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AN ATTEMPT FOR 2-LAYER PERCEPTRON HIGH PERFORMANCE IN
CLASSIFYING SHIFTED MONOCHROME 60-BY-80-IMAGES VIA
TRAINING WITH PIXEL-DISTORTED SHIFTED IMAGES ON THE

PATTERN OF 26 ALPHABET LETTERS

Object classification problem is considered, where neocognitron and multilayer perceptron
may be applied. As neocognitron, solving almost any classification problem, performs too
slowly and expensively, then for recognizing shifted monochrome images there is attempted
the 2-layer perceptron, being fast only for pixel-distorted monochrome images, though. Having
assumed the original images set of 26 monochrome 60-by-80-images of the English alphabet
letters, there is formulated the task to clear out whether the 2-layer perceptron is capable to
ensure high performance in classifying shifted monochrome images. Thus it is disclosed that
the 2-layer perceptron performs as the good classifier of shifted monochrome images, when in
training its input is fed with training samples from shifted images, being pixel-distorted. For
this, however, it may need more passes of training samples through the 2-layer perceptron, but
nevertheless the total traintime will be shorter than for training the 2-layer perceptron with
only pixel-distortion-free shifted monochrome images.

Keywords: object classification, neocognitron, perceptron, pixel distortion, shift, mono-

chrome images, shifted monochrome images.

PROBLEM OF SHIFT-TURN-SCALE
PERCEPTRON RECOGNITION

Object recognition is an up-to-date technical problem,
dealing with a lot of aspects in its formalization and solving
it. The mathematical principle for recognizing objects lies in
clustering and classifying them. Neural network, being the
universal approximator, is the finest model of clusterization
and classification [1, 2]. It needs neither architecture
creation, nor training algorithm development. Only the
appropriate architecture must be selected among the
available ones [1, 3], and the corresponding training
algorithm should be enabled [4, 5]. There nonetheless stands
an important question of ensuring the high productivity up
with low resources consumption and short response delay.
The highest productivity is ensured by neocognitron, which
is the smartest neural network, performing slowly, though
[6, 7]. It also takes too much of memory and data space for
clusterization and classification. The multilayer perceptron,
consuming memory not so significantly, works much faster,
but its productivity is ensured high only for objects or
noised objects, which are not shifted, turned (skewed) or
scaled against the training objects sample [8]. Certainly, this
is unreal situation in world of real events and processes.
And ifthe object, being under classification, is shifted, turned
or scaled against its original in the training sample, then
perceptron cannot recognize it and classifies this object
erroneously. Therefore the problem of shift-turn-scale (STS)
object recognition may be solved with making neocognitron
perform easier and faster or with making perceptron just
recognize STS-property objects better.
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WAY OF INVESTIGATION

Clearly that both the said tasks of constructing fast
neocognitron and training perceptron STS-classifier are
tough for implementation [4, 6, 7]. Besides, neocognitron is
very huge model to try optimizing it in speed and resources
consumption. So, there is a tenable way of trying to prepare
multilayer perceptrons for classifying objects just with one
from the three STS-properties: shift, turn or scale. The shift-
property is the easiest to program it, while turn or scale is
tougher to be modeled [6]. The simplest objects are plane
objects like monochrome images. However, even for shifted
monochrome images (SMI) multilayer perceptrons perform
poorly. Although, multilayer perceptrons perform well [4, 8]
for pixel-noised monochrome images (PNMI). It outlines the
way to investigate possibility of increasing multilayer
perceptron performance in classifying SMI, whether they
are PNMI or not.

TASK FORMULATION

Will be considering the original set of 26 monochrome
60-by-80-images which are 26 letters of the English alphabet.
An alphabet letter, feeding the classifier input, may be shifted
as it occurs usually while scanning and retrieving the text
information. The classifier must recognize it at high
performance. Cases with letters, being PNMI, are not
excluded, but the main case is that input objects are SMI.
The extent of shift is going to be featured with a shift
constant. The task is to clear out whether the 2-layer
perceptron (2LP) is capable to ensure high performance for
SMI. For that the model of PNMI and shift-noised
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monochrome images (SNMI) must be formalized, whereupon
2LPis trained to become the classifier.

