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ABSTRACT

Contex. Making managerial decisions is often associated with solving one-dimensional global optimization problems. The most
important property of global optimization methods is their speed, which is determined by the number of calls to the objective
function in the optimization process.

Objective. Development of high-performance algorithms global for optimizing the function of one variable, based on conditions
that allow you to bring the problem to a form that opens up the practical possibility of obtaining a solution with a given accuracy.
Method. Two algorithms of conditional global optimization of a function of one variable are considered. The first is based on
estimating the smallest distance between neighboring local extrema and allows you to find the global minimum of the goal function
and, if necessary, all its local extrema. The second is suitable for finding the global minimum of a function if the number of local
extrema in the uncertainty interval is known in advance. Both algorithms are based on segmentation methods of the initial uncertainty
segment. The local extremum on a segment is determined by three or four points. An approach is proposed that, in most cases, allows
localization of the extremum at three points, which provides savings in the calculation of digital filters, thereby contributing to an
increase in the speed of the algorithm.

Results. The results of solving optimization problems and data on the effectiveness of the proposed algorithms are presented. A
comparative analysis of the speed of the developed algorithms and well-known algorithms is carried out on the example of solving
test problems used in world practice to assess the effectiveness of global optimization algorithms. Examples of the practical use of
algorithms are given. The analysis of the data obtained showed that according to the number of calls to the objective function, the
algorithms in the sequential computing mode work several times faster than modern high-speed algorithms with which they were
compared.

Conclusions. The data presented indicate the efficiency and high speed of the proposed algorithms. Their speed will be even
higher if the stated ideas of algorithmization are extended to parallel computations. This suggests that the proposed algorithms can
find practical application in the global optimization of functions of the considered classes of problems.

KEYWORDS: function of one variable, local minimum of a function, global minimum of a function, global optimization,
Brent's method, algorithm performance.

ABBREVIATIONS possibility of obtaining its solution with a given accuracy
TF — target function; [1-5].
EPP — efficiency of a parallel process. 1 PROBLEM STATEMENT
The most important property of global optimization
NOMENCLATURE methods is their speed. It is believed that the less
f(x) is the objective function; computation of a minimized function a method requires to
G =[a, b] is segment of uncertainty; achieve a result, the more efficient it is and the higher its
¢ is the accuracy of determining the global extremum; speed. High performance is necessary in two cases: when
dmin is the smallest distance between the extremums calculating a single value of a function requires a
of the CF; significant amount of computer time (for example, in
n is the number of segments on the segment G; some problems of structural mechanics it often takes
h is the length of the segment; several hours for a computer to calculate the objective
Kmin is the smallest number of local extrema on the function [24]) and when mlti-criteria optimization of the
segment G; model of an object or phenomenon is carried out, which
k is the number of TF calls in optimization process. often also requires a significant investment of time.
In this paper, we consider two such deterministic
INTRODUCTION algorithms that are based on certain constraints and

Making managerial decisions is often associated with condi'tions. Examples of the use of algorithms for solving
solving one-dimensional global optimization problems. practical problems are given.
Theoretically, such tasks are unsolvable. Therefore, Both algorithms solve the problem of finding the
optimization is usually carried out in a given area. global minimum of the function f(X) of one variable on the
However, even in this case, the problem of conditional uncertainty interval G = [a, b] up to &. The condition for
global optimization is too complex, because it often the operability of the algorithms is the absence on the
requires unacceptably large costs of computing resources ~ Segment G of sections of the constancy of TF. This means
and / or calculation time. For this reason, conditions are  that for V' x € G the equality
usually imposed on the target function in order to bring
the problem to a form that opens up the practical f(x—¢) = f(x) = f(x+¢). )

should not be satisfied.
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2 REVIEW OF THE LITERATURE

Numerous approaches to global optimization are
known, but exact methods are most widely used in
practice, among which are methods based on a priori
information, for example, data on the rate of change of a
function over a given interval based on estimates using
the Lipschitz constant. Currently, the approach to the
development of algorithms for solving problems by
Lipschitz global optimization methods is considered the
most promising [6, 8, 10]. The fact that this direction in
the field of the development of global optimization
methods is currently being preferred is indicated by the
achievements of leading scientists noted by numerous
awards [7-10].

