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ABSTRACT

Context. The problem of predicting the efficiency of real queuing systems in the event of a possible arrival of requirements
groups and leaving of “impatient” requirements from the queue. The aim of the study was to model the operation of such systems to
create opportunities to control their operation in real time.

Objective. The aim of the research is to obtain an analytical description of the state’s final probabilities in a Markov queuing
system with an input flow of requirements groups, with individual service of requirements, with a limited number of waiting places
and with individual leaving of “impatient” requirements from the queue that is necessary to predict the values of the queuing system
performance indicators.

Method. The probabilities of queuing systems states with an input flow of requirements groups with a random composition and
with leaving of “impatient” requirements from the queue are described by the Kolmogorov differential equations. In a stationary
state, these equations are transformed into a linearly dependent homogeneous system of algebraic equations. The structure of the
equations depends on the numerical values of the input flow requirements group’s parameters and the controlled service system.
Therefore, an attempt to predict the efficiency of a system is faced with the need to write down and numerically solve a countable set
of algebraic equations systems that is quite difficult. The key idea of the proposed method for finding an analytical description of the
final probabilities for the specified queuing system was the desire to localize the influence of requirements groups in the input flow
on the operation of the queuing system in multiplicative non-ordinary functions. Such functions allow obtaining the required
analytical description and assessing the degree of the final probabilities transformation, in comparison with known systems, as well
as assessing the predicted values of the noted queuing system efficiency indicators when choosing the parameters for controlling its
operation.

Results. For the first time analytical expressions are obtained for the final probabilities of the queuing system states with an input
flow of random composition requirements groups, with a limited number of waiting places, with individual service and leaving
“impatient” requirements from the queue, which makes it possible to evaluate all known indicators of the system’s performance.

Conclusions. The resulting description turned out to be a general case for well-known types of Markov queuing systems with
non-ordinary and with the simplest input flow of requirements. The results of the numerical experiment testify in favor of the
correctness of the obtained analytical expressions for the final probabilities and in favor of the possibility of their practical
application in real queuing systems when solving problems of forecasting efficiency, as well as analyzing and synthesizing the
parameters of real queuing systems.

KEYWORDS: Markov models, queuing systems, requirements groups, leaving the queue.

ABBREVIATIONS a;is a probability of a group consisting of exactly i
QS is a queuing system. requirements at the input of the queuing system;
e=2,71... is a second remarkable limit;
NOMENCLATURE fi() is a density distribution of the requirements flow at
A is an absolute QS capacity; the input of the queuing system;
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f,() is a density distribution of service duration;

f3() is a density distribution of the requirement waiting
until leaving the queue;

fcis a non-ordinary function, which deforms the
probability py of the queuing system Kk-th state when
groups appear in the input flow of requirements;

foy, 1is a non-ordinary function, which deforms the
probability py+, of the queuing system (k+n)-th state when
groups appear in the input flow of requirements;

| is a flow intensity of requirements at the input of QS;
i is the number of requirements in the group;

L is a maximum number of requirements in a group;
Lqueue is @ queue length in the queuing system;
My/M/n/m is a designation of queuing system with
waiting or with leaving the queue in the Kendall-Basharin
classification;

My/M/n is a designation of the queuing system noted
above but with no places to wait and it means QS with
refusals;

M is a designation of an exponential distribution of the
random service time of each requirement;

m is a number of places to wait;

Mpis a designation of Poisson input flow of
requirements groups with random composition and with
the maximum number L of requirements in a group;

My 4 is a mathematical expectation of the busy devices
number;

M[i] is a mathematical expectation of the requirements
number in groups;

n is a number of identical channels (devices) in the
queuing system;

P..rvice 1S @ service probability of queuing system;
P.fusal 1S @ service refusal probability;

Pk is a probability of a queuing system state in which
exactly k requirements is in the system;

Pn+k 1s a probability of a queuing system state in which
exactly n devices are busy by servicing and exactly vy
waiting places are occupied by requirements;

Sy is a system state, at which exactly k requirements

are under maintenance;

Sn+, 1s a system state, at which exactly n requirements
are under maintenance and y requirements are in a queue;
t is a current time;

Taris a mathematical expectation of requirement’s
service duration by the service device;

Tarwis a mathematical expectation of time before
requirement leaves the queue;

B is an inverse value to the mathematical expectation

of time before requirement leaves the queue, :T;\,Ir_w

and has the physical meaning of the intensity of
requirements leaving from the queue;

v is a current number of occupied places to wait;

A is a parameter of requirements groups flow at the
input of the queuing system and has the physical meaning
of the requirements groups occurrence frequency;

Aj is a parameter of requirements groups input partial
flow that consists of exactly i requirements in the group;
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u is a performance of one service device as the inverse
value to the mathematical expectation of service time,

w=Tar;

V is a ratio of requirements leaving intensity § from
the queue to the performance p of the service device;

p is a load factor of a queuing system with a simplest
flow of requirements;

pi is a load factor of queuing system by a part of the
input flow of requirements groups.

INTRODUCTION

In the field of transport, trade, medicine, industry,
information networks, control systems and in other areas,
there is often appears repeated massive demand (flow of
requirements) for various services. To work out such
requirements, the corresponding “service” systems are
created.

The wide distribution and diversity of such systems
has caused the need to develop appropriate models of
queuing systems for solving problems of analysis,
synthesis and control of real systems. The moments of
each requirement occurrence and the duration of its
working out (service) are not known in advance (are
random). If all service devices are busy, requirements can
wait for their turn. “Impatient” requirements may leave
the queue at an unknown point in time. Therefore, most
models are stochastic

In real systems, as a rule, the conditions of the central
limit theorem of A. Ya. Khinchin [1] are satisfied, and an
input flow of requirements, that is close to the simplest
one, is automatically generated. For such conditions, there
are well-known models, for example, in [2]. However,
requirements can often enter the system in groups with an
unknown (random) quantity in the group. In queuing
systems, shock loads occur, the effectiveness of systems
decreases.

