e-ISSN 1607-3274 PagioenexrpoHika, inpopmatuka, ynpasminss. 2020. Ne 3
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2020. Ne 3

UDC 004.056.5

MODIFIED ALGORITHM FOR SEARCHING THE ROOTS OF THE
ERROR LOCATORS POLYNOMINAL WHILE DECODING BCH CODES

Krylova V. A. — PhD, Associate Professor of the Department of automation and control in technical systems, Na-
tional Technical University «Kharkiv Polytechnic Institute», Kharkov, Ukraine.

Tverytnykova E. E. — Dr. Sc., Professor of the Department of information and measuring technologies and systems,
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.

Vasylchenkov O. G. — PhD, Associate Professor of the Department of automation and control in technical systems,
National Technical University «Kharkiv Polytechnic Institute», Kharkov, Ukraine.

Kolisnyk T. P. — PhD, Associate Professor of the Department of information technology and cybersecurity, Kharkiv
National University of Internal Affairs, Kharkov, Ukraine.

ABSTRACT

Context. In telecommunications and information systems with an increased noise component the noise-resistant cyclic BCH and
Reed-Solomon codes are used. The adjustment and correcting errors in a message require some effective decoding methods. One of
the stages in the procedure of decoding RS and BCH codes to determine the position of distortions is the search for the roots of the
error locator polynomial. The calculation of polynomial roots, especially for codes with significant correction capacity is a laborious
task requiring high computational complexity. That is why the improvement of BCH and RS codes decoding methods providing to
reduce the computational complexity is an urgent task.

Objective. The investigation and synthesis of the accelerated roots search algorithm of the error locator polynomial presented as
an affine polynomial with coefficients in the finite fields, which allows accelerating the process of BCH and RS code decoding.

Method. The classical roots search method based on the Chan’s algorithm is performed using the arithmetic of the Galois finite
fields and the laborious calculation, in this case depends on the number of addition and multiplication operations. For linearized pol-
ynomials, the roots search procedure based on binary arithmetic is performed taking into account the values obtained at the previous
stages of the calculation, which provides the minimum number of arithmetic operations.

Results. An accelerated algorithm for calculating the values of the error locator polynomial at all points of the GF(2™) finite field
for linearized polynomials based on the Berlekamp-Massey method has been developed. The algorithm contains a minimum number
of addition operations, due to the use at each stage of the calculations the values obtained at the previous step, as well as the addition
in the finite field GF(2). A modified roots search method for affine polynomials over the finite fields has been proposed to determine
error positions in the code word while decoding the cyclic BCH and RS codes.

Conclusions. The scientific newness of the work is to improve the algorithm of calculating the roots of the error locator polyno-
mial, which coefficients belong to the elements of the finite field. At the same time it simplifies the procedure for cyclic BCH and RS
codes decoding, due to reducing the computational complexity of one of the decoding stages, especially finding the error positions
using the modified Berlekamp-Massey algorithm. These facts are confirmed by the simulation program results of the roots search of
the error locator polynomial algorithm. It is shown, that the application of the accelerated method permits to reach a gain on speed of
1.5 times.

KEYWORDS: BCH codes, error locator polynomial, Chan’s search, Berlekamp-Massey algorithm and Reed-Solomon codes.

ABBREVIATIONS oy is a zero coefficient of locators of errors;
BM is a Berlekamp-Massey; o; is an element of the finite field GF(2™).
BCH is a Bose-Chaudhuri-Hocquenghem;
RS is a Reed-Solomon. INTRODUCTION
One of the ways to protect information from errors in

NOMENCLATURE digital communication systems is to use error-correcting
A is a binary matrix of linearized polynomials; codes detecting and correcting errors in the information
F(X) is a linearized polynomial; transmission channel. The requirements for encoding and
fi is a coefficient to the GF(2™) finite field; decoding methods and procedures by the reference to the
GF(2™) is a finite field Galois; spectral and energy efficiency of a communication system
| is a field order; give the task of constructing simplified algorithms for
m is a natural number; correcting errors in transmitted information. In modern
p(x) is a generating polynomial; information systems, cyclic BCH and Reed-Solomon
tis a times; codes, which require high redundancy, are the most used
Y is a binary vector of zero coefficient of the error lo-  to ensure their corrective abilities. Moreover, the process-
cator polynomial; ing time of information in a decoding device, which de-
v is a degree of the errors locators polynomial; pends on the complexity of the encoding and decoding
o' is an element of GF(2™) finite field; algorithms, limits significantly the operating time of the
B'is a binary vector field element a; error protection system.

o(X) is an errors locators polynomial;
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BCH and Reed-Solomon codes used in modern infor-
mation storage and transmission systems built on classical
error detection and correction procedures, at some decod-
ing stages, due to a significant amount of data, have high
arithmetic complexity. This leads to limited potential pos-
sibilities of the above said correction codes to provide a
given probability of information loss.