Prospects for the development of optimization
methods are also associated with the use of parallel
computing. Such an approach to the construction of
methods can significantly reduce the optimization time
through parallel computing [12—13].

In the practice of global optimization, methods are
used that are usually divided into stochastic and
deterministic [14, 15].

Stochastic algorithms are usually used to solve
multidimensional problems, since they investigate
functions at random points and perform additional
calculations that lead to the goal, if such points turn out to
be promising when some criterion is fulfilled. However,
such algorithms do not guarantee success.

When solving one-dimensional problems, stochastic
algorithms have no advantages over deterministic ones,
because the latter allow an exhaustive search in the field
of uncertainty and, therefore, have better prospects in
comparison with the former, and also favor parallel
computations. From the point of view of speed,
preference is also given to deterministic algorithms [23].

3 MATERIALS AND METHODS

The first algorithm is based on the estimation of
neighboring extrema (algorithm A1).

Consider the class of global optimization problems for
which the estimate d < dpi,, where dpi, > € is known.

Divide the segment G into n = 1+[(b-a)/(d—¢)] equal
segments. Obviously, the TF is strictly unimodal [17, 22]
on the segment G; = [X;, X;1], where x;=a+jh, j=0, 1, ...,
n, h = (b-a)/n, i. e., each of them may contain either one
maximum, or one minimum, or a OF on it is monotonous.

We define a structure of the type t =t (X, i, pP1, P2),
where X is a number, i is a logical variable, p; = (p;.X, p;.y)
are points, j = 1, 2. For the ends the current segment, we
introduce the variables w, v of this type.

Put x =a, w.x =X, W.p;.X = X — ¢ and calculate w.p;.y =
f(w.p;.x). We take w.i = 0. This means that w.p, is not yet
defined. We set v.x =X + h, v.i = 0 and calculate v.p,.y.

If w.p1.y < v.p1.y, then we put W.p,.x =X + g, w.i =1
and calculate w.p,.y = f(w.p,.X), otherwise we similarly
define v. If w.p;.y = w.p,.y, then put w.p,.Xx = X and
calculate w.p,.y. Moreover, by virtue of (1), w.p;.y #
W.p,.y is guaranteed. The same goes for v.
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Now two points W.p;, v.p; and one of the points w.p,
or V.p, are calculated at the ends of the segment. Sort this
sequence by X. If the midpoint has a minimum in y, then
this segment contains the local minimum of the TF, if the
maximum, then the local maximum.

If the given sequence is monotonic in Y, then we
define w or v for which i = 0. Now four points are
calculated at the ends of the segment of TF — two at each
edge. Using their gradient W.p,.y — w.p;.y and v.p,.y —
V.p1.y, we can determine the behavior of the function at
the ends of the segment and, on this basis, conclude that
there are local extrema provided that the sequence wW.p,.y,
W.pa.Y, V.p1.Y, V.p,.Y is non-monotonous.

Thus, a local extremum on a segment can be
determined by three or four points. If the localization of
the extremum can be determined by three points, then this
gives savings in one calculation of TF.

Following a similar scheme, we will scan the
remaining segments of the segment G.

Now it remains only to apply the method of local
optimization to each segment that contains an extremum
and successively find all the minima, and if necessary all
the maxima.

The second algorithm is based on a known number of
local minima (algorithm A2).

Consider the class of problems for which Ky, is
known.

Create an array of {w;} segment border structures. We
take wo.Xx = a and w;.Xx = b and calculate w, and w;,
according to the above method.

Wesetn=1,h=b-—a, and in the general case for n >
1, starting from n = 1, we arrange a passage through the
points X;=a+ (i—0,5) h,i=1, 2,..., n of an array w;. Sort
array W by field x in ascending order.

As a result, adding an element to the array w forms
two new segments. We make a passage through all
segments and find the number of lows in accordance with
the above methodology. If the number of such segments
coincides with Ky, then we stop the process of dividing
the segment into segments, perform local minimization of
TF in segments containing minima, and finish the work.
Otherwise, we continue to search for segments until the
condition i = n is fulfilled. After completing such a cycle,
increase n and halve h and make a new cycle pass with
counter i. If it is not possible to find the required number
of minima, then we continue the process until h > €. If this
condition is not met, the search process is completed. In
this case, the last recorded minimum will be the solution
to the problem.

