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ABSTRACT

Context. When cryptographic applications and data transmission control systems are implementing, there is a need for quick
methods for performing operations on finite field elements. The object of the study is the processes of encryption, decryption and
transmission of information using the Galois fields. The subject of the study is the methods and algorithms for calculations in the
Galois fields in polynomial and normal bases.

Objective. The purpose of this study is to analyze the methods of performing operations in the Galois field depending on the
chosen basis (polynomial, normal) and modification of the element conversion method from the polynomial basis to the normal and
vice versa, as well as the development of a new method for generating normal polynomials in order to improve the time
characteristics.

Method. In this paper, a comparative analysis of the processes of performing basic operations in the polynomial and normal
bases is performed (addition, multiplication, multiplicative inverse element calculation, division, exponentiation, Frobenius
operation), and the process of conversion from one basis to another is considered and analyzed. The methods of conversion between
bases depending on different input data, in particular, parameters p and m of the field, are investigated. A method for the finding
normal polynomials among the irreducible and modified approach for constructing a conversion matrix between bases are proposed.

Results. Existing and proposed algorithms are implemented in the C# programming language in the Visual Studio 2015
development environment. For experimental research, a software has been developed that allows performing calculations using the
polynomial and normal representation of GF(p™) elements, to specify different input parameters p and m, and also receive different
sets of test data depending on the normal polynomials of the Galois field.

Conclusions. The obtained experimental results of the methods and algorithms for performing operations on the elements of
GF(2™) in the given bases showed that the proposed method for finding normal polynomials for the conversion between bases of
binary fields gives an increase in speed over 15 times for the parameter m > 14; the proposed approach for constructing a conversion

matrix gives an increase in the speed of more than 5 times for the parameter m > 12.
KEYWORDS: finite field, Galois field, polynomial basis, normal basis, irreducible polynomial, normal polynomial.

ABBREVIATIONS
AES is an Advanced Encryption Standard;
QR code is a Quick Response Code.

NOMENCLATURE

GF(p) is a finite field of order p, where p is prime;

GF(p™) is a Galois field of order p™, where p is prime,
meN ;

f(x) is an irreducible polynomial, a polynomial which
is not equal to a constant and cannot be expanded into the
factors in a given field;

mod is the modulo operation which gives the
remainder after division of one number or polynomial by
another;

A is a matrix that represents the elements of GF(p™) in
a polynomial basis;

B is a matrix that represents the elements of GF(p™) in
a normal basis;

S is a conversion matrix from normal basis to
polynomial;

GF(2™) is a binary Galois field, where operations can
be performed faster because of the field elements
representation features;
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M is an additional matrix for multiplying in normal
basis;

@is a XOR operation (exclusive disjunction), a
logical operation that outputs true only when inputs differ
(one is true, the other is false);

O notation is a mathematical notation that describes
the limiting behavior of a function when the argument
tends towards a particular value or infinity;

Tr(x) is a trace of polynomial,

C# is a multi-paradigm programming language.

INTRODUCTION

The finite fields are increasingly used in the systems
of protection and transmission of information because
they use arithmetic for integers which allow avoiding
work with float numbers and allows you to represent data
in a convenient way for a computer [1].

Galois fields are most commonly wused in
cryptography, correction of data transmission errors,
wavelet transformations, and filters construction in the
digital processing of signals. This is because every byte in
a computer can be represented as a vector in a binary
finite field, and operations using machine arithmetic are
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very simple to implement. Let's analyze the usage of
finite fields in processing data and consider the
peculiarities of their application.

Calculations in modern block ciphers are performed
according to the rules of finite fields arithmetic. For
example, the international standard of encryption
AES (Advanced Encryption Standard) [2-3] and national
cipher “Kalyna” (from 2015) [4] use transformations
based on the Galois fields arithmetic.

The elliptic curve cryptography [5—6], which is the
basis for building a digital signature, cryptographic
protocols, and certificates, is another important area of
application of Galois fields. This area of asymmetric
cryptography studies operations on points of elliptic
curves whose coordinates are elements of finite fields.
Adding and multiplying points on a scalar are the basic
operations over an elliptic curve whose computational
complexity varies depending on the basis in which the
elements are represented.

One of the important applications of Galois fields is
the error control coding [7-8]. This area studies the
methods for detecting and fixing data transfer errors. For
example, Reed-Solomon's cyclic codes use GF(2™), their
arithmetic is used in reading QR codes.

The data conversion is an important part of image,
video and audio processing. It can be implemented by the
construction of digital filters that are based on
computations in finite fields.

The object of study is the processes of encryption,
decryption and transmission of information using Galois
fields.

The subject of study is the methods and algorithms
for performing calculations in Galois fields in polynomial
and normal bases.

Operations over elements of finite fields are
performed at different times, depending on the
representation of the elements. So, the problem of using
different bases depending on the frequency of operations
is actual. It is also important to build efficient methods for
converting between bases and modifying them.

The purpose of the work is to analyze the methods of
performing operations in the Galois field depending on
the chosen basis (polynomial, normal) and modification
of the element conversion method from the polynomial
basis to the normal and vice versa, as well as the
development of a new method for generating normal
polynomials in order to improve the time characteristics.

1 PROBLEM STATEMENT
Suppose the input data represented as element x, in
the polynomial basis A= {l,t,tz,...,tmfl} of Galois field
GF(p™ with an irreducible polynomial f(t) where
teGF(p), xa,xg €GF(p™).

The problem
element x, to

field
basis

Galois
normal

converting  given
element xg of
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B={ag=ta, =tP,a, :tpz,...,(xm_l =tP" 1 can be
represented by finding the irreducible polynomial g(t) for
which the following statements hold:

1.S is a conversion matrix from normal basis to
polynomial constructed using Galois field arithmetic
with the irreducible polynomial g(t).