MODEL OF PNMI
It is known that 2LP is trained with blocks of feature-
vectorized objects, s0 g-th image as matrix A, = (aft? )60 “
is reshaped into 4800-length-column before processingxit,
() =126 -(a.
A r G

reshaped into 26 columns. Then model of PNMI is just the
matrix

(k) _ k) =
Apixel =A+ Gpixel = O
by standard deviation
O
pixe -
cspixel = F k V=1, @

éﬁfy > 0 at 4800 x 26-matrix E of values
of normal variate with zero expectation and unit variance,
where number F indicates at smoothness in training the
perceptron [9]. While being trained, the input of 2LP is fed

with the set

~ ~ + F
Ptrain = {Pi}lilF = {{A}[i] > {Agiel} } )

k=1

and its maximum G

of original images and pixel-distorted images by the set
of identifiers (targets)
C+F C+F
T={T} " ={I}] @
with identity 26 x 26-matrix I, where number C indicates at
how many replicas of undistorted images should be

recognized in the training process. The set (3), being formed
by (1) and (2), is passed through 2LP with identifiers (4) for

Opass times.

One of the fastest program implementations of 2LP can
be built within MATLAB with using the training function
«traingday. For setting the size of hidden layer of 2LP to

<max>

pixel =1, C=2, F =8, Opys =10, the
results of classifying SMI, when 2LP is trained with PNMI,
appear quite unacceptable (figure 1). These results are
obtained in routine of the batch testing of 2LP. The results
of the letter-by-letter testing of 2LP at some fixed standard
deviation for (1) disclose the trend in distribution of
recognition errors percentage over letters (figure 2). This
trend is seen that there exist letters that are recognized better
than others. For instance, letters «I» and «J» are more
recognizable, where letter «I» is classified wrong only in
every fourth case, roughly. But the averaged recognition
errors percentage nonetheless remains inadmissibly high.
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Fig. 1. Percentage of recognition errors pg.. over standard

deviation range |:0; Ggﬁ?p] of the shift intensity in SMI by

<max>

250 neurons in 2LP hidden layer and G . = 1, (max)

cSpixel =0
(derived from 1000 batch testings of the trained 2LP with PNMI

(max)

bY Opixel’ = LCc=2 F=s, Opass =10)

MODEL OF SNMI

Just like in (1), model of PNMI consists in adding the
normal noise to the matrix of all 26 images. For one from the
three STS-properties, every image should be processed
separately. In model of SNMI each image is shifted
horizontally and vertically for some number of pixels. Thus
the shift constant is from two components, horizontal and
vertical, though there may be used the same standard
deviation

G<max> o
gﬁfﬁ= S*;ﬂ k Vk=1F 5)

and Giﬁ?tx ) > 0 at -th part of forming the set that feeds the

input of 2LP. As there are considered 60-by-80-images then
horizontal pixel shift (HPS) is

S k0 )= 0(808i e ()

l—sign( (p(86§ﬁi>ﬁ e, (k))‘ —80}
X 5 +
1+ sign( q)(Sciﬁ?ﬁ “Ehor (k))‘ - 80)
+80- > , ©6)

where &, (k) is value of normal variate with zero
expectation and unit variance, raffled at the k-th stage for
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Fig. 2. Distributions of recognition errors percentage over letters at fixed standard deviation &

1000 testings of the PNMI-trained-and-loaded 2LP at ¢

HPS, and function ¢(x) rounds x to the nearest integer less
than or equal to x. Concurrently, vertical pixel shift (VPS)is

Syer (Giﬁ?ﬁ ) = (P(6G§ﬁi>ft Cver (k)) 8

1- sign( (p(66§ﬁi>ﬁ “Eer (k))‘ - 60}
X 5 +
1+ sign( (p(66§ﬁi>ﬁ “Eyer (k))‘ — 60]
+60 - 5 , @)

where &, (k) is value of normal variate with zero
expectation and unit variance, raffled at the k-th stage for
VPS.

It is necessarily to mind that the image background is
white, whereas in MATLAB the white color is coded with
ones. So, contour and filling of letters, being black, are coded
with zeros. By the way, the filling is not continuous (figure
3), and the letter black cast is sprinkled with white specks.
Hence, adding the horizontal shift noise to ¢-th image as

changes its elements into the

matrix A, = (al<,€>

)60><80

following. For sy, (Giﬁ?ﬁ ) > 0 these new elements are

) (k)=1for u=1,60 and v =1, spo, (Ggﬁ?&) ®)

uy
by

d<‘1> (k) = a§?> at I =v—Spor (Ggﬁ?ﬂ)

for u=1, 60 and v = s, (cgﬁfﬂ ) +1,80. )

k
For spor (Ggh?ﬁ ) < 0 new elements are
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Fig. 3. Monochrome 60-by-80-images of letters, viewed as
bitmap files, and the letter «W», viewed within MATLAB,
where it can be seen that the letter black cast is sprinkled
crosshatch-regularly with white specks

55{@ (k)= a§?> at £ =v—Spor (Giﬁ?ﬂ)