Note that if the specified number of minima Ky, does
not correspond to the number ki, of minima of TF on the
segment G, then for Ky, < Kp, the solution found may turn
out to be erroneous. If Ky, > Kn, then the search for
segments will take too long, even longer than using the
simple enumeration method. In this case, it is convenient
to introduce a new input parameter ny, which imposes a
limitation on the number of calls to TF. When going
beyond its limits, the algorithm finds a solution to the
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problem based on the use of data accumulated during the
optimization process. With a sufficiently large value of
the parameter ny, as a rule, the algorithm gives the correct
result, but in the general case it is not guaranteed that the
solution obtained will turn out to be exact.

4 EXPERIMENTS
As an example of application of algorithm Al, we
consider the results of global function optimization

f(x) = sin [38(x ~0.4)2 } +(x-0.6)% +12

obtained by algorithm A1 on the interval G =[a, b], a=0,
b = 1. Hereinafter, the accuracy ¢ = (b — a) 10™*. The
function graph is shown in Figure 1.

Accepted d = 0.082. To search for local extremes, the
Brent method [18 — 21] was used, adapted to solve the
problem taking into account data on the calculated TF
values obtained by scanning the ends of the segments. As
shown below, such an adaptation of the method
accelerates the work of algorithms.

Figure 2 shows the application window, which shows
the initial data and the results of sequential global
optimization of the digital filters. Abscissa of the global
minimum of TF x=0.7517.
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Figure 1 — Function graph
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On the segment, 7 local extrema of the function were
found, of which 4 turned out to be minima and 3 maxima.
The calculated smallest distance between adjacent
extrema is d,;, = 0.0824. The number of local segments is
n = 13. To search for the behavior of the function on the
segments, k; = 26 calls to the function were required, and
to search for local extrema by the Brent method k, = 49
calls to it.

Thus, in the optimization process, it was necessary to
calculate the digital filter k = k; + k, = 75 times. The
minimum distance between adjacent extrema d = 0.1034.

When searching for local extremes, the slowest
process required 8 calculations of TF. This means that if
the calculations were not carried out sequentially, but in
parallel with a sufficient number of processors, the
efficiency of the search for local extrema would increase
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by 49/8 = 8 times. In this case, the separation efficiency
of segments would increase by 26/2 = 13 times, since
identification of one segment requires no more than two
calculations of digital filters. Thus, in comparison with a
sequential process, the efficiency of a parallel process in
solving this problem will be no less than (26 +49) / (8 +
2) = 7.5 times higher. If there are a sufficient number of
processors, a similar algorithm will have linear
acceleration [22] and this problem will be solved faster.
Note that such an algorithm can be optimized to the
superlinear acceleration index, since the detected
monotonicity segments of the digital filters do not require
local optimization and, therefore, the problem can be
solved with practically the same acceleration on a smaller
number of processors. This circumstance is essential for
parallel multidimensional global optimization, requiring a
significant number of processors [23].

r Al
r\:’ Global Minimizing One-Variable Functions l o |8 &J
r = Pad | Points | a.b | VLE | FuncPad
(Graph MeGear[£0) (57 /] + = [ab [WiE | |
Extremes found: Min & Max -
[V] DrawCurve  [¥] Brent Pts 1 0,0494 0,5040 Min
Method ‘What FuncType z 00,1534 2,3640 Max
Gold Min Y Random 3 0,4051 1,2390 Min
. ) 0,6033 2,2000 Max
@ Brent @ Min Max @ Deter c 07517 02231 Min
€ 0,8551 2,2645 Max
0 = ; = 7 0,9375 0,3141 Min |
=] =) Shortest extreme distance 0,0824 |-
— Neighbour min distance 0,1034
Paints H Funcs 11 = Local Segments Count 13
S e ol
MinDist  MaxCount MinCount Compute Cut Segment Count 26
= @[ ( Compute Extremizing Count 43
0.082 We 4 @ L’ﬁgﬁ] Compute A1l Count 75
Compute Max Local Count 8
X =0,7517 =
L

Figure 2 — Application window

For comparison, we note that if the calculations were
carried out using the direct search method (simple search
with step &) [5], then 10,000 calls to TF would be
required.