In this case, in order to increase the operation speed of
information protection systems from errors in information
data transmission systems, it is necessary to improve and
refine existing algorithms for decoding of cyclic BCH
codes for improving the correcting ability of the code by
reducing the computational complexity of encoding and
decoding procedures with high redundancy.

The object of research is the decoding process of cy-
clic RS and BCH codes in the digital communication sys-
tems.

The subject of research is a method for finding the
roots of the error locator polynomial whose coefficients
belong to in the Galois fields.

The aim of this work is to study the decoding meth-
ods of RS and BCH codes, allowing detecting and cor-
recting errors in the code sequence, as well as the devel-
o™ent of an accelerated algorithm for calculating the
roots of the error polynomial, the implementation of the
algorithm into Visual Studio and the subsequent analysis
of the results.

1 PROBLEM STATEMENT

The ways of BCH and RS codes decoding are quite
well developed in theory and practice, which is presented
in [1], but nevertheless the implementation of decoding
algorithms is quite a laborious task, especially if the finite
fields of a large order are used.

A typical procedure for the decoding of cyclic RS
codes is proposed by the author R.E. Blahut [2] and con-
sists of the following stages:

— the calculation of syndrome components (syndrome
vector);

— the formation of a key equation and finding of the
error locator polynomial by one of the methods — Peter-
son, Berlekamp-Massey or the Euclidean algorithm;

— the searching for the roots of the error locator poly-
nomial using the Chan’s method — a complete enumera-
tion of all values;

— the calculation of the error values polynomial and
error character determination based on the Forney algo-
rithm;

— the correction of erroneous characters.

The GF(2™) finite field contains 2" elements (1, o',
o, o, ...), each of which is represented by a binary vector
of m bits and in the practice PC code mostly uses the cal-
culations in the GF(2™) finite fields.

One of the most time-consuming stages of RS code
decoding is searching for the roots of the error locator
polynomial

6(X) =0 +61X+(52X2+...+GVXV. (1

It is known that the Chan’s method can be used to find
the roots of the error locator polynomial (1) degree v in
the field GF(2™). However, the Chan’s algorithm requires
multiplication of each coefficient o;j in the formula (1) by
the element of field GF(2™) using o degrees.

Therefore, to correct errors in the code sequence, the
Chan’s method is used, which in fact is a complete enu-
meration of all elements, which significantly affects the
effectiveness of the decoding device. If the decoder has a

t .
known error locator polynomial o(X)= Zcix' , which
i=0
roots are mutual to the error position locators, then the
Chan’s procedure can be applied to each of the locators 1,
o, o, o, ..., a' (I=2" = 1) to check if the symbol dis-
played at the moment is an error [1]. L.e., for all non-zero
elements of of field GF(2™), the condition o(af)=0 is
checked, and its implementation indicates that o®is a mu-
tual root of the error locator polynomial to the erroneous
symbol. In this case, the number of operations to imple-
ment the Chan’s procedure is 2t (2" — 1).

Thus, the Chan’s procedure for searching the roots of
the polynomial error becomes quite complicated for cal-
culations in large finite fields (m>8) and for error locators
polynomials of a large degree, because it requires a sig-
nificant number of operations.

Therefore, the task of this work is to improve the
method for determining the positions of distortions in the
code word and to reduce the computational complexity of
the algorithm for finding the roots of the error polynomial
in the finite fields of GF(2™) when decoding RS and BCH
codes.

2 REVIEW OF THE LITERATURE

The principles of encoding, more modern methods of
errors control, code applications for the design of real
error control systems are covered in [3]. With the help of
a special class of p-polynomials the authors offered a fast
algorithm for finding polynomial roots of the degree less
than 5. In this algorithm the polynomial defined in the
formula (1) is transformed into an affine polynomial
above the GF(2™) field. Then the roots can be found by
solving a system from m linear equations with m un-
known above the GF(2) field. Therefore, at the minor
values of v, the advantage of the above algorithm over the
Chan’s method is that the calculations in the GF(2™) field
(multiplying o; coefficients by a degrees) required in the
standard Chan’s search method are completely excluded.

