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ABSTRACT

Context. In the queueing theory, the studies of G/G/1 systems are relevant because it is impossible to obtain solutions for the
waiting time in the final form in the general case with arbitrary laws of distributions of the input flow and of the service time.
Therefore, the study of such systems for particular cases of input distributions is important. The problem of deriving a solution for
the average waiting time in a queue in closed form for a pair of systems with ordinary and with shifted Erlang and hyperexponential
input distributions is considered.

Obijective. Obtaining a solution for the main system characteristic — the average waiting time in queue for two queuing systems
of type G/G/1 with conventional and with shifted second-order Erlang and Hyperexponential input distributions.

Method. To solve this problem, we used the classical spectral decomposition method for solving the Lindley integral equation,
which plays an important role in the theory of G/G/1 systems. This method allows obtaining a solution for the average waiting time
for the considered systems in a closed form. For the practical application of the obtained results, the well-known probability theory
moments method is used.

Results. For the first time, spectral expansions of the solution of the Lindley integral equation are obtained for two systems, with
the help of which the formulas for the average waiting time in the queue are derived in closed form.

Conclusions. Spectral expansions of the solution of the Lindley integral equation for the systems under consideration are
obtained and their complete coincidence is proved. Consequently, the formulas for the average waiting time in the queue for these
systems are the same, but with modified parameters. It is shown that in the system with a delay in time, the average waiting time is
less than in a conventional system. The resulting for waiting time formulas expand and supplement the known queuing theory
incomplete formula for the average waiting time for G/G/1 systems with arbitrary laws distributions of input flow and service time.
This approach allows us to calculate the average latency for these systems in mathematical packages for a wide range of traffic
parameters. All other characteristics of the systems are derived from the waiting time. In addition to the average waiting time, such
an approach makes it possible to determine also moments of higher orders of waiting time. Given the fact that the packet delay
variation (jitter) in telecommunications is defined as the spread of the waiting time from its average value, the jitter can be
determined through the variance of the waiting time. The results are published for the first time.

KEYWORDS: delayed system, E,/H,/1 system, the average waiting time, Laplace transform, the spectral decomposition
method.

ABBREVIATIONS
LIE is a Lindley integral equation;
QS is a queuing system;
PDF is a probability distribution function.

M is an exponential distribution law;
W is an average waiting time in the queue;

W*(S) is a Laplace transform of waiting time density

function;
NOMENCLATURE A is a parameters of the erlangian distribution law of
a(t) is a density function of the distribution of time the input flow;

between arrivals;

A"(s) is a Laplace transform of the function a(t);

b(t) is a density function of the distribution of service
time;

B*(s) is a Laplace transform of the function b(t);

C, is a coefficient of variation of time between

arrivals;

Cu is a coefficient of variation of service time;

E, is an erlangian distribution of the second order;
E, is a shifted erlangian distribution of the second

order;

H, is a hyperexponential distribution of the second
order;

H, is a shifted hyperexponential distribution of the

second order;
G is an arbitrary distribution law;
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p is a parameters of the erlangian distribution law of
service time;
ly,u, 1s a parameters of the hyperexponential

distribution law of service time;
p is a system load factor;

T, is an average time between arrivals;

?;% is a second initial moment of time between

arrivals;

T, 18 an average service time;

tfl is a second initial moment of service time;

@_ (s) is a Laplace transform of the PDF of waiting
time;

v,(s) is a first component of spectral
decomposition;
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second component of spectral

y_(s) is a
decomposition.

INTRODUCTION

This article is devoted to the analysis of E»/H,/1 QS
with ordinary and with shifted erlangian; (E,) and
hyperexponential (H,) input distributions. In [1], results
are presented on the study of QS with time delay with
shifted  hyperexponential and exponential input
distributions, obtained by the classical method of spectral
expansion of the solution of the Lindley integral equation
(LIE) [2-4]. In [1], it is shown that the average waiting
time of a queue in the QS with a time lag is less than in
the usual system with the same load factor due to the fact
that the coefficients of variation of the arrivals ¢, and

service times ¢, become less than one with the lag

1
parameter £, >0 .

In this paper, based on the results of the above works,
the method of spectral decomposition of the solution LIE
is developed on the E,/H,/1 system. As a result, we have
new QS with a delay, which is qualitatively different from
the usual system. The considered QS with ordinary and
shifted input distributions are of type G/G/1.

In the queueing theory, the studies of G/G/1 systems
are relevant because they are actively used in modern
teletraffic theory, moreover, one cannot obtain solutions
for such systems in the final form for the general case.
The laws of the Weibull or Gamma distributions of the
most general form, which provide the range of variation
of the coefficients of variation from 0 to co depending on
the value of their parameters, are not applicable in the
spectral decomposition method. This is because the
Laplace transform of the density function for these
distributions cannot be expressed in elementary functions.
Therefore, it is necessary to use other private laws of
distributions.