2. The inverse matrix S exist.

3. XB :S_I'XA.

2 REVIEW OF THE LITERATURE
Galois field GF(q) is a field that consists of a finite
number of elements. The number of its elements is called
the order of the field. The order of the field is a power of

a prime number, that is q=p™, where p is a prime
number, and M is any positive integer. The value of p is
called the characteristic of the finite field [5, 10]. The
simplest Galois field is obtained when m=1 — a field of
residues by the modulus of a prime p:
GF(p)={0,1,...,p—1} . In this case, 1 is an identity

element relative to the multiplication operation, and 0 is
an identity element relative to the addition. If m >1, then
GF(p™) is called the extension of GF(p).

Elements of GF(p™) can be represented in different
bases [11]. The basic basis for computing in the Galois field
is polynomial. In this basis, the elements of the field are
represented by  degrees of an  element @t

A:{l,t,tz,...,tm_l}. Operations in such an algebraic

structure are performed by the module of an irreducible
polynomial of degree m (a polynomial which is not equal
to a constant and cannot be factorized in a given field).
For an extended Galois field, it is an analog of a prime
number in GF(p) where operations perform by modulo p.
In this case, the field elements are represented by

polynomials a, X" +a, ,x"* +...+ax+a,, where
a; €GF(p). Elements of the field can be represented

using different representations, in particular, the most
common are the exponential, polynomial, vector and
logarithmic. To construct GF(p™), first determine the
generator (primitive) element o, and then by dividing the
elements o' by an irreducible
substitutions from it) find the desired set.

Consider an example of constructing the extended
Galois field. To obtain elements of GF(p™) in a
polynomial basis it is necessary to choose an irreducible
polynomial of degree m. Let p=2,m=3.

polynomial (or

Let’s find all irreducible polynomials for a given field.
To do this, let’s check the remainder of the division of the
polynomials of degree m by all polynomials of lower
powers (if the polynomial is irreducible, the remainder
should not be equal to zero). There are 8 polynomials of
degree 3. Let's check each of them.

For x*:
x> modx =0,



e-ISSN 1607-3274 PagioenextpoHika, inpopmaTuka, ynpasmainsas. 2020. Ne 2
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2020. Ne 2

hence, the polynomial isn’t irreducible.
For x> +1:

(x3 +1)modx =1,
(X3 +1)mod(x+1) =0,
hence, the polynomial isn’t irreducible.
For X* +X:
(X3 + X)modX =0,

hence, the polynomial isn’t irreducible.
For x° +X+1:

(x3 +x+1)modx:l ,
(> +x+1)mod (x+1) =1,
(x3 +x+1)modx2 =x+1,
(3 +x+1)mod (x* +1) =1,
(x3 + x+l)mod(x2 + x) =1,
(x3 +x+1)mod(x2 +x+1)= X,
hence, the polynomial is irreducible.
For x* +x*:
(x3 +x2)modx:0,
hence, the polynomial isn’t irreducible.
For x> + x> +1:
(x3 +x? +1)modx =1,
(x3 +x° +1)mod(x+l) =1,
(x3 +x? +1)modx2 =1,
(x3 +x° +l)m0d(x2 +1) =X,
(x3 +x? +1)m0d(x2 + x) =1,
(x3 +x? +l)mod(x2 + x+1) =X+1,
hence, the polynomial is irreducible.
For X* + x> +X:
(x3 +x2 +x)modx:0,
hence, the polynomial isn’t irreducible.
For x> + x> +x+1:
(x3 +x2 +x+1)modx:1,
(x3 +x° +x+1)mod(x+1) =0,
hence, the polynomial isn’t irreducible.

Let's choose an irreducible polynomial — x* +X+1.
Then the field elements for GF(2?) are got in polynomial
basis according to the algorithm:

1. Determine the primitive element. For a polynomial

basis, it is traditionally equal to & = x =(0;1;0).
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2.For i=0...2>~2=0...6 calculate o':
o’ =1=(0;01),
o' =x=(0;1;0),
o’ =x* =(1;0;0),
3

o’ =X’ =X+ +x+1=x+1=(0;1;1),

4 4

o X

X x=(x+1)-x=x+x=(L10),

aszxs:x4-x:(x2+x)-x=x3+x2:

=x>+x+1=(LL1),

a6:x6=x5~x:(x2+x+l)~x:x3+x2+x=

=x"+1=(L0;1),
During the exponentiation of the primitive

element to a greater degree, the elements are
repeated, for example:

a’ =x’ :x6~x:(x2+1)~x:x3+x:1:
=(0;0;1)=a".
Hence, elements of GF(2°) for an irreducible
polynomial x* +x+1 have the form shown in Table 1.

Table 1 — Elements of GF(2*) with an irreducible polynomial

x> +x+1ina polynomial basis

Xl

x
|

Exponent of o

(=) Bl Bl Ll Rl Dl Ren) Rand
——o|—=|lolo|—|o| —
AN IS k=]

An alternative way of representing elements is the
normal basis, where they are represented as follows

B:{oco =t,o, =t",a, :tpz,...,otm_l :tpm_l}.

To construct GF(p™) in a polynomial basis, it is
necessary to choose an irreducible polynomial of degree m.
To represent the polynomial elements of this field in a
normal basis, the chosen polynomial needs to be normal.
Therefore, it is necessary to choose only polynomials that are
normal from the set of irreducible polynomials.

There are different approaches to convert the elements of
the Galois field from one basis to another. Consider a classic
algorithm using an inverse matrix for converting from a
polynomial basis to a normal [6]:

1. Express the basic elements of a normal basis

B:{ao =ty =tP o, =tP ..o =tpmfl} through

the basic elements of a
A={1,t,t2,...,tm‘1}.

polynomial  basis
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2. Construct the change-of-basis conversion matrix S
(elements of the normal basis are placed in the columns in
inverse order).

3. Calculate S : (mathematical operations on
elements of the matrix are performed according to the
rules of GF(p)).

4. Convert an element in a polynomial basis to a

normal basis using the formula xg = 57! XA -

If the matrix does not exist in the third step of the
algorithm, then the irreducible polynomial used in the
polynomial basis is not normal. Hence, it is impossible to
construct a normal basis. In this case, it is necessary to select
another irreducible polynomial in the given field and return
to the first step of the algorithm.

