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ABSTRACT

Context. We consider the Kolmogorov-Wiener filter for forecasting of telecommunication traffic in the framework of a continu-
ous fractional Gaussian noise model.

Objective. The aim of the work is to obtain the filter weight function as an approximate solution of the corresponding Wiener-
Hopf integral equation. Also the aim of the work is to show the convergence of the proposed method of solution of the corresponding
equation.

Method. The Wiener-Hopf integral equation for the filter weight function is a Fredholm integral equation of the first kind. We
use the truncated polynomial expansion method in order to obtain an approximate solution of the corresponding equation. A set of
Chebyshev polynomials of the first kind is used.

Results. We obtained approximate solutions for the Kolmogorov-Wiener filter weight function for forecasting of continuous
fractional Gaussian noise. The solutions are obtained in the approximations of different number of polynomials; the results are ob-
tained up to the nineteen-polynomial approximation. It is shown that the proposed method is convergent for the problem under con-
sideration, i.e. the accuracy of the coincidence of the left-hand and right-hand sides of the integral equation increases with the num-
ber of polynomials. Such convergence takes place due to the fact that the correlation function of continuous fractional Gaussian
noise, which is the kernel of the corresponding integral equation, is a positively-defined function.

Conclusions. The Kolmogorov-Wiener filter weight function for forecasting of continuous fractional Gaussian noise is obtained
as an approximate solution of the corresponding Fredholm integral equation of the first kind. The proposed truncated polynomial
expansion method is convergent for the problem under consideration. As is known, one of the simplest telecommunication traffic
models is the model of continuous fractional Gaussian noise, so the results of the paper may be useful for telecommunication traffic

forecast.

KEYWORDS: Kolmogorov-Wiener filter weight function, continuous fractional Gaussian noise, Chebyshev polynomials of the

first kind, telecommunication traffic forecast, method convergence.

NOMENCLATURE
T is the time interval along which the input data are
observed;
k 1is the time interval for which the forecast should be
made;
h(t) is the Kolmogorov-Wiener filter weight function;

H is the Hurst exponent;
S (¢) are the Chebyshev polynomials of the first kind

which are orthogonal on the time interval ¢ € (0,7) ;
R(t) correlation function of fractional Gaussian noise.

INTRODUCTION

The problem of telecommunication traffic forecast is a
topical problem of telecommunications. Traffic in tele-
communication systems with data burst transfer is a self-
similar process [1]. It should be stressed that self-similar
processes take place in a huge variety of different systems
(see, for example, [2]), and their forecast is investigated
not only for telecommunication traffic, but also for other
systems (see, for example, [3, 4]).

One of the simplest models of self-similar telecom-
munication traffic is the model where the traffic is con-
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sidered to be a fractional Gaussian noise [1]. In [5] it is
stressed that it is reasonable to consider traffic as a con-
tinuous random process because of a large amount of da-
ta. So, in a simple model the traffic can be treated as a
continuous fractional Gaussian noise.

Fractional Gaussian noise is a stationary random proc-
ess, so the Kolmogorov-Wiener filter may be used in or-
der to investigate the traffic forecast. This paper is de-
voted to the obtaining of the weight function of the corre-
sponding filter. In this paper we consider only the case
where the Hurst exponent H >0.5.

The weight function under consideration obeys a
Fredholm integral equation of the first kind [6]. We pro-
pose to use the truncated polynomial expansion method in
order to obtain an approximate solution of the correspond-
ing integral equation. The correlation function of frac-
tional Gaussian noise, which is the kernel of the consid-
ered integral equation, is a positively-defined function [7],
so the proposed method should be convergent.

The obtained results may be important for forecasting
of telecommunication self-similar traffic.

The object of study is the Kolmogorov-Wiener filter
for continuous fractional Gaussian noise.
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The subject of study is the weight function of the
corresponding filter.

The aim of the work is to obtain the corresponding
weight function as an approximate solution of the Fred-
holm integral equation of the first kind. Also the aim of
the work is to show the convergence of the truncated
polynomial expansion method for the problem under con-
sideration.