In the study of G/G/1 systems, an important role is
played by the method of spectral decomposition of the
solution of the Lindley integral equation and most of the
results in the theory of mass service are obtained using
this method.

The object of study is the queueing systems type
G/G/1.

The subject of study is the average waiting time in

systems E,/H,/1 and E, /H; /1.

The purpose of the work is obtaining a solution for
the average waiting time of requirements in the queue in
closed form for the above-mentioned systems.

1 PROBLEM STATEMENT
The paper poses the problem of finding a solution for
the waiting time of requirements in a queue in the E»/Hy/1
and E; /H, /1 QS. To solve the problem, it is necessary

first to construct spectral decompositions for the indicated
systems based on the theory of this method. When using
the method of spectral decomposition of a LIE solution,
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we will follow the approach and symbolism of the author
of the classical queuing theory [2].

We need to find the law of waiting time distribution in
the system through the spectral decomposition of the form

A*(=s)-B*(s)—1=wy, (s)/y_(s), where v, (s) and
v_(s) are some rational functions of s that can be

factorized. Functions w, (s) and y_(s) must satisfy

specific conditions according to [2].

2 REVIEW OF THE LITERATURE

The method of spectral decomposition of the solution
of the Lindley integral equation was first presented in
detail in the classic queueing theory [2], and was
subsequently used in many papers, including [3,4]. A
different approach to solving Lindley’s equation has been
used in [10]. That work used factorization instead of the
term “spectral decomposition” and instead of the

functions w (s) and w_(s) it used factorization

components ©, (z,¢) and ®_(z¢t¢) of the function

1-z-%(¢), where y(¢) is the characteristic function of a

random variable & with an arbitrary distribution function
C(¢), and z is any number from the interval (—1, 1). This
approach for obtaining results for systems under
consideration is less convenient than the approach
described and illustrated with numerous examples in [2].

In [1], the results on systems with delay H,/H,/1,
H,/M/1, M/H,/1 are given, in [5] — on system with delay
HE,/HE,/1, in [6] — on systems with a delay based on the
QS Ey/Ey/1, Ey/M/1, M/E,/1, and in [7] — on systems with
a delay based on the QS HE,/M/1. Article [9] presents the
results for a system with a delay M/HE,/1, and article [8]
summarizes the results for eight systems with a delay in
time.

In [11] presents the results of the approach of queues
to the Internet and mobile services as queues with a delay
in time. At the same time, the scientific literature,
including web-resources, the author was not able to detect
results on the waiting time for the QS with Erlang and
Hyper exponential input distributions of the second order
of the general form. Approximate methods with respect to
the laws of distributions are described in detail in [4, 13—
15], and similar studies in queuing theory have recently
been carried out in [16-24].

3 MATERIALS AND METHODS
For the E,/Hy/1 system, the distribution laws of the
input flow intervals and the service time are given by the
density functions of the form:

a(t)=a2e M (1)

b(t) = qule_“‘t +(1—q)u2e_“2t . 2)

We write the Laplace transform functions (1) and (2):
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2
2\ * H Mo
A (s)= B (s)= 1-q)—2—.
(S) (2X+sj ’ (S) qs+u1+( q)s+u2

The expression A *(—s)-B*(s)—l =y, (s)/\y_ (s)

for the spectral decomposition of the solution of the LIE
for the system E,/H,/1 takes the form:

_@_ﬂLi_lz
Ky +$

W+(S):( 2 T{q [

\y_(s) 2h—s Hy+s

_ —s(s+51)(s+57)(s—53)
(2= 5) (s +1)(s + 1)

because the fourth-degree polynomial in the numerator of
expression (3) can be represented as an expansion

+(1

»(3)

—s(s° - czs2 —c15s —c¢q) with coefficients

co = 402q(1y —p) + 4y (ny — W],
e =4Mu +Hy — M)~y , & =4h -~y
In turn, the cubic polynomial
5 —02S2 -8 —¢g “)
with such coefficients it has two real negative roots
—s1,—S, and one positive root s; in the case of

stationary mode, i.e. when 0<p=T7,/T, <1. Based on
the rules of the construction of functions v, (s) and

y_ (s), from the expression (3), we take the function

vy (s )
s(s+sp)(s+sy)
v, (s) =),
(s 1) (s +Hp)
because the zeross =0, —s;, —s, of the polynomial (4),
and the poles s=-p;, s=-u, lie in the half-plane
Re(s) < 0. For the function y_(s) from the expression
(3) we take
21 —s5)?
v (s)=— ="
(s—s3)
because its zero s =2\ and pole s=s5 lie in the half-
plane Re(s) 2D.

Now the fulfillment of conditions [2] for the
constructed functions is obvious. This is confirmed by
figure 1, where the zeros and the poles of the obtained
decomposition (3) are shown on the complex s — plane. In
Figure 1, the poles are marked with crosses, and zeros are
indicated by circles.