The conversion algorithm from the normal basis to the
polynomial will differ only in the last step, where instead of
the formula x5 =S~ -x, isused— X, =S -Xg .

Consider an example of a conversion from a polynomial
basis to a normal one. Let it be necessary to convert the
element (0;1;1) of GF(2%) with an irreducible polynomial

x* +x* +1 to the normal basis.
Elements of GF(2%) for an irreducible polynomial

x* +x* +1 in a polynomial basis are given in Table 2.

Table 2 — Elements of GF(2*) with an irreducible polynomial
X +x>+1 ina polynomial basis

X X! 1 Exponent o
0 0 0 -
0 0 1 0
0 1 0 1
0 1 1 2
1 0 0 3
1 0 1 4
1 1 0 5
1 1 1 6

The basic elements for a polynomial basis are 1, t, t%.

According to the considered algorithm:

1. Expressing the basic elements of a normal basis
through the basic elements of a polynomial.

Elements of a normal basis have the form:

B ={a0 —tyoy =20, =t :t4}.

For elements of a normal basis having a power greater
than m—1, the values in a polynomial basis can be found
in two ways.

Ist way. As a remainder of dividing an element in a
normal basis by an irreducible polynomial:

t+t?+1
t+1

t* 10t +0t> + 0t +0

thy ot + t
tP+ot’+ t+0
4+ t2+0t+1

2+ t+l
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2nd way. By means of substitutions (from an
irreducible polynomial):

t =t =t P+ =+t =t +t+1.

Then t* =t> +t+1.

Hence, B = {oco =t,q, = tz,oc2 =t2 +t +1} . In a vector
representation, the basic elements of a normal basis have the
form: (0;1;0), (1;0;0), (1;1;1).

2. Constructing the change-of-basis conversion matrix
from the basic elements of the normal basis:

110
S=|1 0 1
1 00

3. Calculating the inverse matrix.
Any method to calculate the inverse matrix can be used,
however, it is necessary to perform all operations on the

matrix elements in GF(p).
0 01
Hence, S7'=|1 0 1
011
4. Obtaining the desired element (0;1;1) in the normal
basis:
0 0 1)/(0 1
Xg =S xp=(1 0 1|{1]=|1
011 1 0

The representation of all elements of the polynomial
basis in normal is calculated by the formula

Xg =S -x, (Table 3).

Table 3 — Elements representation in polynomial and normal basis

of GF(2%)
Element in a Element in the normal

polynomial basis Inverse basis

R 1 matrix (S) )

t t 1 U =t"+t+1 £ t'
0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 00 1 0 0 1
0 1 1 1 1 0
1 oo | |tO1 0 I |0
1 0 1 011 1 0 1
1 1 0 0 1 1
1 1 1 1 0 0

Let’s conduct a comparative analysis of the methods of
performing operations on elements of GF(2™ in the
polynomial and normal basis.

The main operations on the elements of the Galois field
are: addition, multiplication, calculating the multiplicative
inverse element, division, exponentiation, Frobenius
operation.

The simplest operation in the Galois field is the addition.
It is performed in a polynomial and normal basis by the
formula:

c=(a+b)modp.
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That is, as the addition of two polynomials a and b,
where operations over coefficients are performed by
modulo p.

The computational complexity of this operation O(m).

When p = 2 (in the binary field), the operation of the
addition is greatly simplified. In this case, it's enough to
perform the XOR bitwise operation:

c=a®b.

Similarly to the addition, the subtraction operation is
performed in both bases with the same computational
complexity O(m), by the formula:

c=(a-b)modp.

Accordingly, in a binary field it is also sufficient to
perform a bitwise operation XOR:

c=a®b.

In a polynomial basis, the multiplication operation in a
finite field is a multiplication by the module of an irreducible
polynomial, that is [9, 12]:

1. Perform the multiplication of elements in a
polynomial basis by the formula c=a-b.

2. Calculate the remainder of the division of the result
by an irreducible polynomial.

Consider an example. Let in GF(2°) with an irreducible

polynomial f (x)=x>+x>+1 it is necessary to multiply

two polynomials a = Xx+1 and b = x> +x..

Let us represent polynomials in the form of a coefficient
vector: a=(0;1;1), b =(1;1;0).

Then according to the algorithm:

1. Multiplying polynomials:

zrb:(x+n(x2+x):x3+x2+x2+x:x3+x.

2. Calculating the remainder of the division by an
irreducible polynomial:

X +0x2+ X+0 X+ x*+1

X+ X*+0x+ 1 1

X+ x4+ 1

Hence, (a-b)ymod f (X) = x> + X +1.

The multiplication in a polynomial basis based on the
above algorithm has a computational complexity O(m?).
There are modified multiplication algorithms that have
computational complexity O(mlogmlog log m) [14].

A multiplication operation in the normal basis is
performed using an additional multiplication matrix M. The
algorithm in this case can be divided by two stages: the
calculation of the matrix M and the actual multiplication. The
first stage is executed only once, while for others, the already
found matrix is used because it depends only on the Galois
field.
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The  multiplication  algorithm  of  elements
a=(a,_38n_:-.38) and b=(by ;b 5;..30) of
GF(P™ [9, 13] based on the features of the normal basis

. m-1
where the following formula is true: tP .t = Zui;ktpk , SO
k=0

m-1
i j k
thattp ‘tpj :Z“I—J,k—jtp .
k=0

The algorithm for obtaining the multiplication matrix M
forp=2[9]:

1. Construct the matrix L; (elements of the normal
basis, expressed through the basic elements of a
polynomial basis, are placed in the columns in ascending

order, that is t,tp,tng___,tp""" ).

2. Construct the matrix L,, where tP .t elements

(i=0...m—-1) are placed in the columns in ascending
order.

3. Construct the matrix L with the following block
structure:

L= |L).

4. Obtain the identity matrix in the left part of the L

matrix by performing matrix transformations:
L'=(1|M).