To perform a forecast of the effectiveness in such
system and in such conditions its possible only by
numerical methods for specific numerical values of the
conditions parameters. Unfortunately, the probability of
“guessing” the exact values of the future set of continuous
random variables (the parameters of the conditions) is
strictly zero. Therefore, numerical analysis can be
adequate to the real process only a posteriori, which
sharply reduces its scientific significance and at the same
time makes it important to search not numerical, but
analytical descriptions of state probabilities and efficiency
indicators of queuing systems with an input flow of
groups with random composition of requirements. At
present, there is an analytical description of QS models
with an input flow of requirements groups and with
waiting in the queue [3]. However, for the general case of
real systems, in which “impatient” requirements can
refuse service and leave the queue at unknown moments
in time, the analytical description of the model is not
known, which complicates the control of such systems
and makes the topic of this article relevant.
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The object of research is a steady-state process of
servicing an input flow of requirements groups in
M. /M/n/m queuing system with leaving the queue.

The subject of research is the distribution law of the
final state probabilities in queuing system M_/M/n/m with
input flow of requirements groups and leaving the queue.

The research goal is to obtain an analytical
description of final probabilities for the queuing system
M, /M/n/m with input flow of requirements groups and
leaving the queue which is the general case for the already
known Markov models of queuing systems with an input
flow of requirements groups and with the simplest input
flow.

The noted final probabilities are a complete
description of the systems operation and allow estimating
the expected values of all known indicators of the queuing
systems efficiency.

1 PROBLEM STATEMENT
The requirements groups flow with intensity | and

density f(t)= le~'enters the queuing system. Service
duration is random and has exponential distribution
fo(t) = ue_“t. Some of the requirements in the groups

that have found all service devices busy are queued. Each
requirement can leave the queue without waiting for the
start of service. The duration of the requirement waiting
until leaving the queue is random and has exponential
distribution f5(t) =pePt. of the
distribution densities, a Markov process with continuous
time and discrete states arises in the system.

This paper relies on a system of statements about the
properties of a non-ordinary (general stationary) flow
[1, pp. 14, 40, 41], which we present without proof.

The stationary flow of time points for the arrival of
events groups without aftereffect is the simplest and is
called the General Stationary Flow or non-ordinary flow.

Non-ordinary flow includes groups of i requirements
(i=1,2,...,L) in a group. The flow can be determined by
setting the probabilities distribution law (&;) of appearing
exactly I requirements in any group of input flow. Then
the flow parameter A will be less than the flow intension
(A<I) and will include partial flows with parameters A;:

By virtue noted

M-

ki:kai; 7\.227\4; | =
i=1 i=1

A (1)

A. Ya. Khinchin limit theorem [1] for random time
intervals between groups of events in a non-ordinary flow
is preserved and the form of the time intervals exponential
distribution is preserved too, but with the parameter A :

fty=re™, t>0. 2)

At the same time, to fulfill equality (A=1) it is
necessary and sufficient to have a, =1. In this case, the
flow of events becomes the simplest. For all other (non-
ordinary) stationary flows without an aftereffect, the
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intensity of the flow is always greater than its parameter
(I>n).

2 REVIEW OF THE LITERATURE

The model developed to describe one system or
process often become relevant in other areas. Thus, in
1909, A. K. Erlang [4] developed a model for calculating
the part of calls that can be served at a telephone station.

The work process at the telephone station included the
receipt and service of applications from subscribers to
switch communication channels with other subscribers.
After the end of the call, the channel was released and
could be used to service the next request. The application
that arrived at the telephone station at the time when all
channels were busy received a denial of service. The
moments of applications receipt and the end of their
service were random.

The Erlang-developed model of the requests mass
service system at the telephone station turned out to be a
universal tool for describing the processes of service in
different systems and in different fields of human activity.
Each of these areas and systems has its own peculiarities,
which led to the development of more complex models
and to the appearance of an independent scientific
direction — the queuing theory.

Currently, queuing system models are being actively
used for analysis, for predicting efficiency and for
optimizing decisions made in various areas. These include
the following areas: telecommunication networks [5, 6, 7,
8, 9, 10], socio-economic systems [11, 12], production
systems [13, 14, 15, 16] and logistic systems [17, 18, 19],
computing systems [20, 21], traffic management systems
[22, 23, 24, 25] and others.

An interesting direction in the theory of queuing
systems is the construction of models with an infinite
number of devices, since it is these models that make it
possible to describe complex technical systems for which
the number of devices can be relatively large. For
example, L. Brown, N. Gans, A. Mandelbaum, and A.
Sakov [5] use such systems to simulate a call center in
which agents provide telephone services almost no
refusals. In such a company, customer service should start
immediately. Therefore, the number of working operators
should be large enough and should be monitored using the
appropriate model.

Infinitely linear systems are also used as an
approximation for multiline systems in cases where the
probability of denial to service is negligible [26, 27, 28,
29, 30, 31].

At the initial stage, most studies of the queuing theory
were performed under the assumption that the incoming
flow of requests is the simplest [32, 33].

However, the development of computer and mobile
systems has led to the need to create new mathematical
models of requirements flows at the system input, which
are not Poisson or non-ordinary flows. This was the
reason for the increased interest in the study of systems
with more complex incoming flows. Systems with non-
Poisson flows were studied by such authors as G. P.
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Klimov [34], G. Sh. Tsitsiashvili [35], P. P. Bocharov,
A. V. Pechinkin [36], A. N. Moiseev and A. A. Nazarov,
[37], S. P. Moiseeva [38], E. A. Doorn and A. A. Jages
[39], V. F. Matveev, V. G. Ushakov [40] and others.