1 PROBLEM STATEMENT
As is known [6], the Kolmogorov-Wiener weight
function obeys the Wiener-Hopf integral equation

j‘d'ch(r)R(t—r)zR(t+k). (1)

The correlation function of continuous fractional Gaus-
sian noise for H > 0.5 is as follows [7]

R(f)=2H (2H-1)&"

2H-2
U

; 2)

where o is the process variance. After substitution of (2)
into (1) one can obtain

'[dth(‘t)|t—‘t|2H72 = (t+k)2H_2, 1(0,T), (3)

where the fact that £ >0, and obviously ¢t+k>0, is
used. The problem is to obtain the function %(t) as an
approximate solution of the integral equation (3).

2 REVIEW OF THE LITERATURE

As is known, traffic in telecommunication systems
with data burst transfer is a self-similar process, and one
of the simplest self-similar traffic models is the model of
fractional Gaussian noise [1]. Fractional Gaussian noise
is a stationary random process [7], so its forecast may be
obtained on the basis of the Kolmogorov-Wiener filter.
According to [5], the traffic is considered as a continuous
random process, which is reasonable in case of a large
amount of data.

In the case of a continuous process the Kolmogorov-
Wiener weight function obeys a Fredholm integral equa-
tion of the first kind [6]. An exact analytical solution of
such an equation meets difficulties, so we use the trun-
cated polynomial expansion method in order to obtain an
approximate solution of the corresponding equation.

In our previous papers [8—10] we investigated the cor-
responding method for the case of fractal processes with a
power-law structure function. In [8] we used polynomials
which are orthogonal on the time interval ¢ € (0,7) with-

out weight, and in [9, 10] we used the Chebyshev poly-
nomials of the first and second kind, respectively. It was
shown that the behavior of the method convergence is
identical for all the polynomial sets investigated in [8—
10], and the method is not necessarily convergent for frac-
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tal processes with a power-law structure function. The
reason is as follows. The method convergence is guaran-
teed [11] if the kernel of the corresponding integral equa-
tion is a positively-defined function. As can be seen from
eq. (1), the kernel of the integral equation under consid-
eration coincides with the correlation function of the ran-
dom process under consideration. The correlation func-
tion of a fractal random process with a power-law struc-
ture function is not a positively-defined function, so for
that case the method convergence is not guaranteed.

But, as is known [7], in the case where H > 0.5 the
correlation function of fractional Gaussian noise, in con-
trast to the correlation function of a process with a power-
law structure function, is a positively-defined function. So
the truncated polynomial expansion method should be
convergent for the problem under consideration. In this
paper a set of Chebyshev polynomials of the first kind is
used.

3 MATERIALS AND METHODS
In the framework of the truncated polynomial expan-
sion method [8—10] the function /%(t), which is the solu-

tion of the integral equation (3), is sought as a truncated
orthogonal polynomial series

W)=Y g"s, (x), (4)

m=0

where [ is the number of polynomials and g are coef-
ficients multiplying the polynomials. The function #(t)

in the form (4) is the solution in the /-polynomial ap-
proximation.

The polynomials S, (t)should be orthogonal on

1€ (0,7T) . In this paper this set is constructed on the basis

of the Chebyshev polynomials of the first kind. As is
known [12], the explicit expressions for the Chebyshev
polynomials of the first kind are

[m/2] :
T, (x)=2 G/ (¥ =1) 2 5)
j=0

where [y] is the integer part of y and

2 m!

As is shown in [9], the following orthogonality rela-
tion is valid:

2y T
1|7, | —=-1 =—A43, ,
j m(T jw(y)dy 2 n mn (7)
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2 \V2
B 2y 3 m,n=0;
W(y)_(l (T 1j ] > A _{Tc/2,n¢0, ®)

and
5 - 1,m=mn; 9
mn O,m¢n, ()

is the Kronecker delta. So, the polynomials
2t
S ()=T|=-1

are orthogonal on ¢ € (0,7) with the weight w(¢), and

(10)

they may be used in the expansion (4).
By substituting (4) into (3) one can obtain

2H-2 )ZH 2

-1 =(r+k

jdrs (11)

m= 0

and by multiplying both sides of (11) by S, (¢) and inte-
grating over ¢ one can obtain the following set of linear
algebraic equations

zgm mn = n 031_1’ (12)
m=0
where G, are the so-called integral brackets
L 2H-2
, = [ [atdss, (1), ()= (13)
00
and the coefficients B, are calculated as
f 2H-2
B, =[dxs, (t)(t+k)" (14)
0

the functions S, (¢) are taken from (10).

