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ABSTRACT

Context. The study of G/G/1 systems is related to their relevance in the modern theory of teletraffic and, therefore, in the theory
of computing systems and networks. In turn, this follows from the fact that it is impossible to obtain solutions for the waiting time in
these systems in the final form in the general case with arbitrary laws of the distribution of the input flow and service time.
Therefore, the study of such systems for particular cases of input distributions is important.

Objective. Obtaining a solution for the main system characteristic — the average waiting time in queue for two queuing systems
of type G/G/1 with conventional and with shifted second-order Erlang and Hyper-Erlang input distributions.

Method. To solve this problem, we used the classical spectral decomposition method for solving the Lindley integral equation,
which plays an important role in the theory of G/G/1 systems. This method allows obtaining a solution for the average waiting time
for the considered systems in a closed form. For the practical application of the obtained results, the well-known probability theory
moments method is used.

Results. For the first time, spectral expansions of the solution of the Lindley integral equation are obtained for two systems, with
the help of which the formulas for the average waiting time in the queue are derived in closed form. The system with shifted Erlang
and Hyper-Erlang input distributions provides shorter waiting times for requirements in the queue compared to a conventional system
by reducing the coefficients of variation of intervals between requirements and of service time.

Conclusions. Spectral expansions of the solution of the Lindley integral equation for the systems under consideration are
obtained and their complete coincidence is proved. Consequently, the formulas for the average waiting time in the queue for these
systems are the same, but with modified parameters. These formulas expand and supplement the known queuing theory incomplete
formula for the average waiting time for G/G/1 systems with arbitrary laws distributions of input flow and service time. This
approach allows us to calculate the average latency for these systems in mathematical packages for a wide range of traffic
parameters. All other characteristics of the systems are derived from the waiting time. In addition to the average waiting time, such
an approach makes it possible to determine also moments of higher orders of waiting time. Given the fact that the packet delay
variation (jitter) in telecommunications is defined as the spread of the waiting time from its average value, the jitter can be
determined through the variance of the waiting time. The results are published for the first time.

KEYWORDS: Erlang and Hyper-Erlang distribution laws, Lindley integral equation, spectral decomposition method, Laplace
transform.

ABBREVIATIONS
LIE is a Lindley integral equation;
QS is a queuing system;
PDF is a probability distribution function.

HE, is a shifted hypererlangian distribution of the

second order;
G is a arbitrary distribution law;
M —5KCIIOHEHIUMANIBHBII 3aKOH PacIpeeIICHNUS;

NOMENCLATURE is a exponential distribution law;

a(?) is a density function of the distribution of time
between arrivals;

A" (s) is a Laplace transform of the function a(?);

b(?) is a density function of the distribution of service
time;

B*(s) is a Laplace transform of the function b(¢);

¢, the coefficient of variation of time between
arrivals;

c“ the coefficient of variation of service time;

E, is a erlangian distribution of the second order;

E, is a shifted erlangian distribution of the second

order;
HE, is a hypererlangian distribution of the second
order;
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W is a average waiting time in the queue;

w (s) is a Laplace transform of waiting time density
function;

A is a parameters of the erlangian distribution law of
the input flow;

Iy,W, is a parameters of the hyperelangian distribution
law of service time;

p is a system load factor;

T, the average time between arrivals;

_kz the second initial moment of time between

arrivals;
7, the average service time;

T2

" the second initial moment of service time;
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@_ (s) the Laplace transform of the PDF of waiting

time;
v, (s) is a first component of spectral
decomposition;
v_ (s) is a second component of spectral
decomposition.
INTRODUCTION

This article is devoted to the analysis of E,/HE,/1 QS
with ordinary and with shifted Erlang (E,) and Hyper-
Erlang (HE,) input distributions and is a continuation of
the work of the authors on systems with a delay. In the
public domain, the authors were unable to detect results
for the average waiting time for requirements in a queue
in such QS. As is known from queuing theory, the
average waiting time is the main characteristic for any
QS. According to this characteristic, for example, are
evaluated packet delays in packet-switched networks
when simulating those using QS. The considered QS with
ordinary and shifted input distributions are of type G/G/1.

In the queueing theory, the studies of G/G/1 systems
are relevant because they are actively used in modern
teletraffic theory; moreover, it is impossible to obtain
solutions for such systems in the final form for the general
case. The laws of the Weibull or Gamma distributions of
the most general form, which provide a range of variation
in the coefficients of variation from 0 to oo, depending on
the value of their parameters, do not allow them to be
used in queuing theory. Therefore, it remains to use other
particular laws of distributions.

In the study of G/G/1 systems, an important role is
played by the method of spectral decomposition of the
solution of the Lindley integral equation and most of the
results in the theory of mass service are obtained using
this method.

The object of study is the queueing systems type
G/G/1.

The subject of study is the average waiting time in

systems E,/HE,/1 and E; /HE; /1.

The purpose of the work is obtaining a solution for
the average waiting time of requirements in the queue in
closed form for the above-mentioned systems.

1 PROBLEM STATEMENT
The paper poses the problem of finding a solution for
the waiting time of requirements in a queue in the

E,/HE,/1 QS and E; /HE5 /1. To solve the problem, it is

necessary first to construct spectral decompositions for
the indicated systems based on the theory of this method.
Therefore, we give brief information about the method of
spectral decomposition of the solution of LIE.