Figure 3 shows the search results for the global
minimum of TF. In this case, the search for local maxima
is not performed.
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Figure 3 — Application window

As can be seen from the Figure 3 data, the number of
calls to TF decreased to 53. At the same time, 26 calls to
the TF were required to separate the segments; when
searching for local minima, the TF was calculated 27
times.
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Table 1 shows the indicators of the influence of the
estimate d on the speed of the algorithm, the value of
which is inversely proportional to the number of calls to
the objective function. Parameters D and K are,
respectively, the ratios of d and k to their values in the
line No. 1 of Table 1.

Table 1 - Indicators of the impact of the assessment d
on algorithm performance

No /it d N Ky K, k D K
1 0.08 21 27 | 26 53 1 1.0
2 0.008 201 254 | 21 275 10 5.2
3 0.0008 | 2001 | 2504 | 17 | 2521 | 100 47.6

The data in Table 1 indicate that with a decrease in the
estimate of d by 10 times, the speed of the algorithm
decreases by about 5 times, i. e., solving the problem
requires about 5 times more calculations of TF.

Figure 4 shows the results of global optimization for
the above function according to algorithm A2 for the case
when the number of minima k;, = 4 is set correctly.
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As follows from a comparison of the above results, the
algorithms Al and A2 have approximately the same
speed. Indeed, if Al performed local minimization in 53
DF calculations, then A2 requires 46 accesses to it.
Interestingly, for method A2, the savings in segment
detection are significantly higher and amount to 9 TF
calculations, which allowed to increase the algorithm
performance by about 20%.

If we optimize the function for K,;, = 1 < 4, when the
number of minima is set incorrectly, then we get an
erroneous result X = 0.4051.

If we set Ky, > 4, then for ns > 46 the algorithm will
find the right solution and indicate the exact number of
detected minima.

With global optimization of functions with a
sufficiently large number of extrema, the Al and A2
algorithms more often showed close performance,
however, examples of solving problems when the latter
worked faster are not uncommon.

Figure 5 shows an example of such a task. The
function has 34 local extrema. The smallest distance
between its extrema is dmin = 0.0284.

Algorithm Al required 533 TF calculations to
determine all extrema. At the same time, 326
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computations of TF and 207 computations for local
optimization were used to separate the segments. When
searching for seventeen local minima, the TF was
calculated 425 times, 326 calls to the DF were used to
separate the segments, and 99 to local minimization.
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Figure 5 — Function graph

Using Algorithm A2, the problem was solved in 266
DF calculations, i.e., 1.6 times faster. At the same time,
148 calculations of the TF went to the separation of
segments and 118 to the local minimization of TF.

Note that there is the possibility of accelerating the
operation of algorithm A1. It consists in the fact that if the
estimate d, > d of the smallest distance between extrema
adjacent to the global minimum is known, then for d, > d
> Omin the problem can be solved faster. For the problem
under consideration, the smallest distance between
extrema adjacent to the global minimum is d, = 0.0419.
For d = d,, to find a global minimum, Al algorithm
needed only 124 TF calculations, i. e., the problem was
solved 425/124 = 3.4 times faster. It is guaranteed that the
task of finding the global minimum will be solved by
algorithm A1 without errors.

5 RESULTS

We present the results of a comparative analysis of the
performance of the algorithms using the example of
solving several test problems [16], shown in Table 2. Let
us compare the operation of the algorithms Al and A2
with the algorithms described in the fundamental work of
Ya. D. Sergeev and D. E. Kvasov [8], research which are
supported by grants from the Russian Foundation for
Basic Research, the Council on Grants of the President of
the Russian Federation, and the Italian Foundation for
Basic Research.

Table 2 — Test problems

No Function Segment
. . 10x
1 sin X + smT [2.7,7.5]
2 | —(16x* —24x+5)exp(-x) | [19,39]
3 —Xsin X [0, 10]
4 x® —15x* +27x% +250 (4, 4]
51 2(x=3) +exp(0.5¢") | [3.3]
6 sin® X + cos’ x [0, 6.28]
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Table 3 contains data on the number of calls by
algorithms to the digital filter. The “NA2”, “NA”, “I-NG”
columns provide data on the number of calls to the digital
filters by the best third-party algorithms, and the “Al”,
“A2” columns give similar indicators of the proposed
algorithms. The “E” column indicates the number of local
extrema of the functions corresponding to table 2. The
“(Al + A2) / 2” column shows the average values for the
Al and A2 algorithms. The last column shows the
indicators of the best third-party I-NG algorithm reduced
to the average of the proposed methods.