Im(s)4

H—H—O—O— O O—O——H——>
‘W -Hp =51 -Sp 53 2A Re(s)

Figure 1 — Zeros and poles of the function y,_ (s)/y_(s) for the
system E,/H,/1
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The constant K required to obtain the solution is
K= tim Y B) _ 55
Hik2
probability that the demand entering the system finds it

free.
Using the function and constant K, we define the

Laplace transform of the PDF waiting time  (y):
K SISy (Ss+Hu )ls+u
(I)+(S)= _ 12( 1)( 2) ]
Wi (s)  s(stsp)(s+s2)ppy
From here, the Laplace transform of the waiting time
density function W' (s) =s-®, (s) is
W* (S) _ $152 (S+H1)(S+].l2) .
(s+s1)(s+57 )y
To find the average waiting time, we find the

. The constant K determines the
s—>0 S

)

derivative of the function W~ (s) with a minus sign at

the point s=0:

sk
_daw (s)| :_slsz(s+u1)(s+p.2) _
ds 7 (s+51)(s+53 )y s=0
r 1 1 1
=t —
StoS2 W W2
Finally, the average wait time for the E»/H,/1 system
_ZL+L_L_L’ (6)
S S2 M K2

where s;, s, the absolute values of the negative roots are
—sy, —S, of the cubic polynomial (4) with the coefficients
given above, and p;, p, — the distribution parameters

(2). Thus, for the average waiting time in the QS E,/Hy/1,
the solution in closed form (6) is obtained.

From the expression (5), if necessary, you can also
determine the moments of higher orders of the waiting
time, for example, the second derivative of the
transformation (5) at the point s=0 gives the second
initial moment of the waiting time, which allows you to
determine the dispersion of the waiting time, and hence
jitter [12].

For the practical application of expression (6), it is
necessary to determine the numerical characteristics of
the distributions (1) E, and (2) Ho.

Note that for the distribution of E;: T, :7»71,

oy =1/+/2. This problem for the distribution law (2)

using both the first two moments, and using the first three

moments was considered in detail by the author in [4]. To

do this, we write the expressions for the three initial

moments of the distribution (2):

T :1+M, rfl =2—Z+2(1—2q), ri =6—(3]+6(1—3q) (7
I ) M ) W

Then the square of the coefficient of variation of the

service time will be equal to
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2= (-g*)uf —2q(1-mmy +4(2 - @n3 C®
g (1= +qn, T

In this case, to determine the unknown parameters
using the first two moments in [4], the following
expressions were obtained

w=2q/7,, np =2(1-9)/7,,

q=%[1i1/(c&—l)/(c&+l)].

In this case, for the probability ¢ you can take any of
these values. It follows that the coefficient of variation
Cu >1. It now remains to determine the values of the

desired roots —s;, —s, polynomial (4) to use formula (6)

for the given input parameters.

When approximating using the first three moments, in
order to find the distribution parameters (2), it is
necessary in the Mathcad package to solve the system of
three equations (7) obtained by the method of moments.
In this case, a necessary and sufficient condition for the
existence of a solution is the fulfillment of the condition:

5 -1 21,51 [13].

Next, we consider a system that is fundamentally
different from the QS studied. For the E,/Hy/1 system
with shifted laws of distributions of input flow intervals
and service time, these laws are defined by density
functions of the form:

20—
(l(t): 47\.2(1‘—1‘0)5 (t lo)’ t>t03. (9)
0, 0<t<1,,

b(t): qule—m(f—to)+(1_q)uze—uz(f—fo)’ > 1, (10)
0, 0<t<¥g,.

Such a QS, unlike the conventional system, is denoted
as E; /H, /1.

Statement. The spectral expansions
A*(=s)-B*(s)~1=wy(s)/w_(s) of the LIE solution

for systems E, /H, /1 and E,/H,/1 completely coincide

and have the form (3). Consequently, the Laplace
transforms of the waiting time density function for them
also coincide.

Proof. The Laplace transforms of functions (9) and
(10) will be respectively:

2
A (s)= ( 27;%) e s,
s+

B (s) = [qL—i- (1 - q)u—z]e_tos .
S+ S+Hp
The spectral decomposition

A*(=s)-B*(s)-1=wy, (s)/y_(s) of the LIE solution
for the E, /H, /1 system will be:
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Ha ]e*tos 1=

Vo (s) :[ 2
S+Hy

y_(s) -5
_ =S(s+s)(s+5,)(s—53)

@1 =5)7 (s+p)(s + 1)

Here, the exponential functions due to the opposite
signs of the exponents are zeroed out and thus the shift

operation is leveled. We thereby obtained the same
expression (3). Therefore, the spectral expansions for the

2
j etosx[qL+ 1-
S+

E; /H; /1 and E,/H,/1 system completely coincide and

have the form (3). Thus, all the above considerations for
the E,/H,/1 system are also valid for the system, but
already with the changed numerical characteristics of the
shifted distributions (7) and (8). The statement is proved.