In presenting this method, we will adhere to the
approach and symbolism of the author of the classical
queuing theory [1]. We need to find the law of waiting
time distribution in the system through the spectral
decomposition of the form:
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A*(=s)-B*(s)—1=wy, (s)/y_(s), where v, (s) and
v_(s) are some rational functions of s that can be
factorized. Functions y, (s) and y_(s) must satisfy the

following conditions according to [1]:

1) for Re(s) >0 function W (S) is analytic
without zeros in this half-plane;
2) for Re(s) <D function y_ (s) is analytic

without zeros in this half-plane, where D is some M
positive  constant defined by the condition:

lim a(t)/eiD’ <,

1%

In addition, functions y, (s) and y_(s) must have

the following properties:

im O ""(S)z—l.(z)
ls[>o0,Re(s)>0 s |s|>o0,Re(s)<D s

To solve the problem, it is necessary first to construct
for these systems spectral decompositions of the form

A*(=s)-B*(s)—-1=wy, (s)/y_(s), taking into account

conditions (1), (2) in each case.

2 REVIEW OF THE LITERATURE

The method of spectral decomposition of the solution
of the Lindley integral equation was first presented in
detail in the classic queueing theory [1], and was
subsequently used in many papers, including [7,8].
Another approach to solving the Lindley equation is used
in Russian-language scientific literature [9]. In these
papers, factorization was used instead of the term

“spectral decomposition” and instead of functions y__ (s)
and y_(s) it used factorization components ©, (z,7)

and @_(z,t) of the function 1—z-y(r), where x(¢) is the

characteristic function of a random variable & with an
arbitrary distribution function C(¢), and z is any number
from the interval (—1, 1). This approach for obtaining
results for systems under consideration is less convenient
than the approach described and illustrated with numerous
examples in [1].

In [2], for the first time, the results of an analysis of
QS M/M/1 with shifted exponential distributions are
presented. Article [3] presents the author’s results on
systems with shifted hyperexponential and exponential
distributions, in [4] — for the system with shifted
hypererlangian distributions, in [5] — for the systems with
shifted erlangian and exponential distributions, in [6] —
for the systems with shifted hypererlangian and
exponential distributions.

In [10] presents the results of the approach of queues
to the Internet and mobile services as queues with a delay
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in time. It is shown that if information is delayed long
enough, a Hopf bifurcation can occur, which can cause
unwanted fluctuations in the queues.

At the same time, the scientific literature, including
web-resources, the author was not able to detect results on
the waiting time for the QS with Erlang and Hyper-Erlang
input distributions of the second order of the general
form. Approximate methods with respect to the laws of
distributions are described in detail in [8, 13—-16], and
similar studies in queuing theory have recently been
carried out in [17-24].

3 MATERIALS AND METHODS
For the Eo/HE,/1 system, the distribution laws of the
input flow intervals and the service time are given by the
density functions of the form:

a(t)=a2e M 3)

b(t)= 4qu12te_2“1t +4(1- q)u%te_zuzt . 4)

The solution for the average waiting time for the
E,/HE,/1 system will be built based on the classical
method of spectral decomposition of the solution of LIE,
as shown in [2—7]. This approach allows us to determine
not only the average waiting time, but also moments of
higher orders of waiting time. Taking into account the
definition of the wvariation of delay — jitter in
telecommunications as the spread of waiting time from its
average value [13], thereby we will be able to determine
jitter through the dispersion of waiting time.

The Laplace transforms of the density functions (3)
and (4) will be respectively:

A*(S):(sixzsz;

Then the spectral decomposition
A*(=s)-B*(s)—1=wy, (s)/y_(s) of the solution of
the IPL for the system E,/HE,/1 takes the form:

vils) (2 P (2w Yo Y
\V(s)_[%—sj q[2u1 +s] +(1-9) 2uy +5 L4

The expression standing in square brackets, we will
present in the form:
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o[ass] ol
q(16u12u§ +16u7 s + 4u12S2)
) u )
(1-q)(161713 + 160135 + 44357
T GmesP s

bo +blS+b2S2

(2H1 +s)2 (2p.2 +s)2 ,
where are the intermediate parameters by = 16;112 u% ,
by =16l +(1-q) a1, by = 4quf +(1-q)u3].
Continuing the decomposition, we get:
A\ (by +bys +bys?)
v_(s) 2% —5)* (24 +S)2 (2, +s)2 B
(21 —s)? (2w +s)2 (2, +S)2 B
@9 (2 45 (2 45
—s(s° —dys* —dys® —dys? —dys—dy)
(21 —s)? (21 +s)2 (21, +s)2 B
_ =S(s+01)(s+0;)(s+03)(s+ G4 )(s—05)
@9 us) (2ms)

Finally, the spectral decomposition of the LIE solution
for the Ep/HE,/1 system is:

Vs (S)

v, (s) _ —8(s+01)(s +62)(s +03)(s + 54)(s — Os) .
v_(s) 2h—35)? (21 +5)* (205 +5)

The fifth degree polynomial in the numerator of the

(6)

decomposition in the case of a stable system
p=T1,/T <1, provided
s° —dyst —dys® —dys? —dys—d, (7)

with coefficients:
do = 640 o[y — My + 1) + 407,
dy =16{AMupy (1 +19) — 22 (241 + (g +119)° 1+ 4byA 7
dy =160 (g +112)” + 2012 1= 16(s; + 12 )W +1ymy)
dy = =407+ + 13 —4h(y + )+, ],

dg=4(h—p —1p)

has four real negative roots —c;, —G,, — 03, —G4 (or two
real negative roots and two complexly conjugate with
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negative real parts) and one positive root o5 . The study
of the sign of the lower coefficient d, shows that it is
always in the case of a stable system when 0<p<1.
Taking into account the minus sign in front d, of the

polynomial (6), this also confirms the assumption about
the presence of such roots of the polynomial. All the
above results were obtained using the symbolic operations
of Mathcad.