The data contained in table 3 indicate that according to
the number of calls to the digital algorithms in sequential
computing mode, they work several times faster than the
algorithms with which the comparison was made.

The data presented in the “A1” column allows us to
evaluate the effectiveness of the adapted Brent method in
comparison with the brackets of the original Brent
method. It can be seen that the adapted method gives
almost the same results (problem No. 6), or allows to
increase the speed of the algorithm. So, for problem No.
3, the adapted algorithm works 35% faster (17 TF
calculations versus 23).

With an increase in the number of extrema, the
efficiency of the proposed algorithms decreases, but
remains very high. So, even the worst of the indicators of
the average relative speed of the algorithms Al and A2,
when solving problem No. 1, is 5 times higher than the
characteristics of the best third-party algorithms. The
calculations showed that when parallelizing the
calculations, the comparative speed of algorithm Al in
solving this problem can increase by 14 times.

6 DISCUSSION
We give an example of the practical use of algorithm
Al.
Consider the problem of determining the global
minimum of a function given in the form of a table of
experimental data.

Using them, we construct a cubic B-spline [24, 25]. Its
graph is shown in Fig. 6.

Since there can be no more than one minimum on
each segment of the cubic spline, the smallest distance
between adjacent minima can be estimated by the smallest
distance between neighboring abscissas X, which in this
case is d = 0.01. The solution X = 0.287 of the problem
was obtained for 62 calls of the Al algorithm to the
spline.

As an example of the practical use of algorithm A2,
we consider the solution to the problem of determining
the longest aperiodic component of the transient process
of a linear dynamic system [26].

The characteristic polynomial of the dynamical system
is selected, whose order is 42. It is known that aperiodic
components are characterized by the real roots of the
polynomial [24]. Therefore, to solve the problem, it is
necessary to find its largest real root.

Having compiled a sequence of Sturm polynomials
[27, 28], we established the number of real roots of the
polynomial k = 5 for 42 calls to the polynomial. Applying
algorithm A2 to the function of the square of the
polynomial whose root corresponds to its global minima,
we found the required root for 37 calls to the polynomial.
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Figure 6 — Spline graph

Table 3 — Indicators of comparative testing of algorithms

Y. D. Sergeev, D. E. Kvasov Proposed

Ne [8, C. 86-88] algorithms (I-NG) /

n/n (A1+A2)/2
NA2 NA I-NG E Al A2 | (A1+A2)2

1 308 155 135 512225 | 31 27 5

2 923 413 379 1| 12(14) | 12 12 32

3 416 203 157 4 11723)| 22 20 8

4 1412 549 470 5 1 53(60) | 76 65 7

5 992 497 557 1| 16(20) | 20 18 31

6 746 327 271 7| 25(31) | 37 31 9

Table 4 — Test problems

i 0 1 2 3 4 5 6

7 8 9 10 11 12 13

X | 0.00 | 0.05 | 0.12 | 0.37 | 0.39 | 041

0.42

0.48 | 0.61 | 0.63 | 0.78 | 0.91 | 0.93 | 1.00

yi | 0.76 | 1.00 | 0.90 | 0.00 | 091 | 0.19

0.09

0.05 | 0.10 | 0.86 | 0.95 | 0.90 | 0.29 | 0.95
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The same root was found in the traditional way using
the Bairstow-Hitchcock method [29] to search for all the
roots of the polynomial with the subsequent separation of
the required root. This decision was found for 254 calls to
the polynomial. The use of the Sturm sequence and A2
algorithm instead of the traditional method of searching
for polynomial roots allowed us to reduce the number of
calls to the polynomial by 254 / (42 + 37) = 3.2 times,
thereby significantly increasing the performance of the
system dynamics quality analysis algorithm.

