elements of a row or
column by the factor p is equivalent to multiplying the
determinant on p [7]. Hence, the determinant (12) can be
written and therefore assuming that the, we’ll put

| A-1n | B |
‘—T —T ‘ —T
p —6p AjAy+dypyy —d,0p B—A(1+dy0py,)

=0. (13)

It is easy to show that the determinant (13) is a
polynomial of degree (n+1) on A, and its coefficients are
linearly dependent on , i.e.

det® —1)=H}, p) =" +@! p+dD +.. 4@ p+dd)=0. (14)

Indeed, when uncovering the determinant (13) in the
last line, in which each element is a linear combination of
the coefficients p, we’re getting the expression (14).

Determination of unknown coefficients
d; ,dio(i = m) is made similarly to the procedure cited in
this paper above. When equating between the coefficients
of the polynomial powers (14) and the polynomial with
spectrum {ki }(I = m) selected to provide specified
quality parameters of transient processes

k+1 n+l
L) =T 1) = D1k, (15)
i+1 k=0

where l,,; =1, we get the joint system of linear algebraic
equations

Dhyip= I. (16)

The solution of system (16) provides the defined
spectrum {ki}(i =m) to a closed-loop system.
Frequently it is not possible to evaluate or measure the
state of the operator y(t) in real conditions. Then it is
necessary to put P, +1=0 in the closing equation (11).

As a result, the characteristic determinant of a closed-loop
system has the form.
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| A-1L | B |

det(A" =) = |———— — .
dy(p -0p A)‘ky—dUGp B—k‘

amn

Desired characteristic polynomial is determined, as in
the previous case, by the expression (15). When equating
the coefficients of the polynomials (17) and (15) with the
same powers A we obtain incompatible systems of linear
algebraic equations in contrast to (16)

D,p=1. (18)
It is possible to use the least squares method [8] for

solving such a system, according to which the vector of
unknown coefficients P is approximately defined as

p=(D/D,)'D,l. (19)

The optimal stabilization law (11) of the system (1),
synthesized, proposed by the method of indefinite
coefficients, provides the given dynamic properties of the
process of stabilization of the system in the event of
deviations from the given (software) trajectory of motion.
However, this law does not eliminate the occurrence due
to the presence of a lag of stable self-oscillations at the
end point of the stabilization process near the given
trajectory of motion. To compensate for the delay, a
modified Bass’s method [8] proposed, the essence of
which is as follows. The delay compensation method [8]
to eliminate this effect, according to which it is necessary
to find a surface spaced in delay time from the zero error
point lying on the trajectory of the motion program (1) by
integrating system (1) in reverse time. In fact, this surface
is a tube inside which the programmed trajectory is
located.

To ensure the specified dynamic parameters of
transient processes in the stabilization of the technological
processes below the proposed methodology for the
selection and correction of the spectrum of the roots.

Usually in stabilization mode technological processes
management quality is defined by transition process time
tn.n. and a range of this process simplification

_ Xj(thn)
Xj(to)

<L j=Ln (20)

If Ly =¢gg+io®y is a dominant root then solution of
system (1) can be approximately written in the form

Xj =%j(t)e" cosoxt+j), j=Ln. ()

From equation (21) based on expression (20) we
obtain

Xj (tn.n)

<efotn < g
Xj(to)

(22)

where
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In&

gg < —=2<0.
tn.n

We choose such value of the imaginary part that is
equal l/tn.n. Variable Xj(t) will make one oscillation
around the equilibrium position at the same time during
the transition process and will strive for it from the
opposite side relative to the initial disturbance, which is
highly desirable for physical reasons.

In order to avoid overshooting the remaining roots of
the characteristic polynomial should be placed as close as
possible to the dominant with implementation of such
conditions

g <O <0y <.,
leo| <[e1] <Je2 < (23)

so that components with the large fluctuations will dump
more rapidly

[l = Pca > 01} (24)
and that the roots are not merged into multiples. It is
desirable to have roots on the complex plane as much as
possible to the left in order to reduce transition time.
However, constraints on state variables impose certain

restrictions on the roots modules too.
Given the notation (21) we write

Xj =V 2+ x(ty ™ cos((ot+(pj).

Each j-th equation of system (22) generates two upper
limits of the roots modules in the characteristic
polynomial, due to by the same restriction on the left and
right sides of the j-th equation of system (22).