So, in the book of Matveev V. F. and Ushakov V. G.
[40] was obtained generating function of the requirements
number in the system for which the incoming flow is a
superposition of independent flows with the same number
of requirements in packs. For non-Poisson input flows in
a system with an unlimited number of service channels
E. A. Doorn and A. A. Jagers [39] obtained estimates of
the variance for the number of busy servers.

Another important direction in the development of the
queuing theory is the study of the systems operation in the
conditions of the incoming flow, which includes groups
of requirements with previously unknown composition.
Thus, groups of motorcade cars can arrive at a gas station,
visitors can arrive at a roadside restaurant in groups at the
time of vehicles arrival, and the customers flow to the
hotel includes both single customers and groups of several
people, families for example. Such a flow is called non-
ordinary.

A description of queuing system models with non-
ordinary input flow can be found in works of A. A.
Shakhbazov [41], Jung-Shyr Wu and Jyh-Yeong Wang
[42], N. O. Kutselay and S. V. Safonov [43], O. Yu.
Bogoyavlenskaya [44], V. B. Monsik, A. A. Skrynnikov,
and A. U. Fedotov, in works of A. V. Pechinkin [45] and
A. G. Tatashev, M. Akhilgova, S. A. Shchebunyaev.

In the general case, the probabilities of states in
queuing systems M /M/n/m with a non-ordinary input
flow of requirements are described by Kolmogorov
differential equations.

In the stationary state of the queuing system, these
equations are transformed into a linearly dependent
system of algebraic equations. The final probabilities of
the queuing system states can be found by numerically
solving the system of algebraic equations using the
methods well known in linear algebra [2] — complete
exclusion, inverse matrix, Kramer determinants. It should
be noted that in this case the determinant of the algebraic
equations system is always zero. Therefore, it is
impossible to apply the Kramer determinant method
directly.

One of the variants of the noted system algebraic
equations numerical solution is the well-known matrix
geometric method of Ramaswami [46]. This method is
characterized as a method for the analysis of quasi-birth-
death processes, continuous-time Markov chain whose
transition rate matrix has a repetitive block structure. In
this method, the final probabilities of the queuing system
states are found using numerical calculations of the
elements of the Neut’s rate matrix [46].

Analytical description of models is sometimes
possible to find for some performance indicators, as a
rule, for single-channel systems (N. O. Kutselay and S. V.
Safonov [43], O. Yu. Bogoyavlenskaya [44) with a
specific composition of requirements in input flow groups
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(V. B. Monsik, A. A. Skrynnikov, A. U. Fedotov and A.
V. Pechinkin [45]).

The search for regularities that could provide an
analytical description of the final probabilities in the
general case of a queuing system with a non-ordinary
input flow of requirements were engaged in A. A.
Shakhbazov [41], Jung-Shyr Wu and Jyh-Yeong Wang
[42]. In all the studies noted, it was concluded that the
final probabilities sought could ultimately be found only
by numerical methods for a specific flow structure.

But the goal of queuing systems describing, as a rule,
is the development of control tools for their operation
based on predicting their efficiency when the parameters
of the system and/or the parameters of input flow
requirements change.

In this case, the number of different variants of
systems of algebraic equations, requiring a numerical
solution, can be estimated at 10°—10° and more, which
makes it difficult to write down so many different systems
of equations itself, and also raises doubts about the
possibility of their timely numerical solution and the
choice of a values rational set of control parameters for
service system.

The solution to the control problem can be in the
search for an analytical description of the QS models for
the most general conditions under which both single
requirements and their groups can appear in the input
flow.

The most complete analytical description of such QS
was obtained in [3] for three types of Markov
multichannel queuing systems: with refusals, with a
limited and with an unlimited number of waiting places
under the conditions of an input flow with a random
composition of requirements groups and individual
service of each requirement in the group.

At the same time, the models of queuing systems with
input flow of requirements groups and with leaving
requirements from queue, which are the most close to real
service systems, did not receive their description in this
work.

As a result, the relevance of the problem of analytical
description for the state’s final probabilities and
performance indicators of queuing system with a non-
ordinary input flow of requirements and with the leaving
of single requirements from the queue becomes obvious,
which also makes the topic of the article — relevant.

3 MATERIALS AND METHODS

In order to demonstrate the logic of obtaining an
analytical description of the final probabilities, let us
consider a relatively easily visible example for the
M,/M/n/m system (Fig. 1) with waiting, with individual
service for each requirement and with individual
requirements leaving the queue.

At the entrance of the My/M/3/4 queuing system with
waiting and leaving of individual requirements from the
queue, a non-ordinary flow is coming. It consists of two
(L=2) partial flows with parameters A;=2Aa; and
Ay = Aay.
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Figure 1 — The model Graph of queuing system M,/M/3/4 with waiting and leaving of individual requirements from the queue

Let’s call a group of requirements as a request and
define expressions for the coefficients (p;, i = 0; 1) of the
system load by a part of the entrance flow of requests and
for the coefficient V as follows:

A +A A
N WL 2; pl:_2§ V:E_ (3)
[ n H

Po

The model graph (Fig. 1) is described by the system of
linearly independent Kolmogorov differential equations
for state probabilities P, 0<k<3 and p;,, 1<y<4,
where (P =0):

Pk (1) ==k + K pe (1) + A Py () +
+h P2+ (K+Dupgyi(t), k=0,...,2;
P3ay (O == +3u+1B) P34y () + 4)
A P3sy1 (D) + A3y (D) +
+[3p+ (v +DBIP3 4y 41 (1;

For the stationary mode of the queuing system
operation, equations (4) will take the form:

v=0,..,4;

(k+Dupgyr = +kw)pg A1 Px-1 —

—X2Pk-2, k=0,..,2;