CONCLUSIONS

Two algorithms for global optimization of one
variable functions are proposed. The advantage of
algorithms is their high speed, which is confirmed by
examples of solving numerous optimization problems, as
well as by comparison with the best algorithms for global
minimization of functions. The practical significance of
the results lies in the ability of algorithms to find a
solution faster than known algorithms, which is confirmed
by an example of solving two problems of practical
importance.

The presented data indicate the efficiency and speed
of the algorithms Al and A2. Their speed will be even
higher if the declared ideas of algorithmization extend to
parallel computing.

This suggests that the proposed algorithms can find
practical application in global optimization of functions of
the considered classes of problems.

Prospects for further research are the creation of
global minimization algorithms for functions of many
variables.
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YK 519.67
JIBA AJITOPUTMA I''TOBAJIBHOI ONITUMIBALIL ®YHKII OJHIET 3SMIHHOI, 3ACHOBAHI HA BIJICTAHI
MIK EKCTPEMYMAMMH IXHbOI KNIBKOCTI
Konnsako B. A. — 1-p TexH. Hayk, npodecop kadeapu craHmapTh3allii, METPOJIOTIl Ta YIpPaBIiHHA sAKicTIO. [loMiTeXHIYHMIA
iHctutyT Cnbipcskoro denepanbHoro yHiBepcurery, KpacHosipesk, Pocis.

AHOTAIIA

AkTtyanabHicTb. [IpuifHATTS ympaBIiHCHKUX pIlIEHb YacTO IOB’sS3aHE 3 BUPILICHHSAM 3aBIaHb OJHOBHUMIPHOI TI00anbHOL
onrtuMizarii. HaiBakIuMBIIIMM BIACTHUBICTIO METOZIB T100aabHOI ONTHUMI3AIil € IXHS IMIBUAKOIISA, SIK€ BHU3HAYAETHCSA KIUIBKICTIO
3BepHeHs 210 ninboBoi ¢yukmii (L[P) B mporeci ontuMizamii.

Meta. Po3poOka aropuTMiB BUCOKOI MIBUAKOAIT A1t T100aibHOI onTuMizanii (GyHKIIT oxHiel 3MiHHOI, 3aCHOBaHHX Ha YMOBaXx,
SIKi JI0O3BOJISIFOTH NIPUBECTH 337149y 0 BUJLY, IO BIIKPUBAE PAKTUYHY MOXJIMBICTh OTPHUMAHHS PillIeHHS i3 3aJaHOI0 TOYHICTIO.

Metoa. PosrisiHyTO Ba aliroput™MH yMOBHOI I100anbHOT onTuMizanii ¢yHKiT oxHiel 3MinHoi. [Tepmmii 3acHOBaHMI Ha OLIHII
HalMEHIIIOl BiICTaHI MiX CYCIHIMH JIOKQJIbHUMH €KCTPEMYMaMH 1 JI03BOJISIE 3HAWTH TI100aIbHUIM MIHIMYM LiNbOBOI QyHKIIT i pu
HEeOoOXiHOCTI i i JIOKanbHi ekcTpeMyMu. Jpyruii npuaaTHUi [UTs HOIIYKy r100aabHOro MiHIMyMy (yHKILT, SIKIIO Hamepes BigoMa
KIUTBKICTh JJOKAIBHUX €KCTPEMYMIB Ha Bipi3Ky HeBH3HAUeHOCTi. OOuABa anropuTMu 0a3yroThCcs Ha METOJAaX CErMEHTAIlil BUXiIHOTO
BiJpi3Ka HEBH3HAYEHOCTI. JIOKaJIbHUI €KCTpEMyM Ha CETMEHTI BU3HAYAETHCS 32 TphOMa abo MO YOTUPHOX TOYKaX. 3alpoOHOHOBAHO
MiAXig, SKUi y OUTBIIOCTI BHUIAIKIB JO3BOJISIE BUKOHATH JIOKANI3AIiI0 €KCTPEMyMY IO TPhOX TOYKAxX, IO IAa€ €KOHOMIIO IIpH
obuncnennsx 1@, Cipusito4d THM CaMHM i JBUILECHHIO MIBUIKO/IT alIrOPUTMY.

PesyabTaTu. HaBeneno pe3ynbraté po3B’si3aHHs ONTUMI3AI[iMHUX 331a4 i 1aHi PO e()eKTUBHICTH 3aIPOIIOHOBAHHUX AITOPUTMIB.
[IpoBeneHo MOPIBHIBHHUN aHAi3 MBHIKOAII PO3POOIEHHX alNrOPUTMIB i BiTOMUX aITOPUTMIB Ha NPHKIA[l PIMIEHHS TECTOBHX
3aBIaHb, 10 BUKOPHCTOBYIOTHCS y CBITOBiif MPaKTHLI sl OLiIHKK e(EeKTHBHOCTI aJropuTMiB riodanpHOl onTumizauii. HaBeneni
MPUKIAAN TIPAKTUYHOTO BUKOPUCTAHHS QJITOPUTMIB. AHali3 OTPUMAaHUX JaHUX II0Ka3aB, IO 32 KUIBKICTIO 3BEPHEHb JIO LiIbOBOI
(YHKLIT aTOPUTMH Y PEKIMI TOCIITOBHIX OOYUCIICHb PALIO0Th Y KiJIbKa pa3iB MIBUIIE CYYaCHUX IIBUAKOAIIOYHX aJTOPUTMIB, 3
SIKUMH [POBOAMIIOCS TTOPiBHSHHS.

Bucnosku. Hasefieni 1ani cBiauaTh 11po e(eKTUBHICTE i BUCOKY UIBUAKO/IIIO 3aPOTIOHOBAHHMX AIrOPUTMIB. IX mBHKO s By e
lie BHINE, SKIIO BUKIAJCHI i€l auropurMmizamii MOIIMPUTH Ha mapaneibHi oOuncieHHs. Lle [103BOJIsiE NPHIYCTHTH, IO
3aIpOIIOHOBAHI AITOPUTMH MOXKYTh 3HAWTH NPAKTHYHE 3aCTOCYBaHHS NPH T100aibHOI onTuMizanii GyHKUIH PO3MITHYTHX KIAciB
3azau.

KJUIIOYOBI CJIOBA: ¢ynkuis ogHiel 3MiHHOI, JOKanbHUIA MiHIMyM QYyHKUIl, riao0anpHuii MiHiMyM GyHKUIi, rnobanbHa
ontuMi3aiisi, Metoq bpeHTa, HIBUAKOIIS aIrOpUTMY.

VIIK: 519.67
JIBA AJITOPUTMA I''TOBAJIBHOM ONITUMM3AIIAYN ®YHKIUI OJJHOI NEPEMEHHOI, OCHOBAHHBIE HA
PACCTOSIHUU MEXKIY DdKCTPEMYMAMM U UX KOJIMYECTBE

Komnsinko B. A. — n-p TexH. Hayk, mpodeccop Kadenpsl CTaHIapTU3alUM, METPOJOTHH M YIPAaBICHUS KadueCTBOM.
IMonnrexunueckuit uucTUTYT CHOUpCKOTO (enepaibHoro yHuBepcutera, KpacHosipek, Pocenst.
AHHOTALUA

AKTyalIbHOCTB. [IpuHSATHE yIpaBleHYECKHX pELIEHUH YacTo CBS3aHO C pELIeHWEM 3a7ad OJHOMEPHOH TII00anbHOM
ONTUMM3ALUH. BakHEHIMM CBOWCTBOM METOJOB II00aNbHON ONTUMH3ALUH SBIAETCS X OBICTPOAEHCTBHE, KOTOPOE ONpenenseTcs
KOJIMYECTBOM OOpAIIeHHUH K 1eIeBOH (hyHKIUH B IIPOLECCE ONTHMHU3ALHH.

Heas. PazpaboTka anropuTMOB BBICOKOTO OBICTPOAEUCTBHS IS TI00ATBHOW ONTHMHU3AIMU (YHKIMHM OIHOW IHEpEeMEHHO,
OCHOBAHHBIX Ha yCIOBUSAX, KOTOPBIE IO3BOJIAIOT IPUBECTH 33ady K BUJY, OTKpPBIBAIOIEMY IPAKTHYECKYHO BO3ZMOXKHOCTD I1OJIyYCHUS
pelleHus C 3aJaHHON TOYHOCTBIO.

Metoa. PaccMoTpeHo [1Ba ajdropuTMa yCJIOBHOI Ii1o0ajabHON ONTHMH3AIMU (QYHKINHM OJHOM nepeMeHHoi. [1epBblii OCHOBaH Ha
OLICHKE HaMMEHBIIEr0 PACCTOSHHS MEXKIY COCEIHMMH JIOKAJIBHBIMH JKCTPEMyMaMH W IO3BOJISIET HAWTH TIIOOAJbHBI MUHUMYM
1e7eBoi (DYHKIMH U ITPU HEOOXOJUMOCTH BCE €€ JIOKaTbHBIE SKCTPEMYMBI. BTopoii npuroaen aist noucka riob6aabHOr0 MUHIMYyMa
(GyHKIMH, €clM Hamepel HM3BECTHO KOJHMYECTBO JIOKATBbHBIX AKCTPEMYMOB Ha OTpe3ke HeompejeneHHocTdH. O6a anropurma
0a3upyroTCS Ha METOJaX CErMEHTAlluH MCXOJHOTO OTpe3Ka HEeONpeeneHHOCTH. JIOKambHBIN 3KCTPEMYM Ha CETMEHTE OIPEeeIIeT S
10 TPeM WM TI0 YEeTBIpeM TOuKaM. [IpennoskeH Mmomxox, KOTOPEI B OOJBIIMHCTBE CIIydaeB MO3BOJSET BBHITOIHUTH JIOKANTN3AIUIO
9KCTpEMyMa MO TPEM TOYKaM, UTO JaeT SKOHOMHIO IpH BerucieHnsX LD, ciocobeTBys TeM caMbIM HOBBIICHUIO OBICTPOICHCTBHS
aJICOpPUTMA.

PesyabTatsl. [lpuBeneHbl pe3yibTaThl PEIICHUs] ONTHMH3ALMOHHBIX 3a4ad U JaHHbIE 00 3(QQEeKTHBHOCTH NpeIIoKeHHBIX
anroputMoB. [IpoBeneH cpaBHHTENBHBIN aHamM3 OBICTPONCHCTBHS pa3pabOTaHHBIX AJTOPUTMOB M HW3BECTHBIX AJITOPUTMOB Ha
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IIpUMepe PEIICHUS] TeCTOBHIX 3a/lad, MCIOJIB3YyEeMbIX B MHPOBOH IPAaKTHKE JUIS OLEHKU 3(P(HEKTUBHOCTH aIrOPUTMOB TIIOOATBHOM
onTUMM3aLUK. JJaHbl IpUMepb! IPAKTUUECKOr0 UCIOJIb30BAHUS AITOPUTMOB. AHAIN3 IONYy4YEHHbIX JaHHBIX II0Ka3all, YTO IO YUCIY
oOpalleHnii K 1ejaeBol (YHKIUH ITOPHTMBI B PEXHMME IOCIEIOBATEIbHBIX BBHIYMCICHHH pabOTalOT B HECKOIBKO pa3 ObicTpee
COBPEMEHHBIX OBICTPOJEHCTBYIOIINX ATOPUTMOB, C KOTOPBIMH IPOU3BOAMIOCH CPaBHEHHE.

BoiBoabl. [IpuBeneHHble JaHHBIE CBHACTENLCTBYIOT 00 3()(EKTHBHOCTM M BBICOKOM OBICTPOACHCTBUM IPEUIOKEHHBIX
anroputMoB. x OsIcTpozeiicTBHE OyIeT ele BBIIIE, €CIN U3JI0KECHHBIC HAEH alTOPUTMU3AIUH PAcIPOCTPAHUTh Ha MapalielbHbIe
BEIYHCIICHHS. DTO TO3BOJISICT MPEIIONO0KATh, YTO TPEIOKEHHBIE alTOPUTMBI MOTYT HAaWTH NPAKTHYECKOE NPHMEHEHHE IIpU
r706anbHO onTHMH3aHU QyHKIMHA pacCMOTPEHHBIX KIACCOB 3a1ad.
KJIIOUEBBIE CJIOBA: ¢yHKkIus omgHON NEpeMEHHOH, JIOKATbHBI MHHHMYM (DyHKIMH, TTI00AIBHBIH MUHUMYM (YHKIHH,

rio0aabHast ONTUMU3aLNsA, MCTO BpeHTa, GI)ICTpOI[ei;ICTBI/Ie ajiropurMma.
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