— k
for u=1,60 and v=1, 80+sh0r(6§hi>ﬁ) (10)

by
d<q> (k) =1 for

uv

u=1, 60 and v =80+ sy (ciﬁfﬁ)Jr 1L,80.  (I1)
(k) . . .
Clearly, for spor | Ogpin | =0 the g-thimage is not shifted

horizontally:

&\ (k)=al®) for u=1,60 and v=1,80.  (12)

uy
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After that horizontal shift is accomplished, adding the
vertical shift noise to the horizontally shifted ¢ -th image as

matrix A, (k)= [ag,@ (k)}

changes its elements into
60x80

the following. For sy, ( Giﬁ?ﬁ ) > 0 these refreshed elements

arec
N k
51<£> (k)= 5§3> (k) at 7 =u+Sye (Ggh?ﬁ)
—1, 60— sy (011! 1,80
for u=1, Sver | Ognift | and v =1, 80 (13)
by

&9 (k) =1 for

uv

k —_—
U=060-s5, (Gih?ft ) +1,60 and v=1,80. (14)

k
For Sver (Ggh?ﬁ ) <0 new elements are

uv

= k -
d<q> (k) =1 for u= 1, — Syer (Ggh?ﬁ) and V= 1’ 80 (15)
by

5<Q> (k) — 5£3> (k) at ¥ = U+ Syer (Ggﬁ?ﬁ)

uv

for =5y (oﬁﬁ?ﬁ)ﬂ, 60 and v=1,80.  (16)

Clearly, for sy, (Ggﬁ?ﬁ ) = 0 the ¢-th horizontally shifted

image is not shifted vertically:

&9 (k)=al) (k) for u=1,60 and v=180. (17)

uv

After all 26 images have become SNMI, each g-th image

as matrix Zq (k)= [5<q> (k)} is reshaped into 4800-

uv
X

length-column, Then the matrix

K=
A< - :[w k ] ;
shift /q( ) 4800x26 of all 26 SNMI, reshaped into

q=1,26.

26 columns, is included into the training set
- < \C+F c w)\F
Btain = {Pi}i=1 = {A}l=1 > | Ashift <l (18)

that feeds the input of 2LP, passing through 2LP with
identifiers (4) for Opass times.

Once again, for setting the size of hidden layer of 2LP to

250 neurons at c§$§X> =1, C=2,F =8, Opas =10, and
using the training MATLAB-function «traingday, the results
of classifying SMI, when 2LP is trained with SNMI and batch-
tested, still appear unsatisfactory (figure 4). However, now
these results are much better than those ones, derived from
1000 batch testings of the PNMI-trained 2LP in figure 1. But
the training process for SNMI is running very lingeringly.
Besides, this process may frequently be non-convergent,
where some performance goals aren’t met, or minimum
gradient is reached just after the first pass (in this case 2LP
cannot be called the trained with SNMI). The results of the
letter-by-letter testing of the SNMI-trained 2LP at some fixed
standard deviation for (6) and (7) disclose the peculiar trend
in distribution of recognition errors percentage over letters
(figure 5), where letters «I» and «L» are the most recognizable,
whereas letters «G», «K», «O», «R», «V» are classified
wrong in every second case, roughly. The averaged
recognition errors percentage, being lower than for the
PNMI-trained 2LP, nonetheless remains high.

Having analyzed the performance of the SNMI-lingering-
trained 2LP, there is a proposition to shorten the training
process by modifying the type of noise. It is verisimilar that
adding some pixel noise along with not increasing or
lowering the shift intensity may relatively accelerate the
training process of 2LP. Also it may decrease the recognition
errors percentage. So, the following model is for making
pixel-shift-noised monochrome images (PSNMI) to feed the
input of 2LP, as neither PNMI-trained 2LP, nor SNMI-trained
2LP is the good classifier of SMI.
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Fig. 4. Percentage of recognition errors pe..or over standard

max
deviation range [0; Gihift >} by 250 neurons in 2LP hidden

layer and Giﬁ?tx ) =1 G(max) 0 (derived from 1000 batch

> Y pixel =
testings of the trained 2LP with SNMI by Ggg}?p =1, C=2,
F :85 Qpass :10)
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Fig. 5. Distributions of recognition errors percentage over letters at fixed standard deviation c5<
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shift =0 (derived from

1000 testings of the SNMI-trained-and-loaded 2LP at Giﬁ?tx ) =1,C=2,F=8, Qpass =10y

MODEL OF PSNMI

The main principle in modeling PSNMI is that there firstly
should be accomplished HPS (6) and VPS (7) for consecutive