Further, taking into account conditions (1) and (2), we

construct rational functions y (s) and y_(s):

s(s+o))(s+0,)(s+03)(s+0y)
Q2uy +5)2 2y +5)

because the zeros of polynomial (6): s=0,

W (s)=

S = —Gl .
§s=-0,, $s=—03, §=—04 and double poles s=-2p
Re(s)<0,

and s=-2u, lie in the

(2n—s)’
(s—o5)
the region Re(s)>D defined by condition (1). The
fulfillment of conditions (1) and (2) for functions wy, (s)

half-plane

y_(s)=— , because its zeros and poles lie in

and y_(s) is obvious, which is confirmed by Fig. 1.

2A

-2l11-2|13-01-02-03-04 5 Re(s)

Fig.1. Zeros and poles of the function y_ (s)/y_(s) for the system
E»/HE,/1
When constructing these functions, it is more
convenient to mark the zeros and poles of the relation
v, (s)/y_(s) on the complex s — plane to eliminate

errors in the construction of the functions w, (s) and

y_(s) . In Fig. 1, the poles are marked with crosses, and

zeros are indicated by circles.
Further, according to the method of spectral
decomposition, we find the constant K:

(s+01)(s+0,)(s+03)(s+0y4) B

K= tim Y i . .
(s+2p;)" (s+2p,)

s—>0 s s—0

_ 01020364
B 2.2
16p7 1y
where o1, 6,,03,06,4 — the absolute values of negative
roots —oy, —G,,—03,—04. The constant K determines

the probability that the demand entering the system finds
it free.
Using the function and constant K, we define the

Laplace transform of the PDF waiting time W (y):
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(s+2m)* (s+2)°
16u12u%s (S+61)(S+62)(s+03)(s+04) '

K _ 01070304
‘V+(S)

(OR (s) =
From here, the Laplace transform of the waiting time
density function W' (s)=s-®, (s) is

' (s) _ 610,030 (s + 21 )2 (s +2u, )2
16;112;1% (s+01)(s+0,)(s+03)(s+0y4)

®)

To find the average waiting time, we find the
derivative of the function W~ (s) with a minus sign at
the point s=0:

dw” (s) 11 1 1 11
g — A — A —F—————,
ds O] Oy O3 O4 M My

Finally, the average wait time for the E,/HE,/1 system
ottt t ot )
6p 02 O3 G4 M M2

From the expression (8), if necessary, you can also
determine the moments of higher orders of the waiting
time, for example, the second derivative of the
transformation (8) at the point s=0 gives the second
initial moment of the waiting time, which allows you to
determine the dispersion of the waiting time, and hence
jitter.

For the practical application of expression (9), it is
necessary to determine the numerical characteristics of
the distributions (3) E, and (4) HE,.

Note that for the distribution of E,: T = 7(1,

¢ =1/ V2. To find the numerical characteristics up to
the second order for the distribution (4), we use the
property of the Laplace transform B (s) of the moment’s
reproduction and we write the initial moments:
1—
T 21+M (10)

" M Mz’

> 3 1-
Tftj{iﬁ( qu
K K2

Considering equalities (10) and (11) as a record of the
method of moments, we find the unknown distribution

parameters [y, 1y, g (3). The system of two equations

(10), (11) is not predefined; therefore, we add to it an
expression for the square of the coefficient of variation:

an

2 =2
2 (W)
=T o
(%)
as a connecting condition between (10) and (11). In
addition, the coefficient of variation will be used in the

, (12)
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calculations as an input parameter of the system. Based on
the form of equation (10), we set

(13)

and demand the fulfillment of condition (12). Substituting
the expressions (10), (11), (13) into (12), we obtain the
fourth-degree  equation for the parameter g:

g(1-q)[8(1+c3)g* —8(1+c)g+3]1=0.

trivial solutions ¢ =0 and g =1, we obtain a quadratic

W =2q/7,, ny=2(1-¢9)/7,

Rejecting the

equation, having decided which, for uniqueness, we
choose a larger root:

2(1+¢)-3
8(1+cl)

1
=—+ 14
9=3 (14)

From this it follows that the coefficient of variation

e, >1/42. Thus, a particular solution is obtained for an

n
unspecified system of equations (10) and (11) by the
selection method.

A similar approach to the approximation of the laws
of distributions by the hyperexponential distribution was
applied in the works of the author [3, 4]. Thus, the
second-order hyperelang distribution law can be
determined completely by the first two moments and
cover the entire range of the coefficient of variation from

1/32 to oo, which is wider than that the coefficient of
variation for hyperexponential distribution (1, ).

The quantities T, , ?u, G Cus defined above, will be

considered as input parameters for calculating the average
waiting time for the system E,/HE,/1. Then the
calculation algorithm will be reduced to the sequential
determination of the distribution parameters (4) from
expressions (14), (13) and to finding the necessary roots
of the polynomial (7), and then to using the formula (9).