Taking into account the expression (25) we define that
for the left side of the j-th equation of system (7)

(25)

max max X = maxv o’ +£2xj(t0). (26)
t A
And for the right side
n n
mtaxmkaxZajixj SZ‘ajixi (to)‘. (27)
i=1 i=1

Comparing the expressions (26) and (27), in the
absence of an explicit dependence of inequality (27) from
the roots module the following inequality can be written
as:

n
[ Jajiitto) o8

maxyo- +¢ Sizl—.
8 Xj(to)
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The most severe restriction of (28) will give us the left
edge of the characteristic polynomial root distribution.
Thus, the increasing € in order to accelerate the decay
process results in minimization « considering expressions
(23) and (24). Roots location corrected after the transient
modeling, based on the superimposed state variables

limits by changing the -characteristic polynomial
coefficients.
Let’s suppose that the j-th state variable is constrained

pres
X

by max ‘x j‘ < . In this case, we homothetically shift

all roots relative to the origin (according to Vieta’s

theorem) with the homothetic coefficient by multiplying

coefficients of the characteristic polynomial of degree 1
pres

) [9].
Xj

by the value

Also, the value of max‘x j‘ will change according to

the expression (21).

4 EXPERIMENTS

We will carry out modeling for two types of
technological processes, dynamic models of which are
most common in practice. The aim of the simulation is a
comparative analysis of the transients obtained by the
standard ACOR method and modal synthesis based on the
method of uncertain coefficients.

Technological process 1. Let the dynamics of the
technological process described by a system of equations
of the form:

dx dx,
— =Xy, —==ayX, +hu.: ay =1; by, =1.
dt 2 dt 2272 2 22 2
Thus, the control object is a serial connection of the
integrating and aperiodic links. It is necessary to define a
control law that provides a minimum of the functional (2).
Boundary conditions:

X1(0) = X190, X2(0)=Xz0; X1(0) =X;(o0) =0.

We consider two cases: a) X;o=1; X;0=0; b) X;0=5;
X20=0;

On the Fig. 1 graphics of transients of stabilizing for
cases a), b) obtained by ACOR and modal synthesis, , is
shown.

Technological process 2. Now let’s suppose that the
dynamics of the technological process is described by a
system of equations of the form:

X(t) = AX(t) + Bu(t), X(t),
where X(t)= (x1(t), x2(t), x3(t))T-state vector; u(t) — a
scalar control.

We assume that the delay in the control loop is
missing.
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-1 1 0
0

and B=|0|.
1

Let’s also assume that A={0 0 1

-1 0 0

For the stabilization of technological process a
quadratic criterion of shape quality (2) is used,
We consider two cases: a) X;9=1; Xx0=0; X30=0;

b) X10=5; X20=0; X30=0,

5 RESULTS
On the Fig. 1 shows graphics of transients of
stabilizing for cases a and b obtained by ACOR and
modal synthesis for the technological process 1.
On the Fig. 2 graphics of transients of stabilizing for
cases a and b obtained by ACOR and modal synthesis for
the technological process 2.

1
Xy
0,5
&
0 >
x2 /
-0,5 \/
-1
[
1 2 3 4 5
5
4 X
3
2
1
0 u ]
//
1 el i

2 4 6 8 10 12 14

6 DISCUSSION

From these graphics (Fig. 1 and Fig. 2) we can see that
from the point of view of modal synthesis, providing the
given dynamic parameters of the transient stabilization
processes is more effective. On the Fig. 1 it concerns the
energy saving component. On the Fig. 3 it concerns to the
accuracy of tracking the required stabilization parameter
values. With the help of the proposed modal synthesis
based on the method of uncertain coefficients, it is
possible to ensure the performance of such dynamic
indicators of the quality of transients as: stabilization
time, overshoot, simplification, degree of oscillation, etc.
This is the main advantage of this method over the ACOR
method, since the latter does not have a direct relationship
between the coefficients of the quality criterion and the
feedback coefficients. In addition, as shown above, the
method works in the presence of a small delay in the
control loop.