Let us discuss the properties of the integral brackets
(13). First of all, if we interchange the integration vari-
ables in (13), we obtain

TT
= [[atdzs, (1), ()= ={r >t} =
oToT (1 5)
= [[drds, (z)S, ()|e-"" =G,,.
00
so the integral brackets obey the property
G,, =G, (16)

Let us make the following change of the variables:
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27 2t
G =qx=—-lLy="-1;=

s [Zi2),

7
T 1 2H-2
S (y+ N|Tx Ty .
" 2 2 2
On the basis of (13) and (17) one can see that
T? ¢ Ix Ty 2=
G =—||dxdyT, (x)T — =
:{x—>—x,y—>—y}= (18)

2H-2

% ¢ ¢ Ix Ty
:TI I dxdyT, (—x)Tm (—y) S

-1-1

As can be seen from (5), the following property is

valid:
T, (-x),ni2;
= 1
2 (x) {—Tn (cx)n2. (19)
which leads to the fact that
T T =-T (-x)T. (-
()T, (v)=-T,(—x)T, (-»)., 0

if m,n are of different parity.
So on the basis of (20) and (18) it can be seen that

G,=-G,=>G, =0, 21
if m,n are of dlfferent parity. @

So the integral brackets obey the properties (16) and
(21). This fact significantly reduces the computing time,
because by a straightforward calculation one should cal-
culate G,, only for m>n where m, n are of the same
parity.

The algorithm of the weight function calculation is as
follows. First of all, one should calculate the integral
brackets G, and the coefficients B, (see (13) and (14)).

mn

Then the set of linear algebraic equations (12) for the co-
efficients g!!' should be solved. The approximate solution

of the integral equation (3) in the / -polynomial approxi-
mation is given by expression (4). In this paper the corre-
sponding numerical results are obtained with the help of
the Wolfram Mathematica package.

4 EXPERIMENTS
Of course, an interesting question is whether the pro-
posed method is convergent. The kernel of the integral
equation (3) is a positively-defined function, so the trun-
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cated polynomial expansion method should be convergent
for the problem under consideration.

In order to check the convergence of the method we
numerically compare the left-hand and the right-hand
sides of the integral equation (3) for different numbers of
polynomials. The integral on the left-hand side of eq. (3)
is numerically calculated with the help of the Wolfram
Mathematica as

.T[dth(r)|t—r|2H_2 = jdth(r)(f—r)ZH_z +
0 ) 0 (22)
+j dth(r)(r—t)wiz.

The numerical investigation is made for the set of pa-
rameters

=100, k=3, H=0.8. (23)

In what follows the comparison of the left-hand and

the right-hand sides of the integral equation (3) is illus-

trated by graphs where the dotted line illustrates the graph

for the left-hand side and the solid line illustrates the
right-hand side.

0 20 40 80 g0 00

Figure 1 — Comparison of the left-hand and right-hand sides of

eq. (3) for parameters (23) for the one-polynomial
approximation

=

0 20 40 80 80 o0

Figure 2 — Comparison of the left-hand and right-hand sides of

eq. (3) for parameters (23) for the three-polynomial
approximation
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As can be seen from Fig. 1 and Fig. 2, the approxima-
tions of a small number of polynomials are not accurate.

However, as can be seen from Fig. 1 — Fig. 7, the ac-
curacy of coincidence of the left-hand and the right-hand
sides of the integral equation (3) increases with the num-
ber of polynomials.

