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ABSTRACT

Context. The problem of sensitive information protection during data transmission in communication systems was considered.
The case of reliable detection of stego images formed according to advanced embedding methods was investigated. The object of
research is digital images steganalysis of adaptive steganographic methods.

Objective. The goal of the work is performance analysis of statistical stegdetectors for adaptive embedding methods in case of
preliminary noising of analyzed image with thermal and shot noises.

Method. The image pre-processing (calibration) method was proposed for improving stego-to-cover ratio for state-of-the-art
adaptive embedding methods HUGO, MG and MiPOD. The method is aimed at amplifying negligible changes of cover image caused
by message hiding with usage of Gaussian and Poisson noises. The former one is related to influence the thermal noise of charge-
coupled device (CCD) based image sensor during data acquisition. The latter one is related to shot noise that originates from stochas-
tic process of electron emission by photons hitting of CCD elements. During the research, parameters of thermal noise were esti-
mated with two-dimensional Wiener filter, while sliding window of size 5-5 pixels was used for parameters evaluation for shot noise.

Results. The dependencies of detection error on cover image payload for advance HUGO, MG and MiPOD embedding methods
were obtained. The results were presented for the case of image pre-noising with both Gaussian and Poisson noises, and varying of
feature pre-processing methods.

Conclusions. The conducted experiments confirmed effectiveness of proposed approach for image calibration with Poisson
noise. Obtained results allow us to recommend linearly transformed features to be used for improving stegdetector performance by
natural image processing. The prospects for further research may include investigation usage of special noises, such as fractal noises,

for improving stego-to-cover ratio for advanced embedding methods.
KEYWORDS: digital image steganalysis, adaptive embedding method, Gaussian noise, Poisson noise.

ABBREVIATIONS
AEM is an adaptive embedding method;
CCD is a charge-coupled device;
Cl is a cover image;
DI is a digital image;
EM is an embedding method;
IC is an image calibration;
SD is a stegdetector.

NOMENCLATURE
B is the change rate;
A, is a cover image payload;

(s the deflection coefficient between cover and stego
images distributions;

AL is the Lagrange multiplier;

§ is a signal whose variance is need to be estimated
with a linear model,

T is a probability distribution function of selection cer-
tain stego image from set of all possible stego images;

pij(*) is a cost function for estimation CI alteration due
to individual stego bit hiding into (i,j)™ pixel of CI;

Y is the set of all possible stego images;

®,U,V,W are weights;

a is the vector of a linear model parameters;

C(-) is an image calibration operator;

C is the set of three-elements cliques for four-pixels
adjacency directions;

D is an array of differences between adjacency pixels
values;

© Progonov D. O., 2021
DOI 10.15588/1607-3274-2021-1-18

184

D(X ,Y) is an empirical distortion estimation func-
tion;

E.(D) is the averaging operator for function D(X,Y)
over distribution m;

F is a feature row vector;

F, 1s a denoising filter for image context suppres-
sion;

F,(-) is a feature extraction operator from an image;

G is a mixing matrix;

H is the normalized adjacency matrix that is calcu-
lated for each type of cliques C;

H, is the ternary entropy function;

H(m) is the entropy function;

3 represents brightness range for 8-bits grayscale im-
age;

I, is an identity matrix with size L-L elements;

k is the number of parameters for the SPAM model,

M is a binary message to be embedded;

M? M® are adjacency matrices for Markov model by
scanning grayscale image from left-bottom to right-top
and from right-top to left-bottom directions respectively;

M¢, M d are adjacency matrices for Markov model by
scanning grayscale image from left-top to right-bottom
and from right-bottom to left-top directions correspond-
ingly;

P, is the orthogonal projection of residual I} on sub-
space spanned by left eigenvectors of matrix G ;

P. is the detection error;
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Pea is the probability of false alarm during detection
(assignment cover image as stego one);

Pwp is the probability of missed detection (assignment
of stego image as cover one);

r, are residuals r inside p-p block surrounding the |

pixel of CI;

T is a threshold;

U is an unprocessed (non-calibrated) image;

X is a cover image;

Y is a stego image;

Pr(a) is the probability of event a;

[a]; is the Iverson bracket that equals to one if Boolean
expression a is true, and zero otherwise;

H is the Euclidean norm for scalars, or Frobenius

norm for matrices.

INTRODUCTION

Counteraction to sensitive data leakage is topical task
today. This includes data protection during on-device
processing as well as transmission in communication sys-
tems. More recently, the latter task has been taken special
interest due to development of adaptive embedding meth-
ods. These methods aimed at sensitive data hiding into
transmitted files, such as digital images, by preserving
minimal distortion of cover image [1, 2].

Reliable detection of formed stego images requires
utilization of a priori information about applied distortion
minimization techniques. This information may be limited
or even absent for modern AEM that negatively impact on
stegdetectors performance.

The object of study is methods for detection of stego
images formed according to AEM.

The promising approach to detection of stego images
formed according to AEM is increasing stego-to-cover
ratio by pre-processing (calibration) of analyzed image.
Modern methods for image calibration are aimed at esti-
mation of cover image parameters from the stego one.
This requires usage of accurate statistical model of CI that
may be inappropriate in case of processing natural images
that characterize a high level of parameters variability.
Therefore, the development of new IC methods is needed.

The subject of study is methods for increasing stego-
to-cover ratio to be used in steganalysis of stego images
formed according to advanced AEM.

One of possible solution of mentioned task is amplifi-
cation of CI negligible changes caused by message hiding
[3]. Unlike known calibration methods that require CI
model, this approach utilizes only a priori information
about message hiding into highly textured and noised
areas of cover images. Since messages embedding can be
represented as adding anisotropic noise to DI [1], we may
apply technique of image preliminary noising (pre-
noising) for accentuation these changes.