1
0,8 \i

0,6
Xy

0,4 |
0,2

-0,2 <~

1
0,8 \i

0,6
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0,4 |

0,2
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Figure 1 — Transient graphics obtained by ACOR (left) and modal synthesis (right)
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Figure 2 — Transient graphics obtained by ACOR (left) and modal synthesis (right)

CONCLUSIONS

The modal synthesis of linear closed stationary
systems with the optimal control law (3) proposed in the
article can provide the required dynamic properties in
technological processes according to the given
parameters. The procedure of modal synthesis of the
optimal control law carries out on the method of
uncertain coefficients proposed in the article. The
difficulty of choosing the required eigenvalues overcomes
the suggested procedure, construction and correction of
the spectrum of roots of the closed-loop optimal control
system of technological processes. Synthesis of closed-
loop optimal control systems is generalized to
incompletely observed processes and processes with
delay in the control loop. In addition, the proposed
procedure of modal synthesis can be used for one class of
non-stationary systems, for which the method of
equivalent transformation proposed in [10] is valid. The
simulation results confirm the correctness and
effectiveness of the received results.
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METO]I HEBU3HAYEHUX KOE®IIIEHTIB ¥V 3ABJIAHHSX ONTUMAJIBHOI CTABUIIBAIIT TEXHOJIOTTYHUX
MPOLECIB

Crenin O. A. — 1-p TexH. HayK, npodecop kKadenpu TexHIdHOI KibepHETHKH, KuiBchkuil momiTexHiYHUH iHCTUTYT iM. Irops
Cikopcrkoro, KuiB, Ykpaina.

Apo3nosud 1. I'. — xaH7. TexH. HayK, CT. HAYKOBUH CHIBPOOITHUK, [HCTHTYT TenekoMyHikamii i rrodanpHOro iH(GOpMAaIiifHOrO
npocropy HAH VYkpainu, Kuis, Ykpaina.

CoagatoBa M. O. — cT. BUKIanga4 Kadeqpy aBTOMaTH30BaHMX CHCTeM O0OpoOku iH(popmanii Ta ynpapiinas, KuiBcekuii
noiitexHigHui incTuTyT iM. Urops Cuxopckoro, Kuis, Ykpaina.

AHOTALIA

AKTyasIbHicTh B nmaHiil cTaTTi po3riIAgaeThess METOA €KBIBAJICHTHOTO MEPETBOPEHHS, 3MICT SKOTO TOJISATA€E B 3aMiHI AESIKOTO
KJlacy HECTAlllOHAPHUX CHCTEM CTalllOHAPHUMH, Ui SKUX METOAM ONTHUMi3alii JoOpe ompamnboBaHi. AKTYyalbHICTH METOLY
00yMOBJICHA THM, IO y OUIBIIOCTI METOMIB ONTUMAIBHOTO YHPABIIHHS, SIKi pO3pOONEHI IS HENepepBHHX CHCTEM, 3ajadi
PO3IISIIAIOThCS Y YacOBOMY IIPOCTOPI 3 BUKOPUCTAHHSIM IIPOCTOPY CTaHIB Ta Teopii MaTpui. Bimomo, mo Bci peanbHi 00’€KTH
YIPAaBIIiHHS B TOW YM IHIIIH Mipi € HENIHIHHUMH Ta HECTalllOHapHUMH. AHaJI3 Ta CHHTE3 CHCTEM YIPABIiHHS IJIsl TAKUX 00 €KTIB
HpescTaBisic co000 CKIAaJHy MaTeMaTH4YHy NpoOiieMy, pillleHHs sSKOi O TeNepillHbOr0 Yacy OTPHUMAHO JUIS IESKUX OKPEMHX
BUIIAJIKIB.

B pe3ynbTaTi BUKOPHCTaHHS 3allPOIIOHOBAHOIO METOAY, KOJIH BiJOMa MAaTpHUIsl 3MiHHUX KOe(il[i€HTiB, 3aa4ya ONTUMAIbHOTO
YIpaBIiHHS HECTAI[IOHAPHOIO CHCTEMOIO 3BOAUTHCA A0 PIillIEHHS 337adi ONTUMAJIBHOTO YIPABIIHHS €KBiBAJICHTHOIO CTAI[iOHAPHOIO
CHCTEMOIO, METO/IX PillIeHHS SIKO1 JOCTaTHBO BiIOMI Ta JOOpE ONpanboBaHi.