0 29 40 80 &0 100
Figure 3 — Comparison of the left-hand and right-hand sides of
eq. (3) for parameters (23) for the six-polynomial approximation

o = e e s e
Figure 4 — Comparison of the left-hand and right-hand sides of
eq. (3) for parameters (23) for the nine-polynomial
approximation

0 20 40 80 ED 00
Figure 5 — Comparison of the left-hand and right-hand sides of
eq. (3) for parameters (23) for the twelve-polynomial
approximation
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Figure 6 — Comparison of the left-hand and right-hand sides of

eq. (3) for parameters (24) for the fifteen-polynomial
approximation

0 20 40 B0 20 100

Figure 7 — Comparison of the left-hand and right-hand sides of
eq. (3) for parameters (24) for the nineteen-polynomial
approximation

So one can conclude that the proposed method of
truncated polynomial expansion is convergent for the
problem under consideration.

5 RESULTS

The Kolmogorov-Wiener filter weight function for
forecasting of fractional Gaussian noise is investigated as
an approximate solution of the corresponding integral
equation (3). The truncated polynomial expansion method
based on the Chebyshev polynomials of the first kind is
used.

The results are investigated up to the nineteen-
polynomial approximation. The approximations of higher-
than-nineteen polynomials are not investigated because
the Wolfram Mathematica package is not able to calculate
them adequately. It is shown that the method is conver-
gent, i.e. the accuracy of coincidence of the left-hand and
the right-hand sides of (3) increases with the number of
polynomials. However, it should be stressed that the ap-
proximations of small numbers of polynomials are not
accurate, and one should use the approximation of a rather
large number of polynomials.
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6 DISCUSSION

This paper is devoted to the investigation of the Kol-
mogorov-Wiener filter weight function for forecasting of
continuous fractional Gaussian noise. As is known [1],
one of the simplest models of telecommunication traffic
in systems with data burst transfer is the model of frac-
tional Gaussian noise. So the results of the paper may be
useful for telecommunication traffic forecasting.

The integral equation for the corresponding weight
function is the Wiener-Hopf integral equation (1) which
can be expressed in the form (3). In fact, we deal with the
Fredholm integral equation of the first kind. The weight
function is obtained with the help of the truncated poly-
nomial expansion method. In this paper the method is
based on the Chebyshev polynomials of the first kind
which are orthogonal on the time interval ¢ € (0,7) .

The numerical investigation is made for the parame-
ters (23). The approximations up to the 19-polynomial
one are investigated. The approximations of small num-
bers of polynomials are not accurate, but it is shown that
the approximation accuracy increases with the number of
polynomials, the approximations of rather large numbers
of polynomials are rather accurate. So the method con-
vergence is illustrated for the parameters (23). The kernel
of the integral equation (3) is a positively-defined func-
tion, so, according to [11], in the framework of the prob-
lem under consideration the truncated polynomial expan-
sion method should be convergent not only for the pa-
rameters (23), but also for other numerical values of the
parameters.

CONCLUSIONS
The Kolmogorov-Wiener weight function for forecast-
ing of fractional Gaussian noise is investigated as an ap-
proximate solution of the corresponding Wiener-Hopf
integral equation. The truncated polynomial expansion
method is used, the Chebyshev polynmials of the first
kind orthogonal on ¢ € (0,T) are chosen.

The scientific novelty of the paper is the fact that in
contrast to the previously investigated model [8-10], the
method convergence is shown for the model of fractional
Gaussian noise.

The practical significance is that the obtained results
may be applied to the telecommunication traffic forecast
in systems with data burst transfer.

Prospects for further research are to investigate an
exact analytical solution of the corresponding integral
equation.
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TexHIYHUH yHiBepcuTeT JJHinpoBcrka [lomiTexnika, JHinpo, Ykpaina.

AHOTAIIA

AxTyanbHicTs. PosrisnyTo ¢instp Koimoroposa-Binepa 1t mporHo3yBaHHs TeleKOMYHIKaliiHOTo Tpadiky B paMKax MoJei
HETIepepBHOTO (PaKTaILHOTO rayCCOBOTO LIyMy.

Meta po6otu. Metoro poboTH € OTpUMaTH BaroBy (QYHKIIO (QijgbTpa sk HaONMKEHUI PO3B 30K BiANOBIIHOTO iHTETPAILHOTO
piBusiHs Binepa-Xomnda. MeTtoro poboTH TakoX € moka3aTu 30DKHICTh 3a[POIIOHOBAHOTO METO/IY PO3B’sI3aHHS JAHOTO PiBHSIHHS.