Bu+ (v +DBIPnys1 =(A+3p+

+YP)P3ry —A1P3yo1 —A2P3iy—2; ¥ =0, 4
Then let’s perform a sequential summation of the left

and right sides of the equations in the system (5) for the
steady state conditions:

k k

D (i +Dupiyy =2 [(A+iw)p; —

i=0 i=0

=AM Piz1 — A2 P2 ], k=0,..,2;
2 3+y

Y+ DUy + 2 PBu+ DBy =
i=0 i=1

2 (6)
=Y [(A+iw)pi APy —AoPip ]+
i-0

¥
2 O +3p+iB)p3i -
i=0

=X 1P34ic1 — A2 P3ti2ls y=0,..,4
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From formulas (6) we can get:

Kupg =APk—1 +A2Pk—2, k=1,..,3; (7

[Bu+1vB] P34y = A P34y-1t
+AoP3ay—2,¥=L. 4

®
Using the notations (3) for the conditions of the steady
state, from formulas (7) and (8) we can find:

Kpk =PoPk-1 +P1Pk-2> k=135 ©)

(3+W)P34y =P0 P34y)-1 T

Y d (10)

TP1PB+y)-25

For further reasoning, we recall the well-known
Erlang formulas [4] for the queuing system M/M/n with
refusals:

k
Pk :p—po, k=1,...,n;

0 11

|
p=—.
n

And then let’s choose the form of analytical
expressions for the final probabilities of the queuing
system states, taking into account the need to localize the
non-ordinary properties of the input request flow in a
separate multicomponent function fi and f;,:

k
pk:%pofk, k=0,..,n; (12)
n v
p p
pn+’Y:T(:y—Op0fn+y>’Y:15"'»m (13)
TTn+iv)
=1

Substituting (12) into (9) and (13) into (10), we find:

fio = fio + fea P k=ik =1,...n;n=3;
Po

(14)
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1:n-H{ = fn+y—1 + 1:n+y—2 P_;X
PO (15)
x[N+(y=1v]; n=3;vy=1,...,4.

For the convenience of writing the general case of the
non-ordinary functions expressions, we note that the sum
of elements whose lower boundary is greater than the
upper one, do not contain any element, therefore it is
equal to zero. Elements with a negative index in this case
have no physical meaning therefore they are also equal to
Zero.

Now let’s consider the general case of a M /M/n/m
queuing system with an input flow of requirements
groups and with the leaving of individual requirements
from the queue.

In this case, the input of the queuing system receives a
flow of requirements groups, which consists of L partial

flows with parameters A;j=2Ag;, i=1,..., L. Then
expressions (3) take the form:
1 & .
pj =— ZXJ-,I:O,...,L. (16)
Hoj=t+i

For the general case of QS M /M/n/m with single
“impatient” requirements leaving the queue, expressions
(14) and (15) take the form:

K o
fio = fuor + 2| fiei

X
i=2 Po
- 17)
I_
[Tk=D|; k=
j=1
n
Pnk N
frn= 20 S s (18)
k=0 K!
-l n
Pry—k—
fray =[T(N+iv) ¥ n:y,kl fi +
i=1 k=0 k!
1 (19)
-
+ Py Il farj |, v=2..m
=1 o H(n+|v)

One can make sure that for the considered example
(Fig. 1) with the conditionspj =0, i>1; n=3, m=4
expressions (17), (18) and (19) are transformed into
expressions (14) and (15), respectively.

To determine the value of the first non-ordinary
function ( f(), we substitute the value k=0 in formula

(12) and then we can get:
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Po="Po-fo. (20)

From equation (20) follows the equality fq=1. The
value of the non-ordinary function ( f;) can be found

from formula (14) or from (17). Ifk =1, then we get:

fi="f_+0=",. (21)
Thus, the numerical values of the first two non-
ordinary functions become known:
fo="1=1. (22)

To find the zero state probability p, of the QS, we use

the condition of normalizing the probabilities.
Substituting there formulas (12) and (13), we obtain:

n+m

Zpk_l —>Z—Pofk+

nom 23)
p p (
+n_0' Po Z Y 0 fn+y =1
- T iv)

Then we take out the common factor p, outside the
brackets and find its value:

@24

zp() f p()' z n+y
= 11_[(n+|v)

i=1

To verify the correctness of the solution obtained,
we’ll find the value of non-ordinary functions f| for the

case of non-ordinary input flow of requirements
degeneration into the simplest flowa; =1; a; =0, i>1.

In this case, the parameters of the partial flow of requests
for service immediately two or more requirements are
equal to zero (Aj=Aa;=0,i>1). Then from formulas

(1) and (16) it followspy =p; pj =0;i>0.

If we substitute the obtained values p; into formulas
(17) and (19), taking into account the equality
fo=f; =1, we can see that the second term in formula

(17) vanishes and the first part of non-ordinary functions
becomes equal to one:
fk=fa =1

k=1,..,n. (25)
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In formula (19), the first term in the square bracket
becomes equal to zero. The rest of the terms are nonzero
only for the condition j=py—1, under which p, ;-
1=po#0:

-1

fpy = H(n+nv)()Jr——TﬂL—lfw_1 : (26)
=1 po - [J(n+iv)
i=1
From (26) follows the equality:
fray = fapy1 =L y=L.m Q27)

As a result, expressions (13) and (24) for the final
probabilities of the M /M/n/m queuing system with the
leaving of requirements from the queue are transformed
into well-known formulas for the same system M/M/n/m
but with the simplest input flow of requirements:

k
_p _ )
pk - k' pO’ k—O,...,n,
. (8)
=—— =1L..m;p=—
er—y n! ny pO’y 5 e MO P H,
n .k nm_.y !
po=| Y P+ S E (29)
k:()k- n y*lny

This result testifies in favor of the research correctness
and the expressions obtained for the non-ordinary
functions (17), (19) and final probabilities (12), (13) and
(24) for the M;/M/n/m system with a non-ordinary input
flow, with the waiting and leaving of individual
"impatient" requirements from the queue.