Next, we consider a system that is fundamentally
different from the QS studied. For the E,/HE,/1 system
with shifted laws of distributions of input flow intervals
and service time, these laws are defined by density
functions of the form:

2 =202,
at)= 4 (1-1y)e (=) 454,
0, 0<t<1,

(15)

2 oy~ 2 2y, (1~
b(t):{gqu(t—to)e M) 41—t ), 1510 (1)
, 0<r <t

Such a QS, unlike the conventional system, is denoted
as E; /HE, /1. In the work of the authors [2], a system

with shifted exponential input distributions is designated
as a system with a delay. The time shift of the exponential
distribution transforms the classical M/M/1 system into a
G/G/1 type system.
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Statement. The spectral expansions
A*(=s)-B*(s)=1=wy_ (s)/y_(s) of the LIE solution

for systems E,/HE,;/1 and E,/HE,/1 completely

coincide and have the form (5).
Proof. The Laplace transforms of functions (15) and
(16) will be respectively:

2
N
s+2A

oy Y 2, T
B (s)= q(ﬁgluj +(1—q)(ﬁJ TS

spectral
_ Y+ (s)
v-(s)

E, /HE, /1 system will be:

N CoIEes

A (

decomposition

A*(-s)-B*(s)-1 of the LIE solution for the

2 2 2
2 2 2
2( ) q H +(l—q) H2 —-1.
2h—s 2u —s 2y =

Here, the exponential functions due to the opposite
signs of the exponents are zeroed out and thus the shift
operation is leveled. We thereby obtained the same
expression (5). Further decomposition of the last
expression will lead to the form (6), as was done for the
system E,/HE,/1. Therefore, the spectral expansions for

E, /HE, /1 and E,/HE,/1 completely
coincide and have the form (5). The statement is proved.

the systems

Thus, considering the E, /HE,; /1 system, we can
fully take advantage of the results obtained above for the
E,/HE,/1 system, but with the changed numerical
characteristics of the shifted distributions (15) and (16).

We define the numerical characteristics of the
interval between the arrivals of requirements and service

time for the new system E, /HE, /1. To do this, we use
the Laplace transforms of functions (15) and (16).

We define the numerical characteristics of the
distribution (15). The average interval between the
arrivals of requirements in the system is

T o=AT 4.

(17)
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The second initial moment of this interval is
2 *
dA—z(S) = iz w2l 7, from where
ds o 2A
s=0
23 I 2 .
BE 5t 27+t0 . Define the square of the coefficient
2\
2 T2
of variation c? = O _(T;‘) = ! 5 Hence the
() 2(1+11p)
coefficient of variation:
o =[N21+rto)] (18)

The value of the first derivative of the function B*(s)
with a minus sign at the point s=0 is equal to

dB*(s)
ds

-1 1
=qu; +(1-qu, +¢p.
s=0

Hence, the average value of the intervals between
adjacent requirements of the input flow will be equal to

(19)

The value of the second derivative of the function

T, =g+ (- +1.

B (s) at s=0 gives the second initial moment of service

time

rﬁ :tg +2to[i+ (l—q)]+ 3q2 + 3(1_;1) .
Moo M2 2pp 0 2u3

(20)

From here, we define the square of the coefficient of
variation of the arrival intervals:

2 B =20~ +g(=20) 0 —1p)” )
2y — (i — 1) +lohypy T

Note that the coefficients of variation 0 <c¢;, <1/ V2
and ¢, >0 for the shift parameter 7, >0. Thus, it is

obvious that the E, /HE, /1 system is of type G/G/1.

Considering expressions (17) — (21) as a form of
recording the method of moments, we find the unknown
distribution parameters (15) and (16). We determine the
distribution parameter (15) A from (17) and get the value
r=1/(7 —1t).

Finding distribution parameters (16) 1, 1y, ¢ will be
similar to finding these parameters for distribution (4).
Now, based on the form of equation (19), we set

W =29/ (T, —1)» 1y =2(-9)/ (7, = 1) (22)
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and demand the fulfillment of condition (21). Substituting
solution (22) into (21), we solve the resulting equation of
the fourth degree with respect to the parameter ¢, taking
into account the condition 0<g<1 and choose the

desired solution

3(%, 1)

4 8[(%, —19)* + it

1
73

and then we determine the parameters p; and p, from
(22).

By specifying the values T, , T,, ¢, ¢, fy as the
input parameters of the system, we thus determine all
unknown parameters of the distributions (15) and (16)
using the known method of moments.

Now consider the effect of the shift parameter on the
coefficients of variation of the distributions. For the
Erlang distribution of the intervals between arrivals, the

coefficient of variation is ¢, =1/ V2 and comparing with
equality (18), we see that the shift parameter #; >0
reduces this coefficient of variation 1+ Af, times. For the

conventional distribution of the HE, service time, as
follows from expressions (10) — (12), we obtain

2 _ B =2am (1~ 1) +4(1-29) (1 ~ )
2 .
2wy —q(uy - )1

Comparing the last expression with (21), we see that
the time shift parameter ¢, >0 reduces the coefficient of

folho

[u(1=¢) +Haq]

times. Taking into account the quadratic dependence of
the average waiting time on the coefficients of variation
of the arrival intervals and service time, we are convinced
that the introduction of the shift parameter in the
distribution laws reduces the average waiting time in the
queue in the QS.

variation of the service time by 1+

4 EXPERIMENTS
Below in the table 1 shows the calculation data for the
E,/HE,/1 system and the E,/H,/1 system close to it for the
cases of low, medium and high loads p=0,1;0,5;0,9.