The searching method for the roots of the polynomial
on the base of some transformation that makes it possible
to group some polynomial constituents of the degree no
higher than 11 into multiple affine polynomials is pro-
posed in [4]. This method makes it possible to accelerate
the calculations, but this algorithm has its disadvantages.
For example, it can be used for polynomials which de-
grees cannot be higher than 11. The building and decod-
ing of BCH codes for different communication systems
are described in [5]. The authors propose an improved
algorithm for searching the roots of polynomials over the
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finite fields. This algorithm significantly accelerates the
process of BCH codes decoding. Also the improved hy-
brid algorithm of polynomial roots finding over finite
fields is considered in [6] and [7] articles. The authors
have combined the Jiang’s algorithm, which is based on
the decomposition of the error locator polynomial in the
sum of multiple affine polynomials with modified ana-
lytical methods for solving polynomials with small degree
in radicals. A number of works have been devoted to dif-
ferent issues of BCH and RS decoding, where simple
equation for Reed-Solomon codes on the base of uniting
of two algorithms (Berlekamp-Massey algorithm and Eu-
clidean) was proposed [8], the new approach to calculat-
ing the total error locator polynomial [9-10], the depend-
ence of indicators of reliability and efficiency of informa-
tion transmission on the parameters of Reed-Solomon
codes are given in [11], the main stages of Reed-Solomon
codes encoding (decoding) for practical application [12]
were reviewed.

The analysis of publications has shown the necessity
to study the procedures of cyclic BCH codes decoding, as
well as the methods of determining error positions in the
code word, based on the search of the roots of the error
locator polynomial. The calculations of the roots values
are carried out using the elements of finite fields, taking
into account the degree of error polynomial, which sig-
nificantly affects the calculation time. Therefore, the
analysis results of known methods of roots search will be
presented further, and also the accelerated algorithms of
definition of errors positions in a code word at decoding
RS and BCH codes will be described.

3 MATERIALS AND METHODS
The solution of the problem of searching the roots of
the error locator polynomial (1), which o; coefficients
belong to the GF(2™) finite field, using the Berlekamp
algorithm is based on a special class of polynomials.
These polynomials, which roots can be found much eas-
ier, are called p-polynomials or linearized polynomials

[1].

Foo=% fix2' 2)

If we suggest that the error locators polynomial has
the degree v=2', then it can be represented as

o(x) = F(X)+0,, opeGF2™M). (3)
The polynomial of the type (3) is called affine poly-
nomial [6].

If the polynomial is checked when searching for roots,
then we obtain

F(X)=0j, o,<GFQM). 4)

For any GF(2™) finite field the standard basis is a set
of m elements 1, o', o, o, ... o™ [14]. The values of the
linearized polynomial Fo(a”) Fi(a') ..... Fui(a™") at the
points of the standard basis of the GF(2™) finite field can
be calculated using (2). The obtained result lies in the
GF(2™) field, but for further calculations it is reasonable
to present it as a binary vector corresponding to the field
element

F(a)=faga ay...am 1} a cGF(2).

We denote the searching root of the error polynomial

as o€ GF(2M) field clement through a binary vector

B'={by by by ..byy), by €GFC).
Then it is derived from the formula (1) that the zero
coefficient of error locator polynomials represented as

Y= {yo Yi .. ym_l} binary vector can be obtained by mul-

tiplying [3i ={by by by...bp1}, by €GF(2) the vector of
the line by a matrix A over field GF(2™)

8,0 @1 @2 ---8m-1

o A a2 ... o

[t by by ... by ] ~[yo ¥1 -y ) ©)

- 8m-f,m-1

Therefore, the decomposition coefficients of F(X) pol-
ynomial on a standard basis can be obtained

-1
F(X)= mZbkF(ock), b, € GF(2). (©6)
k=0

For example, it is necessary to find the roots of the er-
ror locator polynomial that coefficients belong to the
GF(2%) finite field, generated by the primitive polynomial
PO)=X+x+1:

2 6 6

o(X)=xX"+a ' xX+o . (7)

We
o(X)=F(X)+ 0o, where the F(x)= x> +a’x linearized
polynomial above the GF(2*) field and the zero coeffi-

represent  the  error  polynomial as

cientis op = ol Then, in accordance with (4), we obtain

F(X):X2+0L6X:0L6. ®)

The element of the GF(2*) o° finite field is comparable
to the [YaYi1Yo]  binary vector. If the

Bi = {bo b, b, }, b, € GF(2) searching roots of the error
locator polynomial, then in accordance with (6) we obtain
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boF () +b F(a!) +byF(a?) = [yg v 2. ©)

The basis vectors Fo(a?), Fi(a') u Fo(a’) taking into
account (8) can be calculated as::

0 0 6 2
Fo(a')=a " +a” =a”,

Fl(ocl):oc2 +o’ :oc6,
F2(0L2)=0L4+0Ll =a’.