5. The multiplication matrix M is obtained in the right
part of the matrix L'.

Multiplication

a=(a,_;8y:...;8)  and
of GF(2™ [9, 13]:
1. Initialize the variables: x=a, y=b.
I
2.For k=m-1...0:

algorithm of elements
b = (by_130p_03...30)

-1 m-1
calculate ¢, = Zai by B -
i=0 j=

3. The result of the
¢=(Cp3Cnai--3Co) -

The computational complexity of the multiplication
operation in the normal basis in the general case reaches
O(m?), while in individual it improves to O(m?) [14].

The calculation of a multiplicative inverse element in the
general case in both bases is carried out in two ways:
according to the extended Euclidean algorithm or by Euler's
theorem [15].

The division operation is implemented by multiplying a
dividend to the multiplicative inverse element of a divisor

multiplication  is

a/b=a-b~'. Given that the multiplication and calculation

of the multiplicative inverse of the element can be performed
by different methods, the computational complexity of the
division operation will be different.
The exponentiation in the normal and polynomial bases
can be performed according to the same algorithm [9]:
1. Convert the power K to the p-th numeral system:
k=kKk_...kkg-
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2. Initialize the variable x=a, where a is the

element of GF(p™), which is raised to k-th power.
3.Fori=r-1...0:

a. perform squaring x = x*;

b.if ki =1,then x=a-Xx.

4. The result of the operation — x .

This operation has a different computational complexity
depending on the basis used, since multiplication, depending
on the representation of the elements performed in different
ways. In this case, the rise to a square in a normal basis can
be replaced by the Frobenius operation for GF(p™).

Let’s consider in detail the Frobenius operation — raising
of the field element to the power pX. Time costs, depending
on the choice of basis differ significantly enough.

In a normal basis, Frobenius operation is very simple, it
does not require significant time consumption. Due to the
representation of  elements of  this basis

m-1
tP } it s

enough to perform a cyclic shift on k digits. Depending on
the representation of the finite field elements in a normal
basis, the shift must be performed in a different direction. If
an element is applied as the power of the generating element

increases a =(ay;a;;...;8,_; ), then the cyclic shift should
be executed to the right by Kk

k
P _ .
a —am_kam_kﬂ ...am_laoal ...am_k_l 5
a=(ay,_38y_25...:8 ), the shift is executed to the left

p p’
Bz{aozt,ocl:t 0, =t0 L0 =

positions

otherwise, if

k
LIS WIVRT: MEDEPSUE: Ir- - NP S

Consider an example of Frobenius operation in a normal
basis. Let the element a =(ay;a,;8,)=(0;1;1) of GF(2%)

with an irreducible polynomial x* +x* +1 need to be raised
to a power Z= pk =2?=4. Then the result of the
operation:

a2 —a<< 2=(ap;a;a ) =(L0;1).

In a polynomial basis for Frobenius operation there is no
fast algorithm, it is performed as exponentiation.

Based on the analysis of the algorithms for performing
operations in both bases and the algorithms for the
conversion between bases, the following conclusions can be
defined:

1. The computational complexity of algorithms for
performing operations depends on the chosen basis.

2. The operations of multiplication and calculation of a
multiplicative inverse element are executed faster in a
polynomial basis, and the Frobenius operation — in a normal.

3. The usage of different bases is advisable when
performing certain types of tasks, in particular, due to
change-of-basis conversion, it is possible to speed up the
execution of cryptographic operations.

3 MATERIALS AND METHODS
The prerequisite for constructing a normal basis is
choosing a normal polynomial in Galois field, so reducing
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the computational complexity of the problem of finding a
normal polynomial is actual.

The proposed method for finding normal polynomials
with m degree in GF(2™) consists of the following steps:

1. Find all prime numbers in the range [Zm ;2mH ) (for

example, by the algorithm of the sieve of Eratosthenes).

2. Convert the resulting prime numbers to the binary
numeral system. The result of this step is the polynomials
given by its coefficients.

3. Remove from the set of polynomials obtained in
step 2 of the algorithm, the polynomials with the trace,
which is equal to 0. The result of this step will be
irreducible polynomials.

4. Calculate the determinant of the change-of-basis
conversion matrix between the bases for a set which
contains irreducible polynomials found in step 3. Note: all
operations on matrix elements should be performed in
GF(p).

5. If the determinant is not equal to zero, then the
irreducible polynomial is normal.

It is worth noting that in step 3, not all irreducible
polynomials are obtained, but the number of missing
irreducible polynomials is insignificant in relation to their
total number.

Consider an example that illustrates the proposed
method for constructing normal polynomials for GF(2°):

1. Prime numbers in range [24;25): 17, 19, 23, 29,
31.

2. Converting numbers from a decimal numeral
system to binary:

17,, =10001,,
19,, =10011,
23,, =10111,,
29,, =11101,,
31,0 =11111,.

3. Determining the trace for polynomials found in
step2 of the algorithm by the formula

m-1
Tr(x) = Zai (mod2):
i-0
Tr(10001)=2mod2 =0,

(10001)
Tr(10011)=3mod2 =1,

(10111)

(11101)

_|

r(10111)=4mod2 =0,
Tr(11101)=4mod2 =0,

Tr(11111)=5mod2 =1.

Polynomials 10011 and 11111 are irreducible.
4. Calculating the determinant of the change-of-basis
conversion matrix for each irreducible polynomial from
step 3.
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00 00O
) 1 010
For polynomial 10011: det =0.
01 01
1 100
1100
) 0110
For polynomial 11111: det =1.
0101
0100

Hence, normal polynomial — x* + x> + x* + x+1.

In the considered example, the polynomial 11001, that
is irreducible, is not present in the result set of irreducible
polynomials, in comparison with the classic method of
finding irreducible polynomials (by checking whether the
remainder of the division of the current polynomial by all
irreducible with lesser degrees is equal to 0), which finds
the whole set of irreducible polynomials. This is because
its binary representation does not correspond to the prime
number in the decimal system.