Note that the E,/HE,/1 system 1is applicable for
o =1/ V2 and 2 /72 , and the E»/H,/1 system for

o =1/ V2 and ¢y 21. The load factor p in all tables is
determined by the ratio of average intervals p=71, /7, .

The dashes in table 1 mean that for these input parameters
the E,/H,/1 system is not applicable. The calculations
given in all tables are carried out for the normalized

service time ?“ =1.
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Table 1 — Results of experiments for QS E,/HE,/1and

Table 3 — Results of experiments for QS E, /HE, /1 when

E,/H,/1
for system E,/HE,/1 W= 2
Input parameters Average waiting time
p Cu EIZ;)ITISZ ? | E;rl_g/sl’ Input parameters Average waiting time
071 0.018 _ ) For QS For QS
01 2 0.160 0.160 P ‘n 1 fo E;/HE; /1 | EyHEy1
4 0.796 0.795 0636 | 1.001 | 0999 0.064
8 3.452 3.448 0672 | 1333 | 05 0.064
071 0395 - 0.1 [ 0700 | 1818 0.1 0.128 0.160
0.5 2 2.102 2.094 0706 | 1980 | 001 0.157
4 8.092 8.082 0707 | 1.998 | 0.001 0.160
8 32.089 32.079 0357 | 1.001 | 0.999 0.500
0.71 4.380 0530 | 1333 | 05 0.881
0.9 2 20.082 20.072 0.5 [ 0672 | 1818 | 0.1 1.724 2.102
4 74.075 74.065 0.704 | 1980 | 001 2.059
8 290.074 290.063 0707 | 1998 | 0.001 2.098
0.071 | 1.001 | 0.999 4504
Tables 2 and 3 show the calculated values of the 0.389 1.333 0.5 8.478
L _ _ . 09 [ 0643 | 1818 0.1 16.547 20.082
average waiting time for the E, /HE, /1 system with 0701 1980 0.0 19.634
delay also for cases of low, medium and high load 0.706 | 1.998 | 0.001 20.041

p=0,1;0,5;0,9 with the values of the shift parameter ¢,

from 0.001 to 0.999 and the coefficients of service time

variation ¢, =0,71 and ¢, =2, respectively, for the

usual system E,/H,/1. The values of the parameters c;
and ¢, in the E; /HE; /1 system change according to

expressions (18) and (21), respectively, as a result of the
introduction of the shift parameter #;, >0, and decrease
Lo
[ (1=q) +poq]
Table 2 — Results of experiments for QS E; /HE; /1 when
for system Ey/HEy/1 ¢, = 0,71

by 1+At; and 1+ times.

Input parameters Average waiting time

For QS For QS

Pa u | E5/HE;/1 | EJHEy1
0.636 | 0.355 0.999 0.006
0.672 | 0.473 0.5 0.006

0.1 | 0.700 | 0.645 0.1 0.013 0.018
0.706 | 0.703 0.01 0.017
0.707 | 0.709 0.001 0.018
0.354 | 0.355 0.999 0.063
0.530 | 0.473 0.5 0.124

0.5 [ 0.672 | 0.645 0.1 0.321 0.395
0.704 | 0.703 0.01 0.386
0.707 | 0.709 0.001 0.394
0.071 0.355 0.999 0.568
0.389 | 0.473 0.5 1.511

0.9 | 0.643 0.645 0.1 3.578 4.380
0.701 0.703 0.01 4.292
0.706 | 0.709 0.001 4.371

5 RESULTS

Comparison of the results for the two close systems in
Table 1 confirms their very good agreement. As can be
seen from tables 2 and 3, the average waiting time in the
E, /HE; /1
decreases many times as compared with the conventional
system E,/HE,/1.

system with increasing shift parameter

© Tarasov V. N., Bakhareva N. F., 2020
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Thus, Table 2 and 3 demonstrates the qualitative and
quantitative influence of the shift parameter on the
numerical characteristics of the distributions (15) and
(16), and therefore, on the main characteristic of the
system, the average waiting time. As one would expect, a
decrease in the coefficients of variation ¢, and ¢, entails

a decrease in the waiting time several times.

The data in the tables correlate well with the results of
the method of two-moment approximation of the
processes of receipts and services in the QS [11].

In the work, spectral expansions of the solution of the
Lindley integral equation for two systems E,/HE,/1,

E, /HE, /1 are obtained, and it is proved that they

completely coincide. Using the spectral decomposition, a
formula is derived for the average waiting time in the
queue for these systems in closed form.

The range of variation of the E, /HE, /1 system

parameters is much wider than that of the E,/HE,/1
system therefore these systems can be successfully
applied in modern teletraffic theory.

6 DISCUSSION

As expected, the data table 2 and 3 fully confirm the
above assumptions about the average waiting time in a
system with a delay. In connection with the reduction of
the coefficients of variation of the intervals of arrivals of
requirements and the time of their maintenance due to the
input of the shift parameter into the laws of distributions,
the latency of requirements in the queue decreases in the
system with delay. Moreover, this decrease is many times.
In addition, with a decrease in the shift parameter ¢, the
average waiting time in the system with delay tends to the
value of this time in the conventional system, which
further confirms the adequacy of the results obtained.