Thus, considering the E; /H; /1 system, we can fully

take advantage of the results obtained above for the
E,/Hy/1 system, but with the changed numerical
characteristics of the shifted distributions (9) and (10).
We define the numerical characteristics of the
interval between the arrivals of requirements and service

time for the new E; /H, /1 system. To do this, we use

the Laplace transforms of functions (9) and (10).

Now we write the equations for the first two initial
moments for determining the unknown distribution
parameters (9):

T =A 4y, (11)
- 2
o =1 Jo 3 (12)
L2

Define the square of the coefficient of variation of the

interval between the arrivals of requirements
2 =2 /()2 —1=1/2(14+ My ).
Hence the coefficient of variation:
¢ =[N2(+n) 7" (13)

The value of the first derivative of the function B (s)
with a minus sign at the point s=0 is equal to

dB*(s) -1 -1
- =qu +(1-q)uy +1.
ds $20

Hence, the average service time will be equal to

T, =gy + (- + 1. (14)
The value of the second derivative of the function

B (s) at s=0 gives the second initial moment of service

.2 ) 2,2 -1 -1
time 7, =2[gu " +(1-q)a" 1+ +21p[quy +(1-q)uy 1.

From here we define the square of the coefficient of
variation of the service time:
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25,2 2
2 _[A=g9ny —2mpgd-9)+q(2-gu3] (15)
" .
[toktty + (1= @)y +qpp 1
Note that the coefficients of variation 0 <c¢; <1/ 2

and ¢, >0 for the shift parameter 7, > 0.

Considering expressions (11), (13) and (14) (15) as a
form of recording the method of moments, we find the
unknown distribution parameters (9) and (10). We
determine the distribution parameter (9) A from (11) and
get the value A =1/(T; —1;).

Finding distribution parameters (10) p;, 1, ¢ will be
similar to finding these parameters for distribution (2).
Now, based on the form of equation (14), we set

W =2q/ (T ~to) s by =20-@)/ (T, 1) (16)
and demand the fulfillment of condition (15). Substituting

the particular solution (16) into equality (15) and
eliminating the trivial solutions ¢=0, ¢g=1 from the 4th

— 2

(Tp, - t() )
— 2 2-2

2ty —10)" + ey ]

respect to ¢, we obtain the solution for probability ¢ as the

roots of the quadratic equation:

=0 with

degree equation q2 g+

— 2
—1
g=Lle ! (Tu — %)

2 \4 2%, 1)+t

(17

and then we determine the parameters p; and p, from

(16). In this case, as the parameter ¢, you can choose any
of the two values. Consequently, the range of applicability

of the system E, /H, /1 will be determined by the

nonnegativity of the expression under the square root.
From expression (17) it follows that the input
parameters W, ¢y, are constrained ¢, 21-7,/7,, and

in turn, from (17) it follows that 0 <¢, <7 Thus, the
E, /H; /1
constraints

system is applicable when performing

CH21—t0/?H,O<t0<TH. (18)
Let us now estimate the effect of the shift parameter
fp on the coefficient of variation of the service time ¢, .
Comparison of expressions (8) and (15) shows that
c“ for distribution (10) decreases by

L+ 1501y /[y (1- ) + pog] times.

By specifying the values 7, , T,, ¢, ¢, o as the
input parameters of the system, we thus determine all
unknown parameters of the distributions (9) and (10)
using the known method of moments. Further, having
determined the absolute values of the negative roots s,
s, of the cubic polynomial (4), we can calculate the
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average waiting time by expression (6) for the ranges of
variation of the coefficients of variation ¢, € (0,1/ \E)
and ¢, €(0,0) depending on the value of the shift

parameter #, >0 .

4 EXPERIMENTS
Below in the table. 1 shows the calculation data for
the E»/H,/1 system for the cases of low, medium and high
loads p=0,1;0,5;0,9. Note that the E»/H,/1 system is
applicable for ¢, =1/ x/a, ¢y 21. The load factor p in
all tables is determined by the ratio of average intervals
p=T,/T, . The calculations given in all tables are

carried out for the normalized service time ?“ =1.

Table 1 — Results of experiments for QS E,/H,/1

Input parameters
Py €y Average waiting time for QS E,/H,/1
P ¢, =1 ¢, =2 ¢, =4 c, =8
0.1 0.030 0.160 0.795 3.448
0.5 0.618 2.094 8.082 32.079
0.9 6.588 20.072 | 74.065 290.063

Tables 2 and 3 show the calculation data for the
system with delay also for the cases of low, medium and
high load p=0,1;0,5;,0,9 for the values Cu =1 and
Cu = 2, accordingly, for the conventional system E,/H,/1
with the values of the shift parameter #, from 0,001 to
0,99 for the system with a delay.