Each F(a') basis vector above the GF(2%) field corre-
sponds to a binary

Fla)={aa a}, a e GFQ)
Fa®={100} F@)={101}, F@?={100}.

Then, in accordance with (5), we have a system of the
linear binary equations

[bo b by] =[1 o 1].

(= N -
(= =)

Therefore, the roots of the error locator polynomial (7)
can be found by solving simultaneously three equations

with three unknown {by by b, }, b € GF(2). It is obvi-

ous that the elements of the GF(2*) finite field o' {0 1 0}
and o’ {1 1 1} are the roots of the polynomial (7). This
example shows that to find the roots of the polynomial (7)
by means of the Berlekamp algorithm it is necessary to
calculate only three F(a?), F(a') and F(a”) in the GF(2%)
field instead of calculating all values F(a’), F(a') ....
F(a®), required for searching the roots by the Chan’s
method.

For the decrease in complexity and quantity of compu-
tational operations at finding the roots of errors locator
polynomial by the Berlekamp method it is expedient to
use earlier calculated values at the following stage of al-
gorithm. For this purpose we will use the property of the
linearized polynomial

F(x+y)=FX)+F(y). (10)

Thus, in accordance with the property (10), we obtain

Fio' +al)=F@")+F@h) (11)

or
F(a)+F(a)=F(al), oaf=a +al.
Consider such a pair of o and o' elements of the finite
field GF(2™) as a standard basis (binary vector of m
length), which would differ from each other in one posi-
tion. Then in the formula (11) the o field element is in
this case a single vector of m length. As it has been point-

ed out earlier such elements (binary sequence welght 1)
are basic in the finite field GFQ™) ' 1, o', o2, o, ... ™.

Hence, if we rank (order) the elements of the GF(2m)
finite field in such a way that the nearby vectors will dif-
fer exactly in one position. Then, at each step of the algo-
rithm for searching the roots of the error locator polyno-
mial, the calculations are reduced to a single addition [
the previous value and the value of the linearized poly-
nomial at the points of the standard basis F(a”) F(a') .....
F(a™") of the GF(2™) finite field.

Thus, in order to calculate all values of the error loca-
tor polynomial represented as the affine polynomial (3) in
all points of the finite field

Bi e GF(2M),i=0,1,...,m—1, it is necessary to com-
plete the following steps
FE'™+Fj(al),

F') = (12)

(OLj =[3i @Bi_l — corresponds to one of the basic ele-

ments of the GF(2™) field).
The expression (12) provides the procedure for find-
ing the polynomial value set o(X) at all

points o e GF(2™) . The calculation requires ordering of
all the elements of the field, the presence of the previous

value F(BH) and the previously found values of the ba-

sis vectors F(a').

Thus, to find the roots of the error locator polynomial,
and therefore to calculate the polynomial value (3) at all
points of the finite field it is necessary to use the follow-
ing algorithm:

1. To set the value of zero coefficient of error loca-
tors polynomial 6y and linearized polynomial F(X).

2. To find the values of the linearized polynomial
F(x) at the points of the standard basis of the finite field
GF(22™)

Fe =F(al),i=0,1,..,m-1.

3. To perform the initialization F(") = 0.
4. To arrange all elements of the o' € GF(2™) finite

field in the form of binary vectors in such a way that two
any nearby vectors will differ exactly in one position.
5. To calculate the value of

FB)=FE™)+Fj(al), ol =p'@p™".

6. If F(B") = oy, then the field element ' is the pol-
ynomial root of o(X).

4 EXPERIMENTS
To confirm the functionality of the above-mentioned
theoretical calculations we will perform the procedure of
searching the roots of the error locator polynomial, which
coefficients belong to the GF(2*) finite field, generated by
the primitive polynomial p(x)=x*+x+1:
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cs(x)=x2+oc5x+1.

(13)

1. We represent the error polynomial (13) as
o(X)=F(X)+0(y, where the linearized polynomial
F(x)= x> +a’x above the GF(2") and the zero coeffi-
cient oy =1.

2. We will find the values of the linearized polyno-

mial at the points of the standard basis of the GF(2*) finite
field

Fo(a?) = a!? (1010), F(a!) = a® (1011), Fy(a?) =

=a® (1110), F3(a) = a” (0001).