Merton. InTerpansHe piBHsSHHA Binepa-Xomnda Ha BaroBy (QyHKLit0 QibTpa € iHTErpadbHUM piBHSAHHAM PpeAronbsMa Meprioro
poay. Mu BHKOPHCTOBYEMO METOJ OOIpBaHOTO PO3BHHEHHS 332 OPTOTOHAIBHHUMH MOJIHOMaMH 3 METOI0 OTPHMAaTH HaONMKEeHHH
PO3B’SI30K BiIOBiTHOTO piBHAHHA. BrkopucTaHo noixinomu Yebuiiesa nepmoro poxay.

Pe3yasTatn. Hamu otpumano HaOmmkeHi po3B’si3ku st Barosoi ¢yHkii ¢inerpa Koamoroposa-Binepa 1yt mporao3yBaHHS
HEMEePEepPBHOro (hpaKkTaIbHOrO TayCCOBOrO IMyMy. PO3B’S3KM OTPUMAHO y HAONMKEHHSX PI3HOI KiIBKOCTI MOJIIHOMIB, Pe3yJIbTaTh
OTPUMaHO 0 HAOJMKEHHS JeB’SITHAALTH IOJIIHOMIB BKIIOYHO. [TokasaHo, 1o U1 3ajadi, 110 pO3IISIAETHCS, 3alPOIIOHOBAHUI
METOo[ € 301KHUM, TOOTO TOYHICTh CIIBIAAiHHS J1iBOT Ta MPABOI YACTHH IHTErPaIbHOTO PIBHSHHS 3pOCTAE 31 3pOCTOM KiIBKOCTI MOJTi-
HoMmiB. Taka 30DkHiCTh Mae Micie, 60 KopemsiiiHa GpyHKLis (HpaKTaIbHOTO raycCoBOTrO HIyMY, sIKa € SIIPOM BiAMOBIAHOTO iHTErpa-
JHHOTO PIBHSHHS, € TO3UTUBHO BU3HAYECHOIO (PYHKILIEIO.

BucnoBku. Barosa ¢ynkuis ¢inerpa Konmmoroposa-Binepa 11t mporHO3yBaHHS HEMEPEPBHOTO (PPAKTAIBHOTO T'ayCCOBOTO IITy-
My OTpHUMaHa Sk HaOJWKeHHH PO3B’S30K BIIIOBIAHOTO iHTErpalibHOro piBHsAHHA Ppenronbpma MEpLIOro Poay. 3arporOHOBaHHUN
MeToj] 00ipBaHOT0 PO3BHHEHHS 32 OPTOrOHAILHUMH IIOJIIHOMaMH € 30DKHHUM JUIs 3a1adi, 0 PO3IIIIAAETECS. SIK BiOMO, ORHIEIO 3
HANMPOCTIMIMX MOJIETCH TEICKOMYHIKAIIHHOTO TpadiKy € MOJeb HeMepepBHOIO (PPaKTaIbHOTrOraycCoBOro IyMy, TOX PE3yJIbTaTh
CTaTTi MOXYTb OyTH KOPHUCHHMH JJIsl IPOTHO3YBAaHHS TeJIEKOMYHIKaLiitHOro Tpadiky.

KJIFOYOBI CJIOBA: Barosa ¢yukuis ¢insrpa Konmoroposa-Binepa, HepepepBHuil GpakTanbHuil rayciB urym, noniHomu Ye-
OuILIeBa NEpLIOro POy, NPOrHO3yBaHHs TpadiKy, 301KHICTH METOY.
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AHHOTADIUSA

AkTtyansHocTh. Paccmorpen ¢uibtp Koamoroposa-Bunepa uisi nporHo3upoBaHUs TeJIEKOMMYHHKAUHMOHHOTO Tpadduxa B
paMKax MOJIEIH HEMPEPHIBHOTO ()PaKTaILHOIO TayccoBa IIyMa.