Table 2 — Results of experiments for QS E; /H, /1 when

for system E,/H,/1 Cu = 1

Input parameters Average waiting time
P o N t ljor (%S For QS
E; /Hy /1 E»/H,/1
0.637 | 0.503 0.99 0.011
0.672 | 0.667 0.5 0.011
0.1 | 0.700 | 0.909 0.1 0.023 0.030
0.706 | 0.990 0.01 0.029
0.707 | 0.999 0.001 0.030
0.357 | 0.503 0.99 0.125
0.530 | 0.667 0.5 0.223
0.5 ] 0672 | 0.909 0.1 0.499 0.618
0.704 | 0.990 0.01 0.605
0.707 | 0.999 0.001 0.617
0.077 | 0.503 0.99 1.135
0.389 | 0.667 0.5 2.480
0.9 | 0.643 | 0.909 0.1 5.396 6.588
0.701 0.990 0.01 6.457
0.707 | 0.999 0.001 6.575
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Table 3 — Results of experiments for QS E; /H; /1 when
for system Ey/HEy/1 ¢, = 2

Input parameters Average waiting time
p oy M t ljor (%S For QS
E; /H, /1 E»/H,/1
0.637 1.005 0.99 0.055
0.672 1.333 0.5 0.065
0.1 0.700 1.818 0.1 0.128 0.160
0.706 1.980 0.01 0.156
0.707 1.998 0.001 0.159
0.357 1.005 0.99 0.504
0.530 1.333 0.5 0.877
0.5 0.672 1.818 0.1 1.716 2.094
0.704 1.980 0.01 2.051
0.707 1.998 0.001 2.089
0.077 1.005 0.99 4.544
0.389 1.333 0.5 8.473
09 [ 0.643 1.818 0.1 16.538 20.072
0.701 1.980 0.01 19.674
0.706 1.998 0.001 20.031
5 RESULTS

In the work, spectral expansions of the solution of the
Lindley integral equation for two systems E,/H,/I,
E; /H5 /1
completely coincide. Using the spectral decomposition, a
formula is derived for the average waiting time in the
queue for these systems in closed form. These formulas
complement and extend the well-known incomplete
formula for the average waiting time for G/G/1 systems.

The operation of the shift in time on the one hand,
leads to an increase in system load with a delay. For

are obtained, and it is proved that they

example, for a E;/H,/1 system with a delay, the load is

1+ oty /[qus + (1= gy ]
(1+Atg)

the usual system E,/H,/1. The time shift operation, on the
other hand, reduces the wvariation coefficients of the
interval between arrivals and the service time of
requirements. Because the average waiting time in the
G/G/1 system is related to the coefficients of variation of
the arrival intervals and service time by the quadratic
dependence, the average waiting time in the delayed
system will be less than in a conventional system with the
same load factor.

increased by compared to

For example, for a E; /H, /1 system with a load
p=0.9 and a shift parameter #=0,99, the coefficient of

variation of the arrival intervals ¢, decreases with for the

usual system E,/H,/1 to 0.077 for a QS E; /H; /1. The

service time variation coefficient decreases from 2 to
1,005, and the waiting time decreases from 6.59-time
units for a conventional system to almost 1.14-time units
for a latency system, i.e. almost 6 times (Table 2). The
situation is similar with the results of Table 3.

The range of variation of the E, /H, /1 system

parameters is much wider than that of the E,/H,/1 system
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therefore; these systems can be successfully applied in
modern teletraffic theory.

6 DISCUSSION
As can be seen from tables 2 and 3, the average

waiting time in the E,/H, /1 system with increasing shift

parameter decreases many times as compared with the
conventional system E,/H,/1.

As expected, the data table 2 and 3 fully confirm the
above assumptions about the average waiting time in a
system with a delay. In connection with the reduction of
the coefficients of variation of the intervals of arrivals of
requirements and the service time due to the input of the
shift parameter into the laws of distributions, the latency
of requirements in the queue decreases in the system with
a delay. Moreover, this decrease is many times. In
addition, with a decrease in the shift parameter #,, the
average waiting time in the system with delay tends to the
value of this time in the conventional system, which
further confirms the adequacy of the results obtained.

Thus, table 2 and 3 demonstrates the qualitative and
quantitative influence of the shift parameter on the
numerical characteristics of distributions (11) and (12), as
well as on the main characteristic of the system — the
average waiting time.

CONCLUSIONS
The article presents the solution to the problem of
determining the average waiting time for two queuing

systems E,/H,/1 and E,/H,/1 by the classical method of

spectral decomposition.

The scientific novelty the obtained results consist in
the fact that spectral expansions of the solution of the
Lindley integral equation for the systems under
consideration were obtained and with their help the
formulas for the average waiting time in the queue for
these systems in closed form were derived. These
expressions extend and complement the well-known
incomplete formula in queuing theory for the mean
waiting time for systems of type G/G/1 with arbitrary
laws of input flow distribution and service time.