Consider the proposed method for a field of greater
cardinality, in particular for GF(2%):

1. Prime numbers in range [25;26): 37, 41, 43, 47,
53,59, 61.
2. Converting numbers from a decimal numeral

system to binary:
37,0 =100101,,

41,, =101001,,
43,,=101011,,
47,, =101111,,
53,, =110101,,
59,0, =111011,,
61, =111101,.
3. Determining the trace for polynomials found in

step2 of the algorithm by the formula
Tr(x)= mzlai (mod2):
i=0
Tr(100101)=3mod2 =1,
Tr(lOlOOl):3mod2:1,
Tr(101011)=4mod2:0,
Tr(101111)=5mod2 =1,
Tr(110101)=4mod2 =0,
Tr(111011)=5mod2=1,
Tr(111101)=5mod2 =1.
Hence, polynomials 100101, 101001, 101111,

111011, 111101 are irreducible.
4. Calculating the determinant of the conversion
matrix for each irreducible polynomial from step 3.

© Dychka I. A., Legeza V. P., Onai M. V., Severin A. L., 2020
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1 01 00
1 1.0 00
For polynomial 100101: det|]0 1 0 1 0|=0.
1 00 01
1 1000
01 100
1 1.0 00
For polynomial 101001: det|]1 0 0 1 0|=0.
01 0 01
00000
10100
110 00
For polynomial 101111: detf1 0 0 1 0|=0.
1 00 01
11000
1 01 00
1 1000
For polynomial 111011: det{0 1 0 1 0|=1.
01 001
01 000
01 100
1 1000
For polynomial 111101: detf{0 1 0 1 0|=1.
1 0001
1 0000
Hence, normal polynomials — x> +x*+x> +x+1,

X x4 x4l
The computational complexity of a proposed method
of finding normal polynomials is O(nlog(log n)) , which

is less than the complexity of the traditional method —

O(n3).
The construction of the change-of-basis conversion

matrix is based on the expression of the basic elements of
a normal basis

B ={0L0 =t,a, =t",a, =tpz,...,ocm_1 :tpmfl} through a
polynomial basis. This stage is performed in two ways:

the division of an element t” by an irreducible
polynomial or substitutions from an irreducible
polynomial. Let's consider these methods in more detail
for GF(2’) with an irreducible polynomial

f(x)=x"+x*+x° +x7 +1.

For pi =2'<m no additional calculations are

required (elements are expressed by definition):

0 21

2
ap=x> =x, o =x> =x}, a,=x> =x*. Other

123



e-ISSN 1607-3274 PagioenextpoHika, inpopmaTuka, ynpasmainsas. 2020. Ne 2
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2020. Ne 2

elements should be calculated wusing the below
approaches.

Approach 1. Dividing on an irreducible polynomial
s =X =x mod f (x).

X¥4+0x7 +0x° +0x* +0x* +0x* +0x> +0X+0 X+ xP P+ xr+1

X+ X+ X+ X +0x+ X x*+ X

X'+ X+ X+0x+ X +0x2

X+ X+ X+ x+0x° + X

X'+ X+ X2+0x+0

Hence, a3 = x* +x° +x7.
In the same way:
ay =3 =X mod f (x) = x> +x+1,
In this approach, to calculate the remainder of the

element's division by an irreducible polynomial, it is
necessary to allocate memory that is proportional to the
value n-p™™', where n is the amount of memory required
to save GF(p) element, n=[log, p .

The computational complexity of a given algorithm

for an i-th element is equal to O(i -m p) .

Approach 2. Substitutions from an irreducible
polynomial
= -
a3 =X =X =X Xt x? +x1
=x"+x0+x° +x :( )x5+x3:

:<x2+x+1) (x +X 4+ % +1)+x

=0 ax+x 1+ =x X+ x 0 +x+1=
:x-(x“+x3+x2+1)+x4+x3+x+1:
=x+1=x*+x+ %2,

a, = x> =X :x«(xs)3 :xo(x“+x3+x2 +1)3 =
=x-((x4+x3)3+(x4+x3)2.(x2 +1)+
+(x4+x3)-(x2+1)2+(x2+1)3j=
=x~((x12+x” +x1°+x9)+(x1°+x")+
+(x8+x7+x4+x3)+(x6+x4+x2+1)):
:x-(x12+x“+x°+x8+x7+x3+x2+1):...:

=X +x+1.

This  approach is  difficult for  software
implementation, since as the parameter m increases, the
number of additional calculations will increase
substantially.
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Modified approach. An element of a normal basis
t*" can be calculated using a recursive formula

p
|+1_tp _tp p_Htp = 0Li

amount of allocated memory and speed up the execution

of the algorithm. In this method, squaring is performed

like usual multiplication and then the result of this

operation is divided by an irreducible polynomial.
Consider an example:

this will reduce the

2 4 4
a3:X :az.azzx X =
=x"mod f (x)=x*+x> +x7,

24

2
oy =X =a32=(x4+x3+x2) =

:(x8 +x0 4 x4)mod f(x),

XE+0xX+ X +0C+ X 40X +0+0x+0[ X+ x*+x7+x7+1

X+ X+ X+ F+0xt+ X X x4+ x+1

X +0x + X+ x*+ X +0x°

X+ x4+ X+ x40+ X

X+ 0 +0x* + X+ x*+0x

X+ X+ X'+ XC+0x+ X

X+ x40+ X+ x40

X+ X+ X+ X +0x+1

X +0x*+ x+1

Hence, o, = x> +x+1.

To calculate all elements of the change-of-basis
conversion matrix using this approach, it is necessary to
allocate memory proportional n-p, where n is the

amount of memory needed to save GF(p) element. This is
because it is this maximum number of coefficients that
will be the result of exponentiation of the previous basic

element of the field t” to the power p. Since in the
expression of elements of a normal basis through the
elements of the polynomial by the indicated method, it
will be necessary to calculate the remainder from the

i+l
division of an element t? , whose maximum length does
not exceed 2m—1, then the computational complexity of

the implementation of this approach is equal O(m P ) .

4 EXPERIMENTS

In order to conduct experimental research, a software
was developed. The development has been done using the
C# programming language in the Visual Studio 2015
development environment.