3. We will perform the initialization F([BO) =0.

4. The elements of the GF(2*) finite field, decomposed
as the binary vectors, should be ordered so that the nearby
vectors will differ in one position.

Table 1 — The GF(2*) Finite Field Element Ordering

Field Element | Binary Vector | Field Element | Binary Vector
B°(0) 0000 B%(a) 1100
B'(a”) 0001 B’(a) 1101
BA(a'?) 0011 B () 1111
B(ah) 0010 B () 1110
B*(a") 0110 B"%(a") 1010
B(a’) 0111 B5(a”) 1011
B(a’?) 0101 G 1001
B’(0”) 0100 B (") 1000

5. We will perform step-by-step calculations in ac-
cordance with (12).

1) [30 @Bl =0001 - corresponds to the basic element
o’ the GF(2*) field

FB") = F%) + Fy(a®) =0000+1010=1010;

2) B1®B2 =0010 — corresponds to the basic ele-
ment o' the GF(2*) field

F(2) = F@) + F (o)) = 1010+1011 = 0001;

3) [32 @[33 =0001 — corresponds to the basic ele-
ment o the GF(2*) field

FB%) = F(B%) + Fy(a®) =0001 + 1010 = 1011;

4) [33 @[34 =0100 — corresponds to the basic ele-
ment o the GF(2°) field

FB*) = F(B%) + Fy(a?) = 1011 + 1110 = 0101;

14) [313 @[314 =0010 — corresponds to the basic ele-

ment o' the GF(2*) field

FP™) =F@")+F(a') =0000+1011=1011;

15) [314 @BIS =0001 — corresponds to the basic ele-
ment o the GF(2*) field

FB)=F@™)+Fya®) = 1011 +1010 = 0001.

As F(B*) =1 u F(B") = 1, the roots of the polynomial
(13) are consequently the elements of the field B> and p'°,
a'? and o respectively.

To estimate the real efficiency of the proposed modi-
fied algorithm for calculating the roots of the error locator
polynomial, the software simulation in C++ language has
been implemented. The multiplication in the GF(2%) fi-
nite fields for the Chan’s method was carried out using
the tables of logarithms and antilogarithms. The calcula-
tions of the roots and the comparison of results were car-
ried out only for the linearized error polynomials and for
the elements of the o, o', ..., o®** field.

5 RESULTS
Figure 1 represents the measurement results of the
computation speed for the modified root search method
and for the Chan’s method.
Based on the results, it can be concluded that the ap-
plication of the modified algorithm for searching the roots
of error locator polynomials, presented as the linearized

polynomials, makes it possible to achieve a speed gain of
1.5 times in comparison with the Chan’s method.
m . . ' i i
2 4 6 8 10
The degree of error locator polinomial

Figure 1 — The speed of the error polynomial roots computation

30 M the Chan's method
W the Modified algorithm

Time, max
=
w

w

For the GF(2*) finite field, the average number of op-
erations to search for the of polynomial roots of 8 degree
is 4100 for the Chan’s procedure and 1532 for the pro-
posed modified root search method. For 16 degree of pol-
ynomial, the average number of operations is 8240 and
3562 respectively.

6 DISCUSSION
As all polynomials of the second degree are linearized,
their roots can be found by solving the corresponding
system of linear equations by the Berlekamp-Massey
method [7]. Also, a linearized polynomial of error loca-
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tors with a nonzero coefficient can be represented as an
affine polynomial. In this case, the root search procedure
is reduced to the addition of binary vectors in the GF(2)
field GF as the elements of the GF(2™) finite field, which
allows reducing significantly the number of addition and
multiplication operations of the field elements.

If each element o' of the GF(2™) finite field can be
compared to a binary vector of m length, the field ele-
ments can always be ordered in such a way that two near-
by vectors will differ from each other exactly in the same
position, for example, using the Gray code.

The described algorithm allows finding the roots of
the error locator polynomial if the polynomial (1) is rep-
resented as an affine polynomial (3). However, this root-
searching procedure can also be generalized in the case of
arbitrary polynomials if they are broken down into a set of
affine polynomials.

CONCLUSIONS

In this work the acute scientific task of the acceler-
ated search of the roots of the error locator polynomial
which define the errors positions in the accepted code
sequence at the stage of cyclic BCH and RS codes decod-
ing is solved.

Also the effective algorithm of the roots calculation
of the errors polynomial above the GF(2™) finite fields is
developed. The improved algorithm for calculating the
roots of the polynomial errors with the coefficients in the
finite field based on the Berlekamp-Massey algorithm for
the linearized polynomials has been proposed, which pro-
vides a minimum number of arithmetic operations due to
the use of data obtained from the previous stages of calcu-
lations. The proposed algorithm reduces the complexity of
root calculations at one point of the finite field due to the
application of a special arrangement of all elements of the
finite field.