Thus, the constructed mathematical model of the

E,/HE,/1 system with delay extends the range of
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applicability of the conventional E,/HE,/l1 system by
introducing the shift parameter #, >0 into the

distribution laws describing the functioning of the
systems. As the results of computational experiments
show, the constructed system with delay is qualitatively
and quantitatively different from a conventional system.
At the same time, the obtained calculation formulas for
the average waiting time for these systems expand and
supplement the incomplete formula of the queuing theory
for G/ G/ 1 systems.

CONCLUSIONS
The article presents the solution to the problem of
determining the average waiting time for two queuing

systems E,/HE,/1 and E, /HE;/1 by the classical method

of spectral decomposition.

The scientific novelty the obtained results consist in
the fact that spectral expansions of the solution of the
Lindley integral equation for the systems under
consideration were obtained and with their help the
formulas for the average waiting time in the queue for
these systems in closed form were derived. These
expressions extend and complement the well-known
incomplete formula in queuing theory for the mean
waiting time for systems of type G/G/1 with arbitrary
laws of input flow distribution and service time.

The practical significance of the work lies in the fact
that the obtained results can be successfully applied in the
modern theory of teletraffic, where the delays of
incoming traffic packets play a primary role. For this, it is
necessary to know the numerical characteristics of the
incoming traffic intervals and the service time at the level
of the first two moments, which does not cause
difficulties when using modern traffic analyzers.

Prospects for further research are seen in the
continuation of the study of systems of type G/G/1 with
other common input distributions and in expanding and
supplementing the formulas for average waiting time.
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VK 621.391.1: 621.395
MOJEJIb TEJETPA®IKA HA OCHOBI CMO E,/HE,/1 31 3BUMAVVIHUMH TA 3CYHYTHAMM BXITHUMHA
PO3IOAIIIAMUA

Tapacos B. H. — 1-p TexH. Hayk, npodecop, 3aBigyBau kadeapu HporpamHoro 3abes3redeHHs] Ta yNPaBIiHHA B TEXHIYHHX
cucreMax [1oBOI3BKOTO IEpKABHOTO YHIBEPCUTETY TEJICKOMYHIKalii Ta iHpopMaTuku, Pocis.

BaxapeBa H. ®@. — n-p TexH. Hayk, mpodecop, 3aBigyBad kadeapn iHPoOpMaTHKKA Ta 0OUMCIIOBANBHOI TeXHIKH [10BOM3BKOTO
ZIep>KaBHOTO YHIBEpCHTETY TeIeKOMYHiKamiil Ta iHpopmaTuku, Pocis.

AHOTAIIA

AKTyanbHicTh. AKTyansHicTs fociiukeHHst cucteM G/G/1 mo’s3aHa 3 iX 3aTpeOyBaHICTIO B cydacHii Teopil Tenerpadika i,
OTXKe, B TEOPil 00YHCITIOBAJIBHUX CUCTEM 1 Mepexk. Y CBOIO Uepry, Iie BUILIMBAE 3 TOro (akTy, 10 HE MOXKHA OTPUMATH PIiILICHHs IS
4yacy OYiKyBaHHS JJIS IUX CHCTEM B KIHI[EBOMY BUIVIAI B 3arajbHOMY BHIAJKY IIPU JIOBUIBHHMX 3aKOHAaX PO3HOALTIB BXIIHOTO
MOTOKY 1 yacy o6ciyroByBanHs. ToMy Ba)KJIMBI JOCIIKEHHS TAaKMX CHCTEM [UISl OKPEMHUX BHIAKIB BXiJHUX PO3MOILTIB.

Merta po6oTu. OTpuMaHHS PillICHHS Il OCHOBHOI XapaKTEPUCTHKU CUCTEMH — CEPEIHbOrO Yacy O4iKyBaHHS BUMOT B 4ep3i s
IIBOX CHCTeM MacoBoro oOcmyroByBaHHS Ty G/G/1 31 3BHUailHUMH 1 3 3CYHYTHMH €PJIAHTOBCBKUMH 1 THUIIEPEPIIAHTiBCHKIMU
BXITHUMH PO3MOALTIAMHA IPYTOTO TMOPSIKY.

Mertoa. [Iiisi BUpIIICHHS IOCTaBJICHOIO 3aBJaHHS BHKOPHCTAHHH KIACHYHMI METOJ CHEKTPAJIbHOTO PO3KIaJaHHS PillIeHHS
IHTerpaNbHOTo PiBHSAHHS JIMHIUN, KU rpae BaXIIHMBY poiib B Teopil cucreM G/G/1. Jlanuii MeTo JO3BOJISE OTPUMATH PIlIEHHS IS
CepeHbOr0 Yacy OYIKyBaHHS JUISl PO3MISIHYTHX CHUCTEM B 3aMKHYTIH Qopwmi. [ NpakTHYHOro 3acTOCYBaHHS OTPHUMAaHHX
pe3yabTaTiB 0yJI0 BUKOPUCTAHO BiIOMHI METOJ] MOMEHTIB TEOPii HMOBIPHOCTEIHA.