The practical significance of the work lies in the fact
that the obtained results can be successfully applied in the
modern theory of teletraffic, where the delays of
incoming traffic packets play a primary role. For this, it is
necessary to know the numerical characteristics of the
incoming traffic intervals and the service time at the level
of the first two moments, which does not cause
difficulties when using modern traffic analyzers.

Prospects for further research are seen in the
continuation of the study of systems of type G/G/1 with
other common input distributions and in expanding and
supplementing the formulas for average waiting time.
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JOCJIKEHHSA JIBOX CUCTEM E,/H,/1 31 3BBUMAVTHUMM TA 3CYHYTHUMM PO3MOALIAMU METOJIOM
CIIEKTPAJIBHOI'O PO3KJIAJJAHHSA

Tapaco B. H. — n-p TexH. Hayk, npodecop, 3aBigyBad Kadeapu MPOrpaMHOTO 3a0C3MEUYCHHS Ta YIPABIiHHS B TEXHIYHUX
cuctemax [10BOJI3BKOrO IepKaBHOTO YHIBEPCUTETY TeJIeKOMYHiKamii Ta iHpopmaTuku, Poccus.

AHOTALIA
AkTyaabHicTb. B Teopii macoBoro oOcmyroByBaHHs mociimkeHHs cucteM G/G/1 akryanbHi B 3B 3Ky 3 THM, IO HE MOXKHA
OTPUMATH PILLICHHS IS 9acy OYiKyBaHHs B KiHIICBOMY BHUIJISAII B 3arajJbHOMY BHIIQJIKy IPH AOBUIFHIX 3aKOHAX PO3MOALTIB BXiTHOTO
MOTOKY 1 4acy obOciyroByBaHHS. ToMy BaskJIMBI ITOCTIDKCHHS TaKMX CHCTEM JUIS OKPEMHUX BHIA[KIB BXiJHUX po3moxiniB. Byma
PO3IIIsIHyTa 3ajada BUBEJCHHS DIMIEHHS IS CEpeJHbOr0 4Yacy OWiKyBaHHS B 4ep3i B 3aMKHYTIH (opMi JUIi JBOX CHCTEM 3i
3BUYAIHUMU 1 31 3CYyHyTUMH €pJIaHTiBCbKUMHU Ta TiePEKCIIOHEHTHUMH BXiTHUMHU PO3HOAITaMH.
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Merta po6oru. OTprMaHHs pillIeHHs [JIsi OCHOBHOT XapaKTEPHCTUKK CUCTEMH — CEPEIHBOT0 Yacy O4iKyBaHHsS BUMOT B Yep3i s
JIBOX cHcTeM MacoBoro obcmyroByBanHs Tuiy G/G/1 3i 3BHYallHUMHM Ta 31 3CYHYTHMH €pJaHTIBCBKHMH Ta TilepeKCHOHEHTHHUMH
BXIIHUIMH PO3IIO/IIaMH.

Mertopn. /151 BUpilIeHHs] HOCTABJICHOTO 3aBAaHHsl OyB BUKOPUCTaHHN KJIACHYHUII METOJ CIIEKTPAIbHOrO PO3KJIAJAHHS PillICHHS
interpansHoro piBHsHHs Jlinmmi. Leit MeTox m03BoJsiE OTpUMATH PILlICHHS IS CEPEAHBOTO Yacy OUYiKYBaHHS Uil PO3IIISHYTHX
CHCTEM B 3aMKHYTiil popmi. MeTon ceKTpaIbHOrO PO3KIaJaHHs PillleHHS IHTETPAIbHOTO piBHAHHA JIIHAJI rpae BaXITUBY POJIb B
teopii cuctem G/G/1. [y mpakTHYHOTO 3aCTOCYBaHHS OTPUMAHUX PE3YJIBTATiB OyJI0 BUKOPUCTAHO BiJOMHI METOJ MOMEHTIB TEOPii
HMOBIpHOCTEH.

PesyabTaTi. Briepiie oTpUMaHO CrieKTpajibHE PO3KIAAaHHS PIiLICHHS iHTErpallbHOro piBHAHHS JIMHUTH ISl IBOX CHCTEM, 3a
JIOTIOMOTOIO SIKOTO BHBEACHO PO3PaXyHKOBE BUPA3 VISl CEPEIHBOTO Yacy OYiKyBaHHs B uep3i B 3aMKHYTIH (opmi.