Leas padotbl. Llenpio paboThl ABIAETCS NOITYYUTHh BECOBYIO (GYHKIHMIO GHIBTpa KaK MPUOIIKEHHOE PEIICHHE COOTBETCTBYIO-
IIEr0 MHTETPaNbHOro ypaBHeHHs Bunepa-Xonda. Taxke menpio paboTsl SBISIETCS MOKa3aTh CXOAUMOCTb MPEII0KEHHOTO METOAa
pelIeHNs COOTBETCTBYIOIIETO YPaBHEHHUSI.

Metoa. UnterpansHoe ypaBHeHne Bunepa-Xomnda Ha BecoByI0 (QyHKIHMIO (GHIBTpa SBISICTCS HWHTETPANBHBIM YpaBHEHHEM
®penronsma nepsoro poaa. Mbl UCIONBE3yeM MeTOJ] 000PBAHHOTO PA3JIOKEHUSI 0 OPTOTOHAJIBHBIM MOJIWHOMAaM, YTOOBI ITOIY4HUTh
NIPUOJMKEHHOE pellIeHHe COOTBETCTBYIONIEr0 ypaBHeHus. Vcronb30BaHb! oianHOMEl YeOblieBa mepBoro poja.

Pe3yabTatsl. [lomyuensr npubimKeHHbIE PEIIeHNUs 11 BecoBoi GyHKunu Gpuinstpa Konmoroposa-Bunepa asst mporHo3uposa-
HMS HEIPEphIBHOTO ()paKkTaJbHOrO rayccoBa IliyMa. PeleHus mosy4eHs! B MPUOMKEHNSAX Pa3IMYHOTO YHCIIA TOJIHHOMOB; PE3yJib-
TaThl TOJIyYEHBI BIUIOTH 10 IPHOIIDKEHHUS AEBATHAAATH TOMUHOMOB. IToKka3aHo, 4To AJIst paccMaTprBaeMOH 3aJady IPeI0KEHHBIH
METO/I SIBISI€TCS CXOASAIINMCS, T.€. TOYHOCTh COBIIAACHHUS JIEBOH U IIPABOI YacTeH HHTETPAIbHOTO YPABHEHUSI PACTET C YBEIHICHHEM
YHCJIa TIOJIMHOMOB. Takasi CXOAMMOCTh UMEET MECTO, IOTOMY YTO KOPPEISIHOHHAs (QYHKIUS (paKTaILHOTO rayccoBa IIyMa, KOTo-
past ecThb SIAPOM COOTBETCTBYIOIIETO HHTETPAIBHOTO YPaBHEHHS, SIBIISICTCSI MOJIOKHUTEIBHO ONPEIeNICHHOH (QYHKINCH.

BriBoabl. BecoBas ¢ynkums ¢unsrpa Konmoropoa-Bunepa 1iisi IpOrHO3MpOBaHMS HENPEPHIBHOTO ()PAKTATLHOIO IayccoBa
IIyMa IoJIy4eHa KaK MPHOIMKEHHOE PEellIeHHEe COOTBETCTBYIOLIEr0 MHTErpalibHOro ypaBHenus ®Openronsma mnepsoro poxaa. Ilpen-
JI0>KEHHBII METOJ] 000PBAaHHOTO Pa3/I0KEHHUS 10 OPTOTOHATBHBIM MOIMHOMAM SBIISETCS CXOIAIIMMCS IJIsl pacCMaTPUBAEMOH 3a/adu.
Kax n3BecTHO, OZHOI U3 NPOCTEHIIMX MOJIeTIeil TelIeKOMMYHUKAlMOHHOTO Tpady(huka sBISeTCS MOJENb HENPEPBIBHOTO (hPaKTaIBbHO-
TO rayccoBa IIyMa, TaK 9TO Pe3yNbTaThl CTATH MOTYT OBITH IOJIE3HBI IS IPOTHO3UPOBAHMUS TEIEKOMMYHHKAIIOHHOTO Tpadduka.

KJIFOUYEBBIE CJIOBA: BecoBas ¢yHkuus ¢unbrpa Kommoroposa-Bunepa, HenmpeprIBHBIN (paKTadbHBIA rayccoB IIyM, IO-
nHOMBI YeObIIeBa NepBoro poja, porHo3upoBanue Tpadduka, CXoMUIMOCTb METOAA.
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