Practical newness of the work results lies in the im-
plementation of the program model of the code message
decoding system, which allows conducting the error cor-
rection, both for the classical method of searching the
roots, and for the developed modified algorithm for calcu-
lating the positions of the disturbed characters. The mod-
eling results have confirmed the efficiency of the pro-
posed algorithm for the root searching of the error locator
polynomial while the cyclic BCH and RS codes decoding,
which allows achieving the speed gain by 1.5 times, com-
pared with the Chan’s search method.
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HaJIBHOTO TEXHIYHOT'O YHIBEPCHUTETY «XapKiBCHKHUH MOJITEXHIYHUI IHCTUTYT», XapKiB, YKpaiHa.

Koaicuuk T.II. — xanx. mex. Hayk, JOUCHT Kadeapu iHpoOpMauiiiHUX TexHONOrid Ta kibepOesmexd XapKiBChKOTO HaIlio-
HaJIBHOTO YHIBEPCHUTETY BHYTPIIIHIX clipaB, XapkiB, YkpaiHa.

AHOTANIA

AKTyalbHicTB. Y TeleKoMyHIKaliiHAX Ta iHGOpMaiHHUX cucTeMax 3B 3Ky 3 IMiJBUIEHOIO IIyMOBOIO CKJIQJ0BOI BUKOPHCTO-
BYIOTBCs meperikoaoctiiiki mukmigai BUX T1a xomu Pima-Comomona. KopuryBaHHS Ta BUNpaBICHHS IOMIJIOK B TIOBIJIOMIICHHI
BUMarae ¢(eKTUBHHX METOMIB JiekoayBanHsA. OfHUM 3 eTamiB nponenypu aekoayanus PC i BUX koniB mis BU3HAYCHHS MO3MIIN
CIIOTBOPEHB € IOLIYK KOPEHIB IOJIIHOMa JIOKaTOpiB MOMIIOK. OOUMCIEHHS KOPEHIB MHOTOWICHA, OCOOJIMBO Y KOXIB 3i 3HAUYHOIO
KOPEKTY€ 3JIaTHICTIO, € TPYIOMICTKOIO 3aBJAHHAM, IO BUMarae BHCOKOI OOYMCIIOBAJIbHOI CKIAAHOCTI. TOMY yHOCKOHAJICHHS
merozaiB nekonysanHs BUX i PC kopaiB, 1110 103BOJISIOTH 3MEHIIHTH CKJIAJHICTh OOYHCIICHD, € AKTYaIbHUM 3aBIaHHSM.

Meta po6oru. JJocmimkeHHs 1 CHHTE3 IPUCKOPEHOTO aJrOPUTMY MOIIYKY KOPEHIB MOMIHOMA JIOKATOPiB IIOMHJIOK, MIPEACTaBIIe-
HOTO y BUTJIAI aiHHOTO MHOTOUWIEHA 3 Koe(illieHTaMH B KiHIICBUX IMOJIAX, SIKHI JO3BOJISIE MPUCKOPUTH Tporiec AekoxyBanHs BUX i
PC xomis.

Metoa. Kitacnanmii MeTo NOIIYKy KOpEeHiB Ha 0a3i anroputMy UeHs BUKOHY€EThCS 3a JOIOMOTOI0 apr()METHKH KiHIIEBHX OB
Tanya i TpyIOMICTKICTh PO3paxyHKIB, B TJAHOMY BHUIAJKY, 3JICXKUTh BiJl KUTBKOCTI Omepailiid JoaaBaHHs i MHOXEHHS. J{yis auHeapu-
3MBAaHUX TOJIIHOMIB MPOIIEAypa MOIIYKY KOPCHIB, 3aCHOBaHA HA JBIMKOBIi apudMeTuIl Ta 3AICHIOETLCS 3 yYpaxyBaHHSAM 3HAYCHb
OTpPHUMAaHHX Ha MOIEPeAHiX eTanax 00YHCIICHHS, 1110 3a0e3reuye MiHiMaIbHE YUCII0 apU(pMETHIHHUX Onepariii.