BucnoBkn. OTprMaHO CIIeKTpajbHE PO3KJIAJaHHs PIllleHHs IHTerpajbHOrO piBHAHHA JIIHAII AJIs PO3IIITHYTUX CHUCTEM, Ta 3 iX
JOTIOMOTOI0 BHUBEJCHO PO3PAaXyHKOBE BHpa3 Ul CEPeIHBOrO 4acy OUiKyBaHHS B 4ep3i IUIsl LMX CHUCTEM B 3aMKHYTiH (Gopwmi.
IMokazano, mo B cHCTeMi 3 3alli3HEHHSIM Yy dYaci CepeiHiil 4ac OdYiKyBaHHS MeEHIIe, HDK y 3BHUaiHii cucremi. OTpumane
pO3paxyHKOBe BHpa3 [UIA 4Yacy OYIKyBaHHS pO3IIUPIOE 1 OMOBHIOE BiIOMYy He3aBepileHy (opMyily Teopii MacoBOTro
00CITyroByBaHHS ISl CEpeIHBOTO Yacy odikyBaHHS s cucteM G/G/1 3 ZOBUIBHIMHU 3aKOHAMH PO3MOALIIB BXiJHOTO TOTOKY 1 4acy
obciyroByBaHHs. Takuil miaXia H03BOJISE PO3paxyBaTh Cepe/IHii Yac O4iKyBaHHS JUIsl 3a3HAYCHUX CHCTEM B MaTEMAaTHYHHX [TAKeTaX
JUISL IIXPOKOTO Aiala30Hy 3MiHM IapaMeTpiB Tpadiky. Bei iHIm XapaKTepUCTUKH CHCTEM € ITOXITHUMH Yacy OUYiKyBaHHS.

KpiM cepenHporo 4acy OYiKyBaHHS, TaKHH IiJXiJ Ja€ MOXKIHMBICTh TaKOX BH3HAYMTH MOMEHTH BHIIHMX MOPSIKIB Yacy
OuiKyBaHHS. 3 OIJIIy Ha TOH (haKT, [0 Bapialis 3aTPUMKH MAKETIiB (JPKUTTEP) B TEJICKOMYHIKallii BU3HAYAETHCS K JUCIEPCis dacy
OYiKyBaHHS BiJ{ HOrO CEpeHbOr0 3HAYCHHS, TO JUKUTTEP MOXKHA Oy/ie BU3HAUMTH Yepe3 AUCIEPCilo Yacy OuiKyBaHHS.

OtpumaHi pe3ysbTaTh MyONiKyIOThCS BIIEpILIE.

KJIFOYOBI CJIOBA: cucrema 3 3amizHeHHsM, cuctema E,/H,/1, nmeperBopenns Jlammaca, cepenHiii yac odikyBaHHS B Yep3i,
METOJI CIIEKTPaIbHOTO PO3KIIaJaHH.

YK 621.391.1: 621.395
HUCCJIEIOBAHHUE IBYX CUCTEM E,/H,/1 C OBBIYHBIMHA 1 CO CABUHYTBIMHU PACIIPEJAEJTEHUSIMA
METOAOM CHEKTPAJIBHOI'O PA3JIOKEHUS
Tapaco B. H. — 1-p TexH. Hayk, mpodeccop, 3aBemyroumii kadeapoll mporpaMMHOrO OOCCICYCHHS W YIPABJICHHS B
TEeXHUYECKHX crcTeMax [I0BOIKCKOro rocyJapcTBEHHOTO YHHBEPCHTETA TEICKOMMYHHUKALMN 1 HHpOpMaTuKH, Pocis.

AHHOTADIUA

AKTyalIbHOCTB. B Teopuu maccoBoro obcmyxkuBaHusi uccienoBanus cucteM G/G/1 akTyalbHBI B CBS3H C TE€M, YTO HENB3S
MOJTYYUTh PEIICHUs Ui BPEMCHU OXXKUJIAHMS B KOHEYHOM BHJE B OOIIEM Clydae IpH IPOM3BOJIBHBIX 3aKOHAX pPaclpeneneHHi
BXOJHOTO ITIOTOKAa M BpPEeMEHH 00CITykuBaHMS. [109TOMy Ba’KHBI HCCIIEJJOBAaHUS TAKUX CHCTEM JUISl YAaCTHBIX CITy4aeB BXOJHBIX
pacnpenenenuii. PaccMorpena 3aa4ya BBIBOAA PELICHNS I CPETHEr0 BPEMEHH OJKHIaHMs B OUepely B 3aMKHYTOH (hopMe [UIs mapsl
CHCTEM C OOBIYHBIMH U CO CIIBUHYTBIMH 3PJIAHTOBCKUMH M TUIIEPIKCIIOHEHIIHAIBHBIMU BXOIHBIMU PaclpeeICHUSIMH.

Lean padorsl. [lonyueHne penieHus A1 OCHOBHOM XapaKTEPUCTHKU CHUCTEM — CPEIHEro BPEeMEHH OXHIaHus TpeOoBaHUI B
ouepear Uil [BYX cHUCTeM MaccoBoro obcmyxuanus tuna G/G/1 ¢ OOBIMHBIMH M CO COBHHYTBIMH T'MICPIKCIIOHCHIUATbHBIMUA U
9PIAHTOBCKUMH BXOJHBIMHU PACTIPEICICHUIMH.