26 26
transformation of matrices {Aq} L= {[di@} }
q= 60x80

through

{A" (k)}czlil = {[di@ (k)}eoxso }:61 and

{Zq(k)}jl:{[élg?(k)}eoxgo}% into the matrix

RO

- g_ k ] at k-th part of forming the set
shift |: JQ( ) 480026

that feeds the input of 2LP by (5). With the matrix Ak}
there follows the model of PNMI (1), that is

(k) (k) L) =

Apixel-shift Ashlft Opixel "= (19)
by (2) and (5). For PSNMI the input of 2LP is fed with the
training set

) i F
Prn = (B} = {{A}ZC: y {Af,’;fel-shm }kl} (20)

of Creplicas of undistorted images and pixel-shift-distorted
images by the set of identifiers (4).

<max>
pixel
such relationship is pretty hard: there are needed many
passes, lasting for great numbers of epochs; the weak
convergence is very likely, and the hang-up is observed
after first 20-30 passes are completed. That means that for
covering the bad shift noise (shift noise of high intensity)

Let Géﬁ?tx ) = 1. The training process under

the standard deviations cs< x) and G< 1> mustn’t be equal.

shift
Truly, here pixel distortion should be elther strengthened or
< max) 2 (max)

loosened. Thus let Oy, =1= . Unfortunately,

g Opixel
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under this ratio the training process has the same weak
convergence, and its hopeless hang-up is observed after
first 20-30 passes are completed. Moreover, if to vary the

max) and G<

<hift pixe l> by setting strictly

ratio between c5<

Géﬂ? =1 then the training process hangs for any

E:;f? >0,5. Letting c5<h ft ) _ =1= 2G<

been trained with the set (20) for Qmlss > lOO, the PSNMI-
trained 2LP produces yet higher performance, which is still

<max>

unsatisfactory. For 6. =1=4c

>, after having

<max>
pixel

and Qp,g > 150,

the PSNMI-trained 2LP produces yet higher performance
than the SNMI-trained 2LP (figure 6) over standard deviation

max >

range [0; Gghift } = [0; 1]. Testing the PSNMI-trained 2LP
for classifying SMI letter-by-letter at the highest noise

intensity certifies it (figure 7).
Clearly that the greater Opass the lower peyo, over

standard deviation range [0; o gﬁf?f‘ ) } is, although it lingers
the training process almost to the long while as it for the
SNMI-trained 2LP is (and much longer). However, for the
PSNMI-trained 2LP by G<h ft ) _ =4c {max) _

plxel -

1 almost 3040

passes performance goals are met, and 2LP can be trained
with SNMI with many unmet performance goals. Letting

standard deviations G<h ft ax) and csfo el> be different from
their relationship c5<h ftx ) = 4c5§)1::1(> = 1may slightly change

trends in figures 6 and 7, but upon the whole, the trained

2LP with PSNMI by Opass =234 is the good classifier of
SMI, especially when the shift intensity is defined within

standard deviation range (0;0,4]. The averaged

recognition errors percentage doesn’t exceed 3,5 %, and
this 2LP performs well in classifying shifted monochrome
60-by-80-images at maximal intensity shift noise, when HPS

and VPS are about 10-20 pixels and perror = 15 with nearly
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Fig. 6. Percentage of recognition errors pg..,. over standard
. <1T13X>
deviation range 0; GOehift | by 250 neurons in 2LP hidden

x)

layer and Giﬂ?t {max)

pixel =0
1 — derived from 1000 batch testings of the trained 2LP with

=10

PSNMI by 6\ 4G§$$1(> =1, C=2,F=8

Qpass =175 (total traintime is 278548 epochs); 2 — derived
from 1000 batch testings of the trained 2LP with PSNMI

by GEE? = 405:3("6’19 =1, C =2, F =8, Opass =200 (total

traintime is 315134 epochs) 3 — derived from 1000 batch
testings of the trained 2LP with PSNMI by

(max) _, (max)

Ooift | = 4°pixe1 =1,C=2,F =8 QpaSS =225 (total
traintime is 329376 epochs); 4 — derived from 1000 batch
testings of the trained 2LP with PSNMI by

(max) . (max) _ _
Oghift | = 40pixel =1 € =2, F =8, Opass =234 (total
traintime is 339971 epochs); 5 — derived from 1000 batch

testings of the trained 2LP with SNMI by Gigitx ) =L C=2,

F =8, Qpass =100 (total traintime is 229646 epochs)

every seventh letter is classified wrong (note that letter «I»
is the most recognizable, but letter «D» is classified wrong
in every fourth case).