The obtained description (12), (13), (16)—(19) of a
queuing system is a general case for well-known Markov
queuing systems with a non-ordinary input flow of
requests and without leaving the queue My /M/n/m and
for a queuing system with refusals My /M/n [3], as well as
for the QS with the simplest input flow of requirements
and leaving the queue M/M/n/m, for the QS without
leaving the queue M/M/n/m and for the QS M/M/n with
refusals.

To verify this statement, let us consider a variant of
the description (12), (13), (16)—(19) transition into the
description of a queuing system with waiting My /M/n/m
and without leaving the queue.

In the queuing system Mp/M/n/m with waiting, the
leaving of requirements from the queue is not provided.

Therefore, in formulas (3), (13), (19), and (24) of the
queuing system M /M/n/m model with waiting and with
the leaving of “impatient” requirements from the queue,
the value B and the coefficient v are equal to zero:
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p=0; v=0. (30)
The formulas for the load factors of the system as a
part of the input flow of requirements (16), for the non-
ordinary functions f, (17) and for the probabilities py (12)
remain unchanged. The analytical description of the final
probabilities for the states in the M /M/n/m QS with the
presence of requirements in the queue takes the form:

PO Po
Prey =202 o sy, 7 =1 (1)
21l & Pngy—k-1-N! opyja
fn+y=nY L;) pnzy Kkl fk+§py i o n+] > (32)
nm y N
zpof Po' 3 (P_OJ foy (33)
tigfln

The analytical description for the final probabilities of
the M /M/n queuing system with refusals, with individual
servicing of each requirement and with the flow of
requirements groups at the system input includes formulas
(12), (16), (17), and (22), as well as the formula (24),
which in this case will have the following form:

(34)

Subsequent transformations of expressions (31) — (34)
for the types of queuing systems mentioned above are
given in [3].

4 EXPERIMENTS

To evaluate the performance of a queuing system with
the input flow of requirements groups and with the
waiting and leaving of individual “impatient”
requirements from the queue, sometimes the input flow is
replaced with the simplest flow and is used the M/M/n/m
model.

To check the admissibility of such a replacement, we
will use the known example [3], in which we change the
number of service devices and waiting places, and also
take into account the possibility of “impatient”
requirements leaving the queue. The graph of the marked
model is presented in Fig. 2.

The parameters of the considered QS model
M;/M/n/m are presented in Table 1 (items 1-9) and turn
out to be equal: I=2 [requirements/minute]; N=4; m=3;
B=025;L=8;a=1/L, i=1,..,L; p=1[minute'];
pj=0,fori>7.

In such a system, the total performance of service
devices is bigger than the intensity of the input
requirements flow. Then, in the case of deterministic
input flow, all requirements must be served.
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Figure 2 — The model graph of queuing system Mg /M/4/3 with the waiting and leaving of individual “impatient” requirements from
the queue

Table 1 — Evaluation of the influence of requirements groups in the input flow on the state’s probabilities
in the queuing systems with leaving of requirements from the queue (see Fig. 3)

Model M /M/n/m (names and values of model parameters) Model M/M/n/m

Name | Value | # | Name | Value | # | Name

Value | # |Name | Value| # |Name | Value

n 1 M[i]| 4521 £,

1]31 p2 0.119]41 Po 0.133

12| p=I/u 2]22] ¢

1132 ps 0.086]42| p 0.266

po 0444123 f,

2.969 33| ps 0.064143| p2 0.266

14| p: [0389]24]| f5

14534 ps |0.057]44] p; 0477

[o<H I SR VSE U} NN
[
W

15] p, [0333]25] 1,

9753135 p, |0.049[45] p. [0.089

m
p
|
L
A

0.444116| ps | 0.278]26| fs

825.4(36| ps 0.040]146| ps 0.042

ai (025|117 ps [0222]27] f

7168 |37 Mya | 0933147 ps 0.019

O (o |Q| || [w || —|3H

Ai | 0.194 18| ps [0.167[28| f; [63004]38 A 0.933148| ps 0.008
B 025|19| pe [0.111]29] Py | 0.405|39|Lqueue | 0.275|49 | Lqueue | 0.102
10| v 025|120 p; [0.056[{30] P, [ 0.180]40| Pservor | 0.466 |50 | Pservir | 0.843

The law of states’ probability distribution in a queuing
system allows finding the calculation formulas for the
following characteristics: the mathematical expectation of
the busy devices number; the mathematical expectation of
the requirements number in groups; absolute system
capacity; service probability; queue length in the queuing
system and for service refusal probability:

n L
Mpg = D k-py; M[i1=Di-a;;
k=1 i=1

A=—lr: Aj=h-a;, i=1..,L;

(35)

A
A=p-Myg; Pservice :T;

m (36)
I:)refusal =1- F)service§ I-queue = ZY' pn+y-
y=1

5 RESULTS
For the considered version of the queuing system
model, the non-ordinary functions (17)-(19) will take the
specific form for states without queue (37) and for states
with a queue (38)—(40):
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fo = fl =1, f2 = f1+ fo%(z—l),
Po

f3=f2+f1p—§2+f0p—32,2'1; . (37)
Po Po
fy=fi+ 2034 £P23.04 ¢ P30
Po Po Po
fs=24P4 1 0aP3 5 1 10P2 5, L aPlg L g5 (39
PO Po Po PG 3%)
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The indicators (35), (36) and probabilities of the
model states (Fig. 2) in the steady state are described by
the formulas (1), (12), (3), (13), (16), (17), (18), (19), (21)
and (24).

Let us use the noted formulas and estimate the
probabilities (Px, Pn+y) of the system states and the
probability of servicing requirements in queuing systems
with leaving the queue of individual requirements, with
the same number of servicing devices and waiting places,
with the same intensity of the incoming flow of
requirements but no requirement groups.