The developed system has a modular architecture (the
block diagram is shown in Fig. 1), which consists of the
following components: implementation of change-of-
basis conversion; performing calculations in a polynomial
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basis; performing calculations in a normal basis; carrying
out time measurements of execution of algorithms;
generation of test data; finding normal polynomials;
interaction with the user.

Change-of-basis o
conversion module Module of finding

£ ;
normal polynomials

Module for
performing
calculations in a
/ normal basis
Time measurement User interaction
module module
\A Module for /
performing
calculations in a
polynomial basis
Test data

generation module

Figure 1 — Structural scheme of the developed software

Experimental research was conducted on the Acer
ESI1-311 personal computer, which has Windows 7
operating system with the following characteristics: CPU
1.83 GHz, Intel Celeron N2940, 4GB of RAM.

The investigation of the speed of performing addition,
multiplication, calculating the multiplicative inverse
element and division operations was conducted using the
following  input:  GF(2*), normal  polynomial
X +x2 X3 +x° +x* +x+1, number of generated
elements — 100000.

Experimental investigations of the performing
Frobenius operation in different bases were conducted
using the above input data with an additional parameter K,
which took values from 1 to 5, 7, from 9 to 13.

Experimental investigations of the exponentiation
operation were performed on the same input data as the
time measurements for basic operations, with an
additional parameter k, which took values from 1 to 8, and
from 10 to 13.

5 RESULTS
The execution time of addition, multiplication,
calculating the multiplicative inverse element and division
operations are shown in Table 4.

Table 4 — Execution time of basic operations
in GF(2**), ms

As can be seen from the experimental results, the
addition is an operation independent of the basis
representation of the element and is executed at the same
time. The multiplication operation is performed 10 times
faster in a polynomial basis than in the normal basis. The
calculation of a multiplicative inverse element takes 2.5
times more time for a normal basis, and, as a result, the
division operation is performed 3 times faster in a
polynomial basis.

Summing up the experimental results, which are given
in Table 5, the Frobenius operation in the normal basis is
performed at a constant time, which is 47 times smaller
than the time of this operation in the polynomial basis for
k=1. It is worth noting that the execution time in a
polynomial basis varies linearly with respect to the
parameter K.

Table 5 — Execution time of Frobenius operation
in GF(2**) for different k. ms

K Basis
Normal Polynomial

1 0.002436 0.114450
2 0.001679 0.225372
3 0.000997 0.339942
4 0.000994 0.451851
5 0.000992 0.557715
7 0.000982 0.777917
9 0.000972 0.989613
10 0.000990 1.095348
11 0.000996 1.205277
12 0.000999 1.310586
13 0.001014 1.417930

The graph of the dependence of the execution time on
the parameter k for the exponentiation operation is shown
in Fig. 2.

2,5

Millisecons

——Normal -=—Polynomial
Figure 2 — Execution time of the exponentiation operation in
GF(2*)

Experimental results of the method of finding normal
polynomials for the parameter p = 2 is given in Table 6.

Table 6 — Execution time of finding normal polynomials,

Operation

Calculatio

Basi n of the

asis .. T o L
Addition | Multiplication | Division | multiplicat
ive inverse

element

Normal 0.0020 1.2188 10.3941 9.2621
Polynomial 0.0019 0.1092 3.4224 3.2990
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ms
m Method
Classic Proposed
8 8.24601 10.81466
10 47.79605 31.92607
14 18103.12345 315.03410
16 243103.12345 1514.77778
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Experimental results of the construction a change-of-
basis conversion matrix are given in Table 7.

Table 7 — Execution time of construction a change-of-
basis conversion matrix

Time of construction, ms

Approach 1. Modified
m Irreducible polynomial (dividing on approach

an irreducible

polynomial)
8 XX+ x2+x+1 0.0877433 0.1332861
10 XX+ xt +x+1 0.1923009 0.2208144
14 XX 4+ %+ 1 2.0167270 0.4689929
16 X4 xS x4 x+1 8.7543370 0.6960259
18 x4 4+ x 41 37.6739521 0.8904218
20 X0+ X +1 164.2269162 1.1983284

As can be seen from the experimental results, the
proposed approach gives worse time results for fields with
a parameter m <10 . However, for fields with a parameter
m > 12 the increase in speed is significant. So, in GF(2'%)
the construction time of the conversion matrix is less than
5 times; in GF(2'®) —at 11, and for m = 1840 times.

6 DISCUSSION

The software architecture is developed, the feature of
which is the encapsulation of the element basis of the
finite field, which allows, using “Strategy” template, to
replace a particular implementation in an instance of the
class of an element of the Galois field without the use of
inheritance.

The approach of constructing a change-of-basis
conversion matrix, which gives an increase in the speed
for the parameter m>12 in more than 5 times, is
proposed. So, for m=16 the time of construction of the
conversion matrix, it is 11 times smaller than the
execution time using the standard approach (dividing the
element by an irreducible polynomial).

The method of finding normal polynomials for
change-of-basis conversion of binary finite fields is
proposed, which gives an increase in speed over 15 times
for a parameter m>14. So, for m=16 the time of
finding normal polynomials, there are more than 150
times less. It should be noted that the set of normal
polynomials that can be found by the proposed method is
less than by the classic method.

CONCLUSIONS

A polynomial and a normal basis can be used to
perform operations on elements of the extended Galois
field. Depending on the chosen basis, the execution time
of operations is different, in particular, in the polynomial
basis, the multiplication operation is performed 4 times
faster, and the calculating of a multiplicative inverse
element is faster in 2 times. At the same time, in the
normal basis Frobenius operation is performed at the
constant time regardless of the parameter k, with k =1
the time for execution less than 10 times, compared with

the polynomial basis.
© Dychka I. A., Legeza V. P., Onai M. V., Severin A. L., 2020
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The scientific novelty of the obtained results is that:

1. The method of finding normal polynomials is
proposed, which differs from the existing by using of
prime numbers in a decimal representation instead of
polynomials, which reduces the computational cost of the

algorithm for finding normal polynomials from O(nS) to

O(nlog(log n))
2. A modified approach is proposed for constructing a
change-of-basis conversion matrix, which consists of

i+l

using a recursive formula oy, =t? =(o;)" instead of
i+l

computing the remainder of the element's t?  division

by an irreducible polynomial, which reduces the amount

of memory used from to n-p, and also the

computational complexity from O(i . mp) to O(mp) . An

increase in speed more than 5 times is observed using this
approach for the parameter m>12. For example, for
m =16 the construction time of the conversion matrix, it
is 11 times smaller than the execution time using the
standard approach (dividing an element by an irreducible
polynomial).