CONCLUSION

Problems of classification of SMI are more widespread
than problems of classifying PNMI. But the PSNMI-trained
2LP may classify SMI with pixel distortion successfully also,
as the training set (20) contains modeled PNMI. The pattern
for a monochrome 60-by-80-image, used here, is obviously
not general. Nevertheless, the letter is just a model of image,
wherewith 2LP can be tested for SMI classifier. And those
tests proved that introducing the model of PNMI into the
model of SNMI shortens the training process of 2LP and
improves its performance in classifying SMI or SMI with
pixel distortion. Hence, 2LP is capable to ensure high
performance for SMI. There only stays the question of in

max (max)
ghift ) pixel should

be taken, that is how badly SMI must be distorted to reach
the optimal traintime and recognition errors percentage. This
question will be examined in further investigations.
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AKEHUSX CO CABUTOM 0e3 MUKCEIbHBIX UCKAXKCHUI.
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paxxeHusl, MOHOXPOMHBIE H300paXKEHHS CO CIBUIOM.

Pomanrok B. B.

Kanz. TexH. Hayk, 1o1eHT, XMeNbHUIBKU HallioHaNbHUI yHiBepcuTeT, Ykpaina

BHCOKA MMPOIYKTUBHICTH JIBOIIAPOBOI'O EPCEINTPOHY B KJIACU®IKAIII MOHOXPOMHMX 30BPA-
KEHb ®OPMATY 60-HA-80 313CYBOM HA OCHOBIHABYAHHS 11O 30BPA’KEHHSIM 313CYBOM TA IIICKEJIBHU-
MU CIIOTBOPEHHSIMHU Y HABOPI 3 26 AJIGABITHUX JIITEP

PosnmsinaeTses 3anaua 00’ ekTHOI Kiacupikalii, e MOXKYTh 3aCTOCOBYBAaTHCH HEOKOTHITPOH i GararomapoBuii mepcenTpoH. OcKib-
KM HEOKOTHITPOH, PO3B’A3yI0YN MPAKTUIHO OyIb-AKy 3a/1ady Kinacu(ikallii, Mpairoe 3aHaJATo MOBUIBHO 1 3aTPaTHO, TO JUT PO3Ii3HABaH-
HSI MOHOXPOMHHUX 300paK€Hb 31 3CyBOM IIPOIIOHYETHCS BUIIPOOYBATH IBOMIAPOBHIT IIEPCENTPOH, X0Ua BiH € MIBHIKOMIFOYNM TUTBKH UL
MOHOXPOMHHX 300pa)KeHb 3 MIKCEIBHIMH CIIOTBOPEHHSMH. 3alPOIIOHYBABIIN HA0Ip OPUTIHAIBHUX 300paXKeHb 3 26 MOHOXPOMHHX 300-
paxxeHb JliTep aHMIilchkoro andasity dpopmary 60-Ha-80, GopMymroeThes 3amada BUSICHUTH, YU 3[aTEH JBOIIAPOBUH IIEpPCENTPOH
3a0e3MeYUTH BUCOKY POAYKTUBHICTh NPH Ki1acu(ikalii MOHOXPOMHHX 300payKeHb 31 3CyBOM. BiAIOBiTHO BHUSBISETHCSA, IO TBOIIAPO-
BUH TTEPCENTPOH TPALIOE K XOPOIINH KIIacH(pikaTop MOHOXPOMHHX 300paKeHb 31 3CyBOM, KOJIM IIPH HaBYaHHI Ha HOT0 BXi MOCTYNAOTh
HaBYaJIbHI BHOIPKH 300pakeHb 31 3CYBOM, ITIKCENi SIKUX CIIOTBOPeHi. [l 1boro, OqHaK, MOXKE 3HaJOOUTHCH OLTBIIE MPOXO/IIB HaBYAIb-
HUX BHOIPOK Yepe3 IBOIMIApOBHUIT MEPCENTPOH, ajle THM He MEHIIe 3araJbHUN Yac HaBYaHHs Oy/ie MEHIINM, HDK JUIs HABYaHHS JIBOIIApO-
BOT'O MEPCENTPOHY JIMIIE Ha MOHOXPOMHHX 300paXKeHHSIX 31 3CyBOM 0e3 MIKCENbHUX CIIOTBOPEHb.

KarwouoBi cioBa: 00’ekTHa kiacudikaiis, HCOKOTHITPOH, IIEPCENTPOH, MIKCENbHE CIIOTBOPEHHS, 3CYB, MOHOXPOMHI 300pakKeHHS,
MOHOXPOMHI 300payKeHHS 31 3CYBOM.
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