PesyabTaT. Po3pobiieHO MPUCKOPEHUI alrOpuT™M OOYMCIICHHS 3HAYCHb MOJIHOMA JIOKATOPiB MOMHJIOK y BCIX TOYKaX KiH-
nesoro noist GF (2™) ans nMHeapu3MpoOBaHUX MHOrowIeHiB Ha 6a3i Meromy Bepiekemma-Mecci. AIroput™ MiCTUTh MiHIMadbHY
KUTBKICTh OTepaliil JoJaBaHb, 32 PaXyHOK BHKOPUCTAHHS Ha KO)KHOMY €Tall OOYHMCIICHb, 3HAUYCHb OTPUMAHUX Ha TONEPEIHBOMY
KpOIli, a TaKOXX BUKOHAHHs CKJIafaHHs B KiHneBomy moxi GF(2). 3ampormonoBaHo Moan¢ikoBaHMI METOH HOIIYKY KOPEHIB IS
apiHHUX MOJIHOMIB HaJ KiHICBHUMH IOJISIMH, IO JO3BOJISIE BU3HAYUTH TO3UIIIT MOMIJIOK B KOJIOBOMY CIIOBI ITiJI Yac JAEKOIyBaHHS
mukiaivanx BYX i PC xoxis.

BucnoBkn. HaykoBa HOBU3HA po0OTH mojsirae B yJJOCKOHAJEHHI aJTOPUTMY OOUYMCICHHS KOPEHIB MHOTOYIECHA JIOKaTOPiB IO-
MHJIOK, KOe(il[iEHTH SIKOTO HaJleXKaTh JI0 eJIEMEeHTIB KiHI[eBOro mois. [Ipyu iboMy CIIpoLIy€eThes IPoLeaypa JEKOIyBaHHS UK THIX
BUX i PC koziB, 3a paXyHOK 3HIKEHHSI O0UHCITIOBAIIBHOT CKIIaAHOCTI OJHOTO 3 €TaliB JeKO{yBaHHs — 3HAXODKEHHS MMO3MLIH MOMH-
JIOK 3 BUKOPHUCTaHHSAM MoaudikoBanoro anroputmy bepnexemmna-Mecci. Jani ¢akti migrBepKkeHi pe3yabTaTaMH IPOrPaMHOTO
MOJICTIOBAHHS aITOPUTMY IOLIYKYy KOpPEHIB ITOJIHOMA JOKAaTOPiB MOMMIIOK. [loka3zaHO, IO 3aCTOCYBaHHS HPHCKOPEHOTO METOIY
JIO3BOJISIE TOCSATTH BUTPAIY IO IBUAKOAIT B 1,5 pasu.

KJIOYOBI CJIOBA: BUX xoau, MOJIIHOM JIOKaTopiB IMOMIIOK, momryk Yens, anroput™ bepmexemmna-Mecci, koqu Pina-
CooMoHa.
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HAJIBHOT'O TEXHUYECKOI0 YHUBEPCUTETA «XapbKOBCKUI MOJIIUTEXHUUIECKUH HHCTUTYT», XapbKOB, YKpauHa.

Kouecnuk T. II. — kaup. men. Hayk, TOUEHT Kadeapsl HHGOPMAIMOHHBIX TEXHOJIIOTHI 1 KndepOe3onacHoCTH XapbKOBCKOIO Ha-
LMOHAJILHOTO YHUBEPCUTETA BHYTPEHHUX Jie)l, XapbKoB, YKpauHa.

AHHOTAIUS

AKTyaJIbHOCTh. B TeIeKOMMYHHUKAIIMOHHBIX U MH(POPMALMOHHBIX CUCTEMaX CBSI3M C IMOBBIIICHHOH LIyMOBOIl COCTaBISIOLICH
UCTIONB3YIOTCS MoMexoycToiuuBsle nuknnyeckue bBUX u xoasl Puna-Conomona. KoppektupoBka u ncrnpasiieHHe OMNOOK B C000-
mieHuH TpedyeT 3P PEeKTUBHBIX METOI0B IeKoaupoBaHus. OIHUM U3 3TanoB npoueaypsl nexoguposanus PC u BUX kxomoB s om-
peneneHus MO3NINI NCKKEHUH SBISIETCS TIOMCK KOPHEH MOJMHOMA JIOKATOPOB OMMOOK. BrruncieHne KopHel MHOTOUWIEHa, 0COo-
OCHHO y KOZIOB CO 3HAUUTEIBHOH KOPPEKTHPYIOIMIEH CIIOCOOHOCTEIO, SBISCTCS TPYIOEMKOH 3a/1aueH, TpeOyromeid BRICOKOM BBIYHC-
IuTeNnbHOU cnoxHocTd. IloaToMy ycoBepiieHcTBoBaHHE MeTOn0B AekonupoaHus bUX u PC konoB, MO3BOJISAIOIIMX YMEHBIIUTh
CJIOKHOCTb BBIUMCIICHUM, SBIISETCA aKTyalbHOH 3aJauci.
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Leab uccaeroBanus. VccnenoBanue u CHHTE3 yCKOPEHHOTO aIrOpPUTMa IOMCKA KOPHEH ITOJIMHOMA JIOKaTOPOB OIIMOOK, Ipe-
CTaBJIEHHOTO B BHJE a)(MHHOTO MHOTOWIEHA ¢ KO3()(PUIUESHTaMH B KOHSUHBIX MOJISIX, KOTOPBIA IO3BOJISIET YCKOPHUTH MPOLIECC Je-
kxoaupoBanus BUX u PC konos.