Metopa. /Iyt JOCSTHEHHS ITOCTAaBIEHOI METH 3alPOIIOHOBAHO METO MOJAIBHOTO CHHTE3y ONTUMAIBHHX 3aKOHIB CTabimizamil 3
BUKOPUCTAHHSIM PO3pOOIEHOTO aBTOPAMHU METOy HEBH3HAUCHUX KOS(DIIlieHTIB

Pe3yabstar. P03p0o0ieHO anropuTM CHHTE3y ONTUMAIBHOTO PEryJsTOpa Y BHUIIAIKaX BiACYTHOCTI i HAasBHOCTI 3alli3HIOBAHHS B
KOHTYpI yIpaBiIiHHs. 3allpOlIOHOBaHA METOJMKa BUOOPY 1 KOPEKIii OakaHOro CreKTpy KOpeHiB. [t yCyHEHHS! aBTOKOJIIMBAaHb HPH
HAsBHOCTI 3ai3HIOBAaHHs B KOHTYPI YIPaBIIiHHS BUKOPUCTOBY€eThCs MeTon P. Becca.

BucHOBOK 3amnpornoHOBaHO MOJAJIbHUH CHHTE3 ONTHMAJbHUX 3aKOHIB CTalOiNi3allii TEXHOJOTiYHUX IMPOIECIiB HA OCHOBI
OpUTIHAIIFHOTO METOAY HEBH3HAaYCHUX KoedilieHTiB. CKIaAHICTh BUOOPY IIYKAHUX BIACHUX 3HAYEHH JOJNAETHCS 3alPOINOHOBAHOIO
MpoLeayporo MoOyIoBH 1 KOpPEKLii CIEKTpy KOPEHIB B 3aMKHYTIH CHCTEMi ONTHMAalbHOTO YHpaBIMiHHA. Jng BUKIIOYEHHS
BUHMKHEHHS CTIIKMX aBTOKOJIMBaHb (IIPY HAasSBHOCTI 3aTPUMKH) B IIporeci crabirizanii mo6yusy 3agaHol TpaeKTopii IPOIOHYy€eThCS
BHUKOPHCTOBYBaTH MeTox becca. PesynbraTn MoeroBaHHS MiATBEPAXKYIOT KOPEKTHICTD 1 €)eKTHBHICTH OTPHUMAHUX PE3YJIBTATIB.

KJIFOYOBI CJIOBA TexHOJOTiYHHI TpOIIeC, JiHIITHO-KBagpaTHYHa 3aqada onrtuMizarii, Mmeroq AKOP, MonaneHuil cuHTE3,
METO]] HeBU3HAUCHUX KoedillieHTiB, BUOIp 1 KOPEKIIis CreKTpy KopeHis, Meton P. Becca.

YJK 621.51
METO/] HEONTPEJEJIEHHBIX KOY®PUIUEHTOB B 3AJTAUAX ONITUMAJIBHON CTABUJIM3AIIUHA
TEXHOJIO'MYECKHUX ITPOLOECCOB

CreHuH A. A. — 1-p TeXH. HayK, npodeccop Kadeapsl TEXHNIECKOW KHOepHETHKH, KIMEBCKUI MONMUTEXHIYECKHI HHCTUTYT UM.
Uropsa Cukopckoro, Kues, Ykpauna.

AposmoBuay M. I'. — KaHA. TexH. HayK, CT. HAy4YHBI COTPYAHHK, IHCTHUTYT TENEeKOMMYHHUKAIMi M TJIOOAIBHOTO
nHpopmanmonnoro npocrpancrsa HAH Ykpaunsl, Kues, Ykpauna.

CoagatoBa M. A. — cT. mpenonaBartenb Kadeapbl aBTOMAaTH3MPOBAHHBIX CHCTEM 00pabOTKM HH(OpMAaIMU M yHpaBieHUS,
Kuesckuii nonurexunueckuit ”HCTUTYT UM. Uropst Cukopckoro, Kues, Ykpanna.