In the first case, a flow of requirements groups arrives
at the input of the system, and in the second case, the
input flow of requirements is the simplest and includes
only single requirements. The calculation results are
presented in table 1 and in the Fig. 3.

P
0,5

0,4
0,3
0,2
0,1

0,0 |

Figure 3 — Final probabilities p of the states in the same
queuing systems with leaving individual requirements from the
queue and with the same intensity:

a) QS without any groups of requirements in the input flow
(model M/M/4/3);

b) QS with groups of requirements in the composition of the real
input flow

Quantitative estimates (see Table 1, Fig. 3) lead to the
following conclusion.

6 DISCUSSION

In a number of cases, the main indicator of the
queuing system efficiency is the probability of servicing
requirements, on which other indicators depend.
Therefore, we will consider the numerical values of this
indicator for the compared queuing systems.

The appearance of groups in the input flow of
requirements changes the probability distribution of the
considered systems states (Table 1 items 41-48, items
29-39, and Fig. 3) and leads to a decrease in the
probability of service (Table 1 item 40) by about 44%
compared to the probability service in the model with the
simplest input flow of requirements (Table 1, item 50).

A decrease in the probability of service, as the main
indicator of efficiency, can be significant for the results of
the system’s operation and requires a quantitative forecast
for timely action in managing of the system operation.

The influence of the requirements groups composition
on the change in the final probabilities is concentrated in
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the multiplicative non-ordinary functions (17), (19)
(Table 1 items 21-28), which each time reflect the
magnitude of the transformation of the system specific
states probabilities with a group input flow in comparison
with the same system, but with the simplest input flow of
requirements, and may have an order value 10*-10°.

The considered features determine the need to take
into account the composition of the groups in the input
flow of requirements when conducting assessments and
when managing the corresponding queuing systems.

CONCLUSIONS

In the course of the research, the analytical expressions
for the final probabilities of states in the Mp/M/n/m
queuing system with an input flow of requirements groups,
with individual service of requirements and with leaving of
“impatient” requirements from the queue were obtained for
the first time.

The influence of the requirements groups composition
on the change in the final probabilities of queuing system
is concentrated in the multiplicative non-ordinary
functions (17), (19), which each time reflect the
magnitude of the transformation of the system specific
states probabilities and can have a value of the order of
10*-10°.

An analytical description of the final probabilities and
performance indicators allows the use of calculation
automation tools, for example Microsoft Excel, to obtain
the results of estimates almost instantly and to select the
values of the parameters for controlling the operation of
the service system in real time.

The scientific novelty of the results obtained lies in
the creation of possibilities for predicting the
effectiveness of QS My /M/n/m with leaving of
“impatient” requirements from the queue and of known
types of Markov queuing systems with an input flow of
requirements groups, with individual service for each
requirement and with a random number of requirements
in groups.

The obtained description (12), (13), (16)—(19) of a
queuing system is a general case for other well-known
types of Markov queuing systems with a non-ordinary
input flow of requests and without leaving the queue
M, /M/n/m and for a queuing system with refusals
M. /M/n [3], as well as for the QS with the simplest input
flow of requirements and leaving the queue M/M/n/m, for
the QS without leaving the queue M/M/n/m and for the
QS with refusals M/M/n.

At the same time, the well-known Markov service
models for the simplest flow of requirements turned out to
be a special case of the considered models with an input
flow of requirements groups. In the new formulas, all the
features of requirements groups servicing are localized in
recurrent expressions for the non-ordinary functions,
which makes it easier to perform calculations in real time.

The practical significance of the results obtained lies
in creating conditions for the directed solution of
problems of analysis, synthesis and control of Markov
queuing systems in the general case of a requirements
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groups input flow with a random number of requirements ~ 13.

in groups. The formulas obtained for calculating the
values of the non-ordinary functions are recurrent and
convenient for practical calculations. The numerical
values of these functions clearly show the deformation of
the final states probabilities in queuing systems with an
input flow of requirements groups compared to known
queuing systems with the simplest input flow of
requirements.

Prospects for further research may include the

construction of queuing systems models with incomplete 13-

availability of servicing device. Each of the systems under
consideration is an actual model of real systems in
economics, medicine, modern communication systems
and in other areas. 16
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AHAJITUYHUA ONUC ®IHAJIBHUX HMOBIPHOCTEM CTAHIB B CHCTEMI MACOBOI'O
OBCJYTOBYBAHHJI 3 BXITHAUM IIOTOKOM I'PYII BUMOT', 3 OUIKYBAHHSIM
I BIIXOJAO0M 3 YEPTH
Toponnoe B. II. — 1-p B. Hayk, npodecop, npodecop HamionansHoi akanemii Hamionaneroi reapaii Ykpainu, XapkiB, YkpaiHa.
Kupuienko B. A. — 1-p B. Hayk, npodecop, npodecop HarionansHoi akanemii Jlep:kaBHOI HPHUKOPAOHHOI Ciy)0u YKpaiHu,
XMenbHULBKUHN, YKpaiHa.
Pemnino YO. E. — 1-p B. Hayk, npodecop, npodpecop HanionansHoro yHiBepcutery o6oponu Ykpainu, Kuis, Ykpaina.

AHOTAULIA

AKTyaJbHicTh 3aBOaHHS NPOTHO3YBaHHS €(EKTHBHOCTI pEabHUX CHUCTEM MAacOBOTO OOCIyrOBYBaHHS B pa3i MOXKIHBOTO
HaJIXO/DKEHHS TPYI BHUMOT 1 BIIXOJY «HETEPIUITYMX» 3asBOK 3 4epru. MeToro IOCII/DKEHHS OyJI0 MOJCIIOBAHHS POOOTH TaKHX
CHCTEM JUIsl CTBOPEHHS MOXIIBOCTEH KOHTPOJTIO iX pOOOTH B PeXKHMIi PEaIbHOTO 4acy.