Effectiveness of this approach was shown in paper [4]
for state-of-the-art S-UNIWARD adaptive embedding
method. Nevertheless, the approach performance is still
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unknown for advanced adaptive model-based EM, such as
MG and MiPOD.

The purpose of the work is to analyze performance
of statistical stegdetectors for advanced AEM in case of
preliminary noising of analyzed image.

1 PROBLEM STATEMENT
For a given set of pairs (Xi,Yi) (Xi,Yi)e IV,

ie [1; Q] the task of stegdetector training can be presented
as the optimization problem [1, 2]:

1
Pe = rglnE(PFA +Pup (Pea)) (1)

FA

Solving of (1) is done under constrain of applying to
images a predefined IC transformation C(-):
gMN S gMN,

Selection of calibration transformation C(-) should be
done according to known a priori information about used
embedding method. Nevertheless, this information is lim-
ited or even absent in most cases. Therefore, the choice of
appropriate transformation C(-) that allows solving prob-
lem (1) in case of limited a priori information about steg-
anographic method remains an open question. The paper
focuses on the case when C(-) relates to image pre-noising
with thermal (Gaussian) or shot (Poisson) noises that
model physical processes during image capturing.

2 REVIEW OF THE LITERATURE

Modern steganographic methods for DI are aimed at
message hiding in CI by preserving minimal alterations of
its perception quality [1, 2]. This is achieved by negligible
changes of cover elements, namely pixels brightness, in
textured areas that are hard to model. Proposed statistical
models of CI allow reliably detection these changes in
case of analysis either a distortion introduced by known
embedding methods or DI with low noise level.

For overcoming mentioned issue, image pre-
processing approach has been proposed. The IC is aimed
at increasing stego-to-cover ratio by utilization of infor-
mation about features of either CI or used embedding
method. The former case relates to original idea of cali-
bration — to obtain a good estimation of cover image pa-
rameters from a stego one [3]. The latter case is based on
analysis of a priori information about specific distortions
introduced to CI during message embedding.

The seminal work of cover image estimation [5] pro-
posed to use message re-embedding into JPEG-images for
quantitatively estimation of CI payload. Despite accurate
estimation, the work requires a priori knowledge of used
EM that may be inappropriate in real cases. Fridrich et al.
[3] proposed to provide multi-stage processing of JPEG
images to estimate CI parameters — firstly, JPEG decom-
pression, then cropping image by 4 first rows and col-
umns and, finally, JPEG compression with same JPEG
quality factor. This approach showed outstanding results
for widespread embedding methods, such as StegHide,
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OutGuess etc. Nevertheless, the approach is suitable only
for compressed JPEG images.

The effective IC method was proposed for SRM mod-
el of cover image [6]. The method is based on image pre-
processing with set of high-pass filters for suppression of
image context. Effectiveness of proposed model was
proved for wide range of modern EM, such as HUGO [7],
WOW [8] etc. This became possible due to painstaking
selection of enormous set of two-dimensional high-pass
filters. Modification of SRM model, namely maxSRMd2
[9], pursued the same idea by adaptation of used filters to
reliably detection of state-of-the-art AEM.

The PSRM model [10] and SR-Net [11] are further
evolution of SRM model. The former model is based on
post-processing of residuals obtained after image filtering
— theirs projection on vectors generated from multivariate
Gaussian distribution. The latter model is convolutional
artificial neural network that allows learning appropriate
filters (convolutional kernels) during training on image
dataset. It should be noted that these modifications of
SRM model are either compute-intensive or requires us-
age of a priori information about used EM for laborious
selection of appropriate high-pass filters.

For overcoming mentioned drawbacks of CI restora-
tion scheme, methods for feature estimation from stego
images were proposed [3, 4]. One of these methods is
message re-embedding into stego image for amplifying
negligible changes of CI caused by data hiding. This
makes these changes “accessible” for further analysis
with statistical models. The effectiveness of this approach
was shown in papers [4, 12] for state-of-the-art adaptive
embedding methods, such as HUGO and S-UNIWARD.

In spite of considerable improving detection accuracy
for medium (10-25%) and high (more than 25%) payload
of CI [4], message re-embedding approach still needs a
priori information about EM for maximization alterations
caused by message hiding. Since re-embedding procedure
can be represented as introducing additional noise to DI
[4], we may apply other types of noises for amplifying
negligible changes of CI caused by data hiding.

The well-known types of noises, which are specific
for image capturing pipeline [13], are thermal and shot
noises. They related to influence of discrete nature of pho-
tons (shot noise) and ambient temperature (thermal noise)
on parameters of CCD used in cameras/scanners. These
noises can be accurately modelled with Gaussian and
Poisson distribution [13]. Therefore, the paper is aimed at
performance analysis of statistical stegdetectors in case of
preliminary noising of stego images formed according to
AEM with Gaussian and Poisson noises.

3 MATERIALS AND METHODS

The paper focuses on state-of-the art AEM. The fea-
ture of these methods is minimization of total cost by

message M e {0,1}K hiding into a cover image X [14]:

D(X.,Y)=3, jpi,j(X,Y)M)min. )
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Ideally, cost function p(-) in (2) can estimate both CI
alteration due to changing of individual pixel, and non-
linear interaction between these changes [14]. The former
estimation can be done with widespread statistical models
of CI [1]. The latter estimation requires compute-intensive
analysis of pixels changes combinations that becomes
intractable even for short messages M (about 100 bits)
[14]. Therefore, the simplified function p(-) that estimate
only CI distortions