Pe3yabraTn. Brepiue oTpuMaHO CreKTpajbHi PO3KIafaHHs PIlICHHsS IHTErpanbHOro piBHsSHHs JIiHATMI A ABOX CHCTEM, 3a
JOTIOMOTOI0 SIKHX BHBE/ICHI PO3PAaXyHKOBI (OPMyJH [UIsi CEPEIHBOrO 4acy O4iKyBaHHS B uep3i B 3aMKkHyTii ¢opmi. Cucrema 3i
3CYHYTHMH €pPIIaHTOBCEKAMH 1 TUTIEPEPIIAHTiBCHKIMHU BXiTHAMHU PO3MOALIAMHU 3a0e3Medye MEHIINA Yac OYiKyBaHHS BUMOT B 4ep3i B
MOPIBHSHHI 31 3BHYAIHOI0 CHCTEMOIO 33 PaxXyHOK 3MEHIIEHHs KoedillieHTiB Bapianiii iHTepBaliB MiXK HAIXOIKCHHAMH BUMOT 1 4acy
00CITyroByBaHHS.

BucHoBku. OTpUMaHO CHEKTpaibHI PO3KIAJaHHS DIlICHHS IHTErPAIBHOrO PiBHSAHHSA JIMHIUIM IS PO3IIISHYTHX CHCTEM 1
JIOBEJICHO iX MoBHMH 30ir. OTke, 30iratoThCsl i pO3paxyHKOBI BUPa3y Ul CEPEIHBOT0 Yacy OYiKyBaHHS B 4ep3i VISl IUX CHCTEM, alie
31 3MiHeHMMH mnapameTpamu. OTpuMaHe PO3paxyHKOBE BHpPa3 PO3LIMPIOE 1 JIONOBHIOE BiOMy He3aBepuieHy (OopMyiy Teopil
MacoBOTr0 00CIIyroBYBaHH [UIsl CepeIHbOr0 yacy odikyBanHs 1yt cucteM G/G/1. Takuit minxia go3Bossie po3paxyBaTu cepeHiii yac
OYiKyBaHHs IJIs 3a3HAYCHHX CHCTEM B MaTeMaTHYHHX MaKeTax /Uil [IMPOKOTO Jiana3oHy 3MiHM mapamerpiB Tpadiky. Bei immmi
XapaKTEePUCTUKK CUCTEM € MOXIHUMHU 4acy O4iKyBaHHS.

Kpim cepennporo wacy ouikyBaHHS, TakMi MiAXiA A€ MOXJIHMBICTP TaKOX BHU3HAYUTH MOMEHTH BHIIUX IOPSJAKIB 4Yacy
OYiKyBaHHS. 3 OISy Ha TOH (akT, IO Bapiallist 3aTPUMKH MaKeTiB (IPKUTTEp) B TEIEKOMYHIKallil BH3HAUAETHCS SIK AUCIIEPCIs dacy
OYiKyBaHHS BiJ 10T0 CepeaHbOr0 3HAYCHHS, TO JDKUTTEP MOXKHA Oy/ie BU3HAUUTH depe3 ANUCIIEPCIIo 9acy OdiKyBaHHS.

OtpuMaHi pe3ynbTaTH MyOTiKyIOThCS BIIEpILIE.

KJIFOYOBI CJIOBA: epnaHriBchKuii Ta rinepepiiaHriBCbKUi 3aKOHH PO3IMOiTY, IHTerpainbHe piBHIHHS JIiHTi, MeTO
CIIEKTPAJILHOTO PO3KJIalaHHs, epeTBopeHHs Jlamaca.

YIK 621.391.1: 621.395
MOJEJIb TEJJETPA®UKA HA OCHOBE CMO E,/HE,/1 C OBBIYHBIMU U CABUHYTbIMHU BXOJHbBIMHA
PACHPEJEJEHUAMU
TapacoB B. H. — 1-p TexH. Hayk, mpodeccop, 3aBenyroummii kadeapold mporpaMMHOrO OOECIEYCHHS W YHpABICHHS B
TEeXHUYECKHX cucTeMax [I0BOIDKCKOTo TrocyJapcTBEHHOTO YHHBEPCHTETA TEIEKOMMYHUKAIMH 1 MHpOpMaTuKH, Poccus.

Baxapesa H. ®. — n-p TexH. Hayk, mpodeccop, 3aBenyromas Kapenpoil HMHOOPMATHKU ¥ BBIYUCIUTEIEHONW TEXHHKH
TToBOIKCKOr0 rOCYJApCTBEHHOT0 YHUBEPCUTETA TEICKOMMYHHUKAIMI 1 HHGOpMaTuku, Poccusl.
AHHOTALNUST

AKTyalIbHOCTb. AKTyanpHOCTh uccienoBanusi cucreM G/G/1 cBsi3aHa ¢ MX BOCTPEOOBaHHOCTBHIO B COBPEMEHHOH TeOpUH
teneTpaduKa M, CIeI0BAaTEIbHO, B TEOPHU BBIYMCIMTENBHBIX CHCTEM M ceTel. B cBolo ouepenp, 3TO ciienyeT u3 Toro (akra, 4to
HEIb3sI MONYYUTh PEHICHHs Ul BPEMEHH OXXUAAHMS JUI 3THX CHCTEM B KOHEYHOM BHJE B OONIEM ciIydae IPH HPOU3BONBHBIX
3aKOHAX PacIpeAeNeHni BXOJHOTO IIOTOKAa M BpeMeHH o0cmyxuBaHus. [109ToMy BaXKHBI HCCIIEIOBAHMS TAKUX CHCTEM JUISl YaCTHBIX
ClTy4JaeB BXOAHBIX PacIpe/iesICHUI.