The practical significance of the obtained results is
that the software has been developed for experimental
research. It allows using polynomial and normal
representation of GF(p™), setting different input
parameters p and m, and obtaining different sets of test
data depending on the chosen irreducible polynomial of
Galois field.

Thus, the obtained results can be used to solve the
practical problems of elliptic cryptography and algorithms
for correction of data transmission errors.

The prospect for further research is developing
modified methods for the implementation of
multiplicative  operations  (multiplication,  division,
calculation of multiplicative inverse element) on elements
of the finite field, which are represented in a normal basis.
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CeBepin A.I. — crynent kadeapu mnporpamMHOro 3a0e3MEYCHHS KOMITIOTEPHUX cHUCTeM HamioHanbHOTO TEeXHIYHOTO

yHiBepcutety Ykpainu «KuiBcbkuit monitexHiuHui iHcTUTYT iMeHi [rops Cikopebkoroy», Kuis, Ykpaina.

AHHOTAIIA

AxTyanbHicTs. [Ipu peanizawii kpunrorpagiyHuX JOJATKIB Ta CHCTEM KOHTPOJIO IIepefadi JaHUX BUHUKAE MOTpeda y MBHIKUX
METO/laX BHMKOHAHHS OICpaliil Haj eIeMEHTaMH CKiHYCHHHX 1oJiB. OG’€KTOM JOCII/DKCHHS € TpolecH uHppyBaHHS,
neupyBaHHs Ta mepenadi indopmanii 3 BukopucTaHHsaM noniB ['amya. IIpeaMeToM JOCHTIIDKEHHS € METOOH Ta alrOPUTMHU
BHKOHaHHA 004HCIIeHb y nouisix ['aya B nosiHOMiaabHOMY i HOpMallbHOMY Oa3ucax.

MeTta po6oTu. MeTo10 1aHOTO JOCHIIPKEHHS € aHalli3 METO/IiB BUKOHAHHS omepauiil y moumi ["amya 3anexHo Big oOpaHoro 6azucy
(moniHOMiaNFHUK, HOPMAaJIbHUN) Ta MOAHM]IKalis METOJy MEepPETBOPEHHS EJIEMEHTIB 3 MOJIHOMIaIbHOTO 0a3ucy y HOpMalbHHHU 1
HAaBIIAKH, & TAKOXX PO3POOJICHHS HOBOTO METOy I'eHEpYBaHHsI HOPMAaJIbHUX MOJTIHOMIB ISl HOJIIIICHHS YaCOBHX XapaKTePUCTHK.

Metoa. Y naniii cTaTTi BHKOHAHO MHOPIBHSAJIGHUM aHaJi3 IpOIECIB BHKOHAHHS OCHOBHHX OIEpaliil y IOJiHOMIaTbHOMY i
HOpMaJIbHOMY 0asucax (J0JaBaHHs, MHOXCHHS, OOYKMCIICHHS MYJIBTHIUTIKATHBHO OOCPHEHOrO €JIEMEHTA, JUICHHS, IiJHECEHHS [0
crenens, omnepauis PpobeHiyca), a TAKOXK PO3IIIAHYTO Ta IIPOAHATI30BAHO MPOLIEC MEPEXOAy 3 OJHOr0 Oasucy B iHmMH. JlociipKeHo
crocobu mepexoay Mik OasucaMy 3aje)KHO BiJl Pi3HUX BXiJHHX JaHUX, 30KpeMa, mapameTpiB P Ta M moJjst. 3amponoHOBaHO METOL
TMOIIYKY HOPMAJIbHUX TIOJIIHOMIB Cepe/l He3BiHMX Ta MOAN(IKOBAHUIA i IXi/ A1 OOy JOBH MAaTpPHILIi IIEPEX0Ly Mix Oa3ucamu.

PesyabTaTn. IcHyI04i Ta 3alponoOHOBaHI alTOPUTMH peai30BaHO MOBOIO mporpamyBaHHs C# y cepenoBuii po3poOku Visual
Studio 2015. [list mpoBeneHHS €KCIEPUMEHTAIbHUX JOCIIIKEHb PO3POOICHO MPOTrpaMHY CHUCTEMY, SIKa JO3BOJISIE BHKOHYBATH
OOUMCIICHHS, BUKOPUCTOBYIOWH MOJIHOMIalbHE H HOpMallbHE TMpeCTaBleHHs enementiB mons GF(p™), samaatw pismi BXinmi
rapameTpH p ta M, a TaKo)K OTPHUMYBATH Pi3HI MHOKHHH TECTOBHX JIAaHUX 3aJISKHO BiJl HOpMAJIbHUX HOJIiHOMIB osist [anya.

BucnoBku. OTpuMaHi eKCIIEPUMEHTAIBHI Pe3yJIbTaTH POOOTH METOIB Ta alrOPUTMIB BUKOHAHHS OMepaiiil Haj eleMEHTaMU
nons GF(2™) y 3amanux GasucaX IOKa3ajid, IO 3alpOIOHOBAHMH METOJ IOIIYKYy HOPMAJBHMX HOJNIHOMIB I MiKGAa3HCHHX
NepeTBOPEHb OiHAPHUX TOJIB Ja€ MPUPICT WBKUAKOAIT y moHa g 15 pa3iB qis mapamerpa M > 14; 3anpornoHoBaHM# MiaXia mody10BU
MAaTpULl Hepexo/y Jac IPHPIiCcT MIBUAKOMAIT y OHa 5 pa3iB s mapamerpa m > 12.

KJIFOYOBI CJIOBA: ckinueHHe mone, moje [amya, monmiHOMiadbHHN Oa3uc, HOpMalbHHUN Oas3uc, HE3BITHUN IOJIHOM,
HOPMaJIbHUH MOJIIHOM.
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yHHUBepcuTeTa YKpauHsl «KueBckuil monutexHuyeckuit HHCTUTYT uMeHH Urops Cuxopckoro», Kues, Ykpanna.
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Cepepun A. I. — cryzment kadeapbl mporpaMMHOrO OOECIIEUeHHSI KOMITBIOTEPHBIX CHCTeM HaIoHaNIbHOTO TEXHHYECKOTO
yHuBepcuTera YKpauHsl «KueBckuii nonurexuuyeckuit MHCTUTYT uMeHH Hrops Cuxopckoro», Kues, Ykpauna.

AHHOTAIUA

AkTyansHocTh. [lpu peanmsanyu Kpunrtorpaguueckux IPWIOKEHUH M CHCTEM KOHTPOJIS Hepeladd [aHHBIX BO3HHMKAET
MOTPeOHOCTH B OBICTPHIX METOAAX BBINOIHEHHMS ONEpanyi HAJ IEMEHTaMH KOHEYHBIX Mojieid. OOBEKTOM HCCIIeIOBaHNUS SBIISIOTCS
mporeccs! mMudpoBaHus, AeMM(ppOBaHKA U Tepenadyn MHGOPMAINU ¢ HCToab3oBaHueM moneil [amya. IIpexmerom mccnenoBanus
SIBIISTIOTCS. METOABI ¥ QJITOPUTMBI BHITIOTHEHUS BEIYUCIICHUH B 1OJIAX ["airya B OJIMHOMHUAIBHOM M HOPMAIEHOM 0a3ncax.

eab padoTel. Llenbio faHHOTO MCCIICIOBAHMS SBIISIETCS aHAIN3 METOIOB BEHIITOJIHEHHMS ONepanuil B moie ["amya B 3aBUCHMOCTH
oT BbIOpaHHOro 06asuca (IIOJMHOMHANBHBIH, HOPMAIBHBIM) W MoAu(UKALUs MeToJa NpeoOpa3oBaHUS IJIEMEHTOB C
MOJIMHOMHAJIBHOTO 0asrca B HOPMAJbHBIE M HA00OPOT, a Takxke pa3paboTKa HOBOTO METOJa TEHEPUPOBAHMS HOPMAaJIBHBIX
MOJMHOMOB [IJIsl yITy4II€HHUs] BDEMEHHBIX XapaKTEPUCTHK.

Mertoa. B naHHO#1 cTaThe BBINOJIHEH CPAaBHUTENBHBIM aHAIU3 IPOLIECCOB BINOJIHEHUS! OCHOBHBIX ONEpaluil B OJUHOMHUAIBHOM
1 HOpMaJbHOM 0asucax (CIOXKEHHE, yMHOKEHHE, BEIUHCICHHE MYJIbTUILIMKATHBHO OOpPAaTHOTO JIEMEHTA, JEJICHHE, BO3BEACHHE B
crenens, onepanust PpobeHmyca), a TakKe PacCCMOTPEHO M TPOAHAIH3HPOBAHO IPOIECC MEpPeXojaa ¢ OAHOTro Oasmca B APYTOH.
HccnenoBansl crioco0bl epexoaa Mex Ity 6a3ucaMu B 3aBHCUMOCTH OT Pa3IMYHBIX BXOJHBIX JJAHHBIX, B YACTHOCTH, IIapaMeTpoB P U
m momnsa. IlpennokeH MeTo] IMOWUCKa HOPMAJbHBIX IIOJIMHOMOB CpEIM HENPHUBOIAMMBIX M MOAMGHIMPOBAHHBIA MOAXOX IS
HOCTPOCHUSI MAaTPHLIBI IIepexoia Mex 1y Oasucamu.

PesyabTatel. CyniecTByronMe M TIPeUIOKEHHBIE ajJrOPUTMBI PEaM30BaHbl Ha s3blke mporpammupoBanust C# B cpexne
paspaborku Visual Studio 2015. [Ins mpoBeaeHHs KCIHEPUMEHTAJIbHBIX HCCIIENOBAaHUI pa3paboTaHO MPOTrpaMMHYIO CHCTEMY,
KOTOpast TI03BOJISIET BBIIOIHATE BBIYUCIIEHHS, HCTIOJIB3Ysl TIOJMHOMUAILHOE U HOPMAILHOE NpezicTaBienue s1ementos nons GF(p™),
3a7aBaTh pa3IHYHbIC BXOAHBIC MAPAMETPHI P U M, a TaKKe MONYYaTh PA3INIHBIE MHOXKECTBA TECTOBBIX HAHHBIX B 3aBUCHMOCTH OT
HOPMAaJTbHBIX MOIMHOMOB Touist ["amya.

BroiBoasl. [lomyueHHbIE SKCIEpUMEHTANBHBIE PE3yJbTaThl PabOTHl METOAOB M QJITOPUTMOB BBHINOJTHEHUS OIEpaIluil Hax
snementamu monst GF(2™) B 3amaHHEIX 6Ga3zMcax MOKA3alH, YTO MPEIOKEHHBIH METOJ TOMCKA HOPMAIBHBIX TOJHHOMOB JUIS
MeK0a3UCHBIX TPeoOpa3oBaHmii OMHAPHBIX MOJICH AaeT MpUpOCT ObicTponeiicTBus Oosnee yem B 15 pa3 mist mapamerpa m > 14;
IPEIUIOKEHHBIN ITOIX0J] OCTPOSHMSI MaTPHLIBI IIepexo/ia AaeT IPUPOCT OBICTpOoIeHCTBUS Ooee 4eM B 5 pa3 11 mapaMerpa m > 12.

K/IIOYEBBIE CJIOBA: koHeyHoe moie, moje [amya, MONMHOMHAJIBHBIM Oa3uc, HOpPManbHBIA 0a3uc, HENPUBOAMMBIN

II0JIMHOM, HOpMaJ'lLHLIfI TIOJIMHOM.
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