Mertoa. MMOBIpHOCTI CTaHiB cHCTeM MacOBOrO OOCIyroBYBaHHS 3 BXiJHHM IIOTOKOM IPYI BMMOT 3 BHIIAJKOBHM CKIAIOM i 3
BI/IXOJIOM «HETEpPIUITYMX» BHMOT 3 YeprH OIHCYIOThcs TudepeHiaasHuMy piBHSIHEAME Kosimoroposa. ¥V cranioHapHOMy cTaHi 1ii
PIBHSIHHSI NEPETBOPIOIOTHCS B JIHIHHO 3aJIe)KHY OMHOPIAHY CHCTeMy anreOpaidHux piBHsHb. CTPYKTypa pPIBHSIHB 3aJICKHUTh Bil
YHCIIOBUX 3HAYEHb IapaMEeTPiB IPYH BUMOI' BXiHOI'O MOTOKY i KEPOBaHOI CHCTEMM OOCIyroByBaHHA. ToMy crpo0®a NpOrHO3yBaTH
e(EeKTUBHICTb CHCTEMH CTHKA€THCA 3 HEOOXINHICTIO HAMMCATH 1 YHCENBHO BHPIIIUTH PaxXyHKOBY O€3lid cHCTeM airedpaiuHmx
PiBHSHB, 110 JOCUTH CKIaAHO. KITFOUOBOIO i/1€€r0 3aIIpOOHOBAHOTO METOY HOIIYKY aHAJITHYHOTO OMUCY (iHAJTBHUX HMOBIpHOCTEH
JUISL 3ra/IaHO] CHCTEMH MacoBOT'0 0OCITyrOBYBaHHS OyJIO IparHEeHHs JIOKaIi3yBaTH BIUIMB TPYIl BUMOT y BXiJHOMY IOTOIi Ha poOOTy
CHCTEMH MacOBOTO OOCIyroByBaHHS B MYJBTHIUTIIKATUBHUX (YHKIiAX HeopauHapHOCTi. Taki (yHKIII 103BOISIOTH OTPUMATH
HEOOXiHUI aHAJITUYHMIT OIMC 1 OL[IHUTHU CTYMIiHb TpaHchopManil GpiHAIBHNX HMOBIPHOCTEH B NOPIBHSHHI 3 BIJOMHMH CUCTEMaMH,
a TaKoX OILIHUTH IPOTHO3HI 3HAYCHHS BIIOMHMX ITOKAa3HHKIB €(EKTUBHOCTI CHCTEMH MAacOBOTO OOCIyroBYBaHHS INpH BHOODI
napaMmeTpiB ympasiiHHs ii po6oToro.

Pe3yabTaTi. Briepiie oTpiMano aHamiTHYHI BUpa3u st GiHAIBHUX HMOBIpPHOCTEH CTaHIB CHCTEMH MacOBOTO OOCIYrOBYBaHHS
3 BXITHAM TIOTOKOM TPYH BHMOT BHIAIKOBOTO CKJIady, 3 OOMEKECHOI KIUIBKICTIO MiCIb OYIKyBaHHS, 3 1HAWBIZyaJbHHM
00CITyrOBYBaHHSM 1 BiZIXOJJOM «HETEPIUITINX» BUMOT 3 YEPI'H, IO Aa€ MOKJIMBICTD OLIHUTHU BC1 BiJOMI MMOKa3HUKK POOOTH CHCTEMH

BucnoBkn. OTpuMaHUil ONKNC BHSBUBCS 3arajbHHM BHIIAJKOM [UIS BiJOMHX THIIB MAapKOBCKHX CHCTEM MAacOBOTO
00CITyroByBaHHS 3 HEOpAWHAPHUM 1 HAHIPOCTIIINM BXIJHHM ITOTOKOM BHUMOT. Pe3ysibTaTh YHCEIBHOTO €KCIepUMEHTY CBIYaTh Ha
KOPHCTh KOPEKTHOCTI OTPHUMAHMX aHAIITHYHUX BHPA3iB Ul (iHAIBHUX HMOBIPHOCTEH 1 HA KOPUCTh MOXIIMBOCTI iX IPAKTHYHOTO
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3aCTOCYBAaHHS B PEallbHUX CHCTEMaxX MacoBOrO OOCIyrOBYBaHHs IPHM BHPIIICHHI 3aBJlaHb NPOTHO3YBaHHA €PEKTUBHOCTI, a TAKOX
aHaJIi3y 1 CHHTE3y IHapaMeTpiB. peaJbHUX CHCTEM MacOBOT'O OOCITYTOBYBaHHS.
KJIFOYOBI CJIOBA: MapKOBCKHE MOJENi, CHCTEMH MacoOBOTO 0OCITyTOBYBaHHS, TPYIIH BUMOT, BiJIXi[] 3 YEPTH.

YK 519.872
AHAJIMTUYECKOE OITUCAHUE ®UHAJIBHBIX BEPOSATHOCTE COCTOSIHUI B CUCTEME
MACCOBOI'O OBCJIYKUBAHUSA C BXOAHBIM IIOTOKOM I'PYIIII TPEBOBAHUU,
C O)KUJAHHUEM U YXO/JOM U3 OYEPEIHN

I'opoagnos B. Il. — n-p B. Hayk, npodeccop, npodeccop HaiponanpHoit akamemun HarupoHanbHOW rBapAuH YKpauHBI,
XapbKoB, YKpauHa.

Kupunenxo B. A. — 1-p B. Hayk, npodeccop, npodeccop Haunonansroit akagemuu ['ocyjapcTBEHHOH MOTPaHUYHON CITYKOBI
Vkpaunbl, XMEIbHULKUNA, YKpanHa.

Penmo YO. E. — 1-p B. Hayk, npodeccop, mpodeccop Harmonansaoro yausepcurera 060poHs! Ykpaunsl, Kies, YkpanHa.