Leab padotel. [lomyuenue pemeHus A1 OCHOBHOH XapaKTEPHCTHKH CHCTEMBI — CPEJHET0 BPEMEHH OXHAAHHs TpeOOBaHUH B
ouepenu JUIA JIBYX CHCTeM MaccoBoro obOciyxuBanus Tuna G/G/1 ¢ OOBIYHBIMM M CO CIOBHHYTBHIMH DpJIAHTOBCKMMH U
THIIEPIPIAHTOBCKUMHU BXOAHBIMH pacIipe/ie/ICHUsIMU BTOPOTO ITOPsIIKa.

Metoa. [Ins pemieHus NOCTaBJIEHHOW 3aJadyd HCIHOJb30BaH KJIACCHUYECKUH METOJ, CIEKTPAJIBHOIO Ppa3jIOXKEHMs PELIECHUs
UHTErPAILHOTO ypaBHEeHHs JIMHAIN, KOTOPBIH UrpaeT BaKHyI0 poib B Teopun cucteM G/G/1. JlaHHBII METOZ MO3BOJISACT HOJYYUTh
peleHne ISl CPEJHEr0 BPEMEHN OXKMIAHUS Ul PAaCCMaTPUBAEMBIX CHCTEM B 3aMKHYTOHN (opme. [IJist MPaKTHIECKOTO MPHMEHEHHS
TIOTyYSHHBIX PE3YJIbTaTOB HCIIOIB30BaH H3BECTHBII METOJ MOMEHTOB TEOPHH BEPOSITHOCTEH.

Pe3yabTaThl. BriepBrie MOMTydeHbI CIEKTPATbHBIE PA3JIOKEHHS PEHICHNS] MHTETPAbHOTO ypaBHEHUST JIMHAIN IJIs IBYX CHCTEM,
C TOMOIIBIO KOTOPBHIX BBIBEJCHBI PACUCTHBIC BBIPAKCHUS IS CPEIHETO0 BPEMCHU OXHIAHWSA B OYEpeld B 3aMKHYTOH (opme.
CucremMa CO CABHHYTHIMH DPJIAHTOBCKAMH W THIICPIPIAHTOBCKUMH BXOJHBIMU PACIpeelIeHHIMH 00ecIeunBaeT MEHbIIee BpeMs
OXKHJaHUs TPeOOBaHMH B OYepeqH, MO CPAaBHEHHIO C OOBIYHOM CHUCTEMOW 3a CYeT yMEHbLICHHS KO0d3()(GHLIUEHTOB BapHalMil
HHTEPBAJIOB MTOCTYIUICHUH TPeOOBaHUI ¥ BpEMEHH 00CITy KUBAHHSI.
© Tarasov V. N., Bakhareva N. F., 2020
DOI 10.15588/1607-3274-2020-2-7

73



e-ISSN 1607-3274 PapioenexTpoHika, inpopmaTuka, ynpasiinss. 2020. Ne 2
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2020. Ne 2

1.

2.

10.

11.

12.

13.

BriBoasl. IlomydeHs! CrieKTpaIbHbIE Pa3IokKEHHs PENIeHHs HHTETPAIbHOTO ypaBHeHHs JIMHUTH 71 pacCMaTPHBAaeMbIX CHCTEM
U JI0Ka3aHO UX IOJHOE coBrazeHue. ClieoBaTeNnbHO, COBNANAIOT U PACUCTHBIE BBIPAKECHUS JUIS CPEIHET0 BPEMEHH OXKUIAHUS B
ouepeau Ul THX CHCTEM, HO C M3MEHEHHBIMH Hapamerpamiu. IloilydeHHOe pacyeTHOE BBIPKEHUE PACIIUpSeT W JOHOJHSET
M3BECTHYIO HE3aBEepLICHHYIO (OPMYyIly TEOPHUH MAacCOBOTO OOCIY)KHMBaHUWs JJIS CPEAHEro BpeMeHU oxupanus st cucteM G/G/1.
Takoii MoAXo/ MO3BONISAET PACCYUTATH CPEAHEE BPEMsl OXKHIAHUS [UIS yKa3aHHbBIX CUCTEM B MaTEMaTHYECKHUX IaKeTax IS IHPOKOTo
JMana3oHa M3MCHEHUs MapamMeTpoB Tpaduka. Bce ocTanbHBIC XapaKTEPUCTHKH CHUCTEM SBISIOTCS IPOM3BOAHBIMH OT BPEMEHH
oxupanus. Kpome cpeHero BpeMEeHH OXHAAHUS, TaKOil MOAXOJ aeT BO3MOXXKHOCTh OINPEIEINTh ¥ MOMEHTHI BBICIINX MOPSAKOB
BPEMEHHU OKHJAHUs. YUHTHIBAs TOT ()AaKT, UTO BapHAIMs 3a[JCPKKH MAKeTOB (IDKUTTEP) B TEIEKOMMYHHKAIMAX OIpeJelsieTcs KaK
pa3bpoc BpeMEHH OXHIAHHS OT €r0 CPEIHEro 3HAYCHUs, TO JDKUTTEP MOXKHO OyAeT ONIpeNeNMTh Yepe3 IHCIEPCHI0 BPEMEHH
OXKHJaHUs.

HonyquHme PE3yIbTaThI HyGHI/IKyeTCH BIICPBLIC.

KJ/IFOYEBBIE CJIOBA: 5pnaHroBckuil U TUIEpIpIaHrOBCKUM 3aKOHBI paclpefesieHus, HHTerpajbHoe ypaBHeHue JInHmmm,
METOJI CIIEKTPaJIBbHOTO pa3iioxkeHus, npeodpasoBanue Jlamaca.
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