Metoa. Knaccuueckuii MeTos moucka KopHel Ha 6a3e anropurMa UYeHs BBIIOIHACTCS C MOMOILBI0 apu()METHKN KOHEYHBIX I10-
Jiedt ['anya u Tpy10eMKOCTb PacyeToOB, B JAHHOM CIIy4ae, 3aBUCUT OT KOJMUYECTBA ONEPaLUil CIIOKEHUS U YMHOKeHus. [{ns nuneapu-
3MPOBAHHBIX TTOJMHOMOB IMPOLETYPa MOUCKA KOPHEH, OCHOBaHHAs HA ABOMYHOMN apH(PMETHKE, OCYIIECTBIAETCS C YIETOM 3HA4EeHUI
TIOTyYeHHBIX Ha MPEABIAYIINX STaNax BEIYHUCICHUS, 9TO 00ECIIeYNBaeT MHHIMAIBHOE YHCIIO apU(PMETHIECKHUX ONePAIHH.

Pe3yabTarthl. PazpaboTan yCKOpEHHBIH alTOpUTM BBIYHCICHHS 3HAYCHHH MOJIMHOMA JOKAaTOPOB OMIMOOK BO BCEX TOYKAX KO-
neunoro nons GF(2™) s nuHeapu3MpOBaHHBIX MHOTOWIEHOB Ha 6asze MeTonma Bepieksmmna-MeccH. AJITODHTM COIEPKMT MUHH-
MAaJIbHOE YKCJIO OIepalUil CIIOKEHUH, 32 CYET UCIIOJIb30BAHUS HA KaXKIOM dTalle BBIYMCICHUI, 3HAUEHUH MTOJYYECHHBIX HA IPEAbLIY-
IIIeM IIare, a TakXKe BBIOIHEHUs cIokeHus B koHedHoM none GF(2). Ipemnosken MoanuIpOBaHHBIA METOJ OMCKA KOPHEH ISt
a(GUHHBIX TONMHOMOB HaJ{ KOHEYHBIMH ITOJISIMH, ITO3BOJLSIOIINIT ONIPEENNTh MO3UIINY OIIHOOK B KOJJOBOM CJIOBE IPH JIEKOAUPOBA-
muu nukimyeckux bUX u PC komos.

BriBoasl. HayuHast HOBU3HA pabOThI COCTOHUT B yCOBEPIICHCTBOBAHMY AJITOPUTMA BBIYHMCIICHNS! KOPHEH MHOTOWICHA JIOKaTOPOB
omK60K, K03()HUINEHTH KOTOPOTO MPUHAIEKAT JIEMEHTaM KOHEYHOTo oJis. IIpu 9ToM yrpolaercs nmpoueaypa JIeKoIUpOBaHUs
nuknnyeckux BUX u PC xomoB, 3a cueT CHIKCHUS BBIYMCIUTEIBHON CIIOKHOCTH OJHOTO U3 3TAINOB JEKOAUPOBAHUS — HAXOXKICHUS
MO3MLMH OMHUOOK ¢ MCHONIb30BaHHEM MoauduuupoBaHHOro anroputma bepnexamna-Meccu. JlanHble (GakTbl OATBEPHKICHBI pe-
3yJIbTaTaMH MPOrPAMMHOTO MOJIETTMPOBAHUS aTOPUTMA TIOMCKa KOPHEH MoIrHOMa JIoKaTopoB omubok. ITokasaHo, 4To mpuMeHeHne
YCKOPEHHOTO METO/ja O3BOJISET JOCTHYb BRIUTPHIIIA 110 OBICTpoAeiicTBHIO B 1,5 pasa.

KEYWORDS: BUX kofpl, MOTMHOM JIOKATOPOB OIHO0K, mouck Yens, anroputm bepnexamma-Meccn, koasl Puna-Conomona.
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