AHHOTAIUA

AKTyaJIbHOCTD. 33/1a9a IPOTHO3HPOBAHUS (P (PEKTHBHOCTH PEaTbHBIX CHCTEM MacCOBOTO OOCITyKHMBaHUS B CIIydae BO3ZMOXKHOTO
NOCTYIUICHHSI TPYNIT TpeOOBaHMI M yXO0Ja «HETEpIIeNMBBIX» 3asBOK U3 ouepenu. Llenpro umccienoBaHust ObLIO MOJSIHPOBAHHUE
pabOThI TAKUX CUCTEM IS CO3aHMsI BOBMOXKHOCTEH KOHTPOJISI HX PAOOTHI B PeXKUME PeabHOTO BPEMEHH.

Metoa. BeposTHOCTH COCTOSIHMI CHCTEM MaccoBOrO OOCITYXKMBAaHUS C BXOIHBIM IIOTOKOM Tpymil TpeOoBaHUil CO CiyyalHBIM
COCTaBOM M C yXOJIOM «HETEpIIeIMBBIX» TpeOOBaHUN U3 O4epey ONMChIBatoTCa AuddepeHnnanbHbIMK yYpaBHeHAMH Kosmoroposa.
B cramuoHapHOM COCTOSHHM 3TH YpaBHEHHS NHpeoOpasyloTcs B JMHEWHO 3aBHCHMYIO OXHOPOJHYIO CHCTEMY aireOpamdecKux
ypaBHeHH#. CTpyKTypa ypaBHEHHI 3aBHCHT OT YHCJIOBBIX 3HAUCHMI MapaMeTpoB Tpymm TpeOOBaHWN BXOJHOTO IOTOKA M
YIpaBIsieMOH cHcTeMBl oOchmyXuBaHUs. IlosTOMy IOIBITKa IPOTHO3MPOBAaTh J(P(HEKTUBHOCTH CHCTEMBI CTAIKHBACTCS C
HEOOXOJIMMOCTBIO HalMcaTh M YHCIEHHO PEHINTh CUETHOE MHOXKECTBO CHCTEM anreOpandecKuX YpaBHEHHH, YTO JJOCTATOYHO
cioxHo. KittoueBoii nieeli npeyio)keHHOr0 METO/1a MONCKA aHAIUTUYECKOTO ONMUCAHMS (PUHATIBHBIX BEPOSTHOCTEH Ul YIOMSHYTOI
CHCTEMBI MacCOBOT'0 OOCITY)KMBaHUsI ObUIO CTpEeMJICHHE JIOKAIN30BaTh BIMSHHUE IPYII TPeOOBaHUA BO BXOJHOM IMOTOKE Ha paboTy
CHCTEMBI MAacCOBOTO OOCITy>KHBaHMS B MYJbTHUIUIMKATUBHBIX (YHKLHUSIX HeOpAMHApHOCTU. Takue (QYHKIMU MO3BOJIAIOT MONYYHUThH
HEeoOXOMMOE aHAJIMTHYECKOE ONHCAaHWE M OLIEHUTh CTEHEHb TpaHc(hopMauuu (GUHAIBHBIX BEPOATHOCTEH II0 CPABHEHHIO C
M3BECTHBIMU CHCTEMAMH, a TaK)K€ OLEHUTH MPOTHO3HBIE 3HAYECHHS M3BECTHBIX MOKa3aTened 3(p(EeKTUBHOCTH CHCTEMBI MacCOBOTO
00CITy>)KUBaHUS MIPH BEIOOPE MapaMEeTPOB yIPABICHUS ee paboToil.

Pe3yabTaThl. BriepBrie noydeHs! aHAINTHYECKHUE BBIPKEHUS TSI (PUHATBHBIX BEPOSITHOCTEH COCTOSHUM CHCTEMBI MAacCOBOTO
00CITy>)KUBaHHS C BXOIHBIM IIOTOKOM TPYHII TPeOOBaHUH CIIly4alfHOTO COCTaBa, C OTPaHMYEHHBIM KOJIHYECTBOM MECT OXKHIAHWUSA, C
HHJIMBUIYaJIbHBIM OOCIY)KUBaHHUEM M yXOJOM «HETEepIEIUBBIX» TPeOOBaHMI M3 O4Yepeau, YTO JaeT BO3MOXKHOCTh OLIGHHTH BCE
W3BECTHBIE IT0Ka3aTeNN paboThl CHCTEMBI.

BriBoabl. [lonyueHHoe ommcaHue OKas3ajoch OOIMM CiIydaeM /Ui M3BECTHBIX THIIOB MAapKOBCKMX CHCTEM MacCOBOTO
o0CTy>XUBaHHA C HEOPJWHAPHBIM M IPOCTEHINNM BXOJHBIM IOTOKOM TpeOoBaHMil. Pe3ynbTaTel YMCIEHHOTO 3KCIEPHMEHTa
CBHJICTENILCTBYIOT B I0JIb3Y KOPPEKTHOCTH IOJTYYEHHBIX QHAIMTHYECKUX BBIPAXKEHMIT JUI (UHAIBHBIX BEPOSTHOCTEH M B HOJb3Y
BO3MOXKHOCTH HX IPAaKTHIECKOTO NPHMEHEHHS B pEalbHBIX CHCTEMAax MAacCOBOTO OOCTY)KHBAHHSA TPH PpEUICHHH 3agad
MIPOTHO3UPOBAHKA Y(P(HEKTUBHOCTH, a TAKXKE aHAIM3a M CHHTE3a TapaMeTPOB. PEaIbHBIX CHCTEM MacCOBOT0 OOCITYKUBAHUSL.

KJIFOUYEBBIE CJIOBA: MapKoBCKHE MOJIEIHN, CHCTEMBI MACCOBOTO OOCITYKHBaHWsI, TPYIIIBI TPeOOBaHUH, yXOJ] U3 OYCPE/IH.
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