Mertoa. [lns perieHuss NMOCTaBICHHOM 3alaud MCIOJB30BAaH KJIACCHYECKMH METOJI CHEKTPAJIbHOTO Pa3IOKEHHsI pEIIeHUs
HHTETpaNBHOTO ypaBHeHus JIuHmmm. JlaHHBI MeTOX IO3BOJISIET MOJYYHTh pEIICHHE VIS CPEJHEr0 BPEMEHH OXHIAHWS IS
paccMaTpuBaeMbIX CHCTEM B 3aMKHYTOH (opMme. MeTox CIIeKTPaNbHOTO Pa3JIokKEHHs pelIeHHs HHTETPaIbHOTO ypaBHEeHUs JInaamm
Urpaer BaxHyI0 poiab B Teopuu cucteM G/G/1. Jlns mpakTHYecKOro HPHMEHEHHMsS ITOJMYYEHHBIX pPe3yJbTaToB MCIOIB30BaH
W3BECTHBIH METOJI MOMEHTOB TEOPUH BEPOSTHOCTEH.

Pe3ynbTaThl. BriepBeie monydeHbl CIEKTPaIbHBIE PA3JIOKEHHS PEIICHHUS] HHTETPAIbHOTO ypaBHEHUs JIMHAIM U1 ABYX CHUCTEM,
C TIOMOLIBIO KOTOPBIX BBIBE/ICHBI PACUETHBIC BBIPAXKEHMS IS CPEAHET0 BPEMEHH OXKUJIaHus B O4eped B 3aMKHYTOH (opme.

BriBoasl. ITomydeHsl CieKTpaabHbIE Pa3IoKEHNs PEHICHHsI HHTETPAIBHOTO ypaBHEHUs JIMHIIH U paccMaTPUBAaEMBIX CHCTEM
U C UX HOMOIIBIO BBIBEJICHBI PAaCUETHBIEC BBHIPAKCHUS IS CPEJHETO BPEMEHH OXXHAAHMS B OYEPEAN JUIS STHX CHCTEM B 3aMKHYTOI
¢dopme. [lokazano, 4To B CHCTEME C 3ama3fblBAaHHEM BO BPEMEHH CpEIHEE BpEeMsl OXKHMIAHHS MEHBINE, YeM B OOBIYHOH CHCTEME.
[Momyuennsle GOpMyNBl JIS BPEeMEHHM OXXHJIAHUS PACIIMPSIOT M JIOHMONHSIOT HM3BECTHYIO HE3aBEPIICHHYIO (OpPMYIy TEOPHH
MaccoBOTr0 OOCIY»KHMBaHUS Ul CPEIHEro BpeMeHH oxunanus st cucteM G/G/1 ¢ MpOM3BOJIBHBIMH 3aKOHAMH pacIpe/ielieHui
BXOJIHOT'O TIOTOKAa M BPEMEHH 00CITy>KMBaHMs. Takol IOJIXO0J MO3BOJSIET PACCUMTATH CPEAHEE BpeMsl OXKHIAHHUS ULl yKa3aHHBIX
CHCTEM B MAaTEMaTMYECKUX IIaKeTax Ul IIMPOKOro JMana3oHa U3MEHeHUs mapaMeTpoB Tpaduka. Bee ocranbHble XapaKTEpUCTUKH
CHCTEM SBJIAIOTCS IPOM3BOIHBIMU OT BPEMEHH OXKUAAHUSL.

Kpome cpennero BpeMeHH OXUIaHUS, TAKOW MOAXOM AAa€T BO3MOXKHOCTH ONPEETUTh X MOMEHTHI BBICIINX HMOPSAKOB BPEMEHH
OXHJAHUA. YUHUTHIBAas TOT (DakT, UTO BapHaIMs 3aJCPKKU IAKETOB (JUKUTTEP) B TEICKOMMYHHKAIMAX OINpPEAENseTCs Kak pa3opoc
BPEMEHH OXKHJAHHS OT €r0 CPEIHEro 3HAUCHNUS, TO [DKUTTEP MOXKHO OYJIET ONPENenuTh Yepe3 JUCIEPCHI0 BPEMEHH OXKHIaHMsI.

INomyueHHbIe pe3yabTaThl Iy OINKYeTCs BIICPBEIC.

KJIFOUYEBBIE CJIOBA: cuctema ¢ 3ana3nsiBanueM, cucrema E,/H,/1, mpeoOpazoBanue Jlamnaca, cpeiHee BpeMsi OXKHIAHHS B
ouepesid, METO/ CIIEKTPAIbHOIO Pa3I0KEHUs.
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