AHHOTANUA

AKTyallbHOCTb. B naHHOH cTaThe paccMarpuBaeTcs METO]] SKBUBAJICHTHOTO IIPe0Opa30BaHMs, CMBICI KOTOPOTO 3aKJII0YAETCS B
3aMeHe HEKOTOPOTO KJIacca HECTAIMOHAPHBIX CHCTEM CTAI[MOHAPHBIMH, TSI KOTOPBIX METOBI ONTHMHU3ALNH XOPOIIO TPOpadOTaHBI.
AKTyaJIbHOCTh MeTOZa OOYyCJOBJICHA TEM, YTO B OOJBIIMHCTBE METOAOB ONTHUMAIBHOTO YIPAaBJIEHHs, pa3pabOTaHHBIC IUIS
HETIPEePBIBHBIX CHCTEM, 3aJaddl PacCMaTPHUBAIOTCSI BO BPEMEHHOM HPOCTPAHCTBE C HCHONB30BAHHEM HPOCTPAHCTBA COCTOSIHUHA U
Teopun Matpuil. M3BecTHO, 4TO Bce peanbHble OOBEKTHI YNPABIECHHS B TOW HIM WHOW CTENEHH SIBISAIOTCS HENUHEHHBIMH U
HECTAalIOHAPHBIMU. AHAJIN3 U CHHTE3 CUCTEM YIIPABJICHUS VIS TaKHMX OOBEKTOB IPECTaBIsIeT cO00H CIOXKHYIO MaTeMaTHIECKYIO
npo0OiieMy, peleHre KOTOpOH 10 HACTOSAIIETO BPeMEHH TIOyIeHO /Ul HEKOTOPBIX YAaCTHBIX CITydaes.

B pesynpraTe HCHONB30BaHMS MPEUIOKEHHOTO METOZA, KOrJa HM3BECTHA MaTpulla IepeMeHHBIX Kod((HUIMEeHTOB, 3axada
ONITHMAJIBHOTO YNPABIEHNSI HECTAIIMOHAPHONW CHCTEMOW CBOJHUTCS K PEIICHHIO 3a/ladll ONTHMAIBHOTO yNPABICHUS SKBUBAJICHTHOM
CTaI[OHAPHOH CHCTEMOIO, METOIbI PEIICHUS] KOTOPOH JOCTATOYHO U3BECTHBIE U XOPOIIO TPOPaOOTaHHEIE.

Metoa. [t TOCTHKEHUS TIOCTaBICHHOH LENH MPEUTOKEH METO MOJATBHOTO CHHTE3a ONTHMAIIBHBEIX 3aKOHOB CTA0MIIN3AINY C
HCIOJIb30BAHUEM Pa3pabOTaHHOIO aBTOPAMU METO/A HEOIPeIeICHHBIX KOI(Q(UIIHEHTOB.

Pe3yabtarel. Pa3paboraH anroput™ CHHTE3a ONTHUMAIBHOTO PEryJISITOpa B CIydasx OTCYTCTBUS M HAIMYMs 3alla3]bIBaHUS B
KOHType ympasnenus. [Ipemnosxkena MeToanka BEIOOpa U KOPPEKIUH JKETAEMOTO CHeKTpa KopHeil. st ycTpaHeHHs aBTOKOIeOaHnit
TP HAJIMYMU 3aMa3/bIBaHuUs B KOHTYpe YIpaBlIeHHUs UCTonb3yeTcsa MeToa P. bacca.

BruiBoasl. IIpenmoxkeH MOMANbHBIH CHHTE3 ONTUMANBHBIX 3aKOHOB CTAOMIM3AIMM TEXHOJIOTHYECKHUX IIPOLECCOB HA OCHOBE
OPHTHHAIBHOTO METOZa HEeOIpeAeICHHBIX Ko duieHToB. CI0KHOCTh BBIOOpA HCKOMBIX COOCTBEHHBIX 3HAUCHUH MPEOA0IEBACTCS
TIPE/UTOKEHHO MpOoLeypoil MOCTPOSHNSI M KOPPEKIUH CHEKTpa KOpHEH B 3aMKHYTOM CHCTEME ONTHMAJBHOTO ympaBieHHs. [l
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HCKJTIOUCHNS] BOSHUKHOBEHHSI YCTOWUMBBIX aBTOKOJIEOaHMH (IIPH HAIMYUM 3aJIep>KKH) B Ipoliecce cTabMIM3anuy BOIM3H 3aJaHHOI
TPaeKTOPUM IIpeJularaeTcs UCMONb30BaTh MeTol bacca. PesynbraTsl MoaenupoBaHMsS IOATBEPXKIAIOT KOPPEKTHOCTb MU
3¢ PEeKTUBHOCTH MOTYUYEHHBIX PE3yIbTaTOB.

KJIIOYEBBIE CJIOBA: TexHONOTMUECKHH Ipoliece, JIMHEHHO-KBaJpaTW4Has 3afgada onTuMusanmuu, Meronx AKOP,
MOJANIBHBII CHHTE3, METOJ HEONPEACIEHHBIX K03(UINEHTOB, BEIOOP W KOPPEKIHSA CIIeKTpa KopHel, MmeTox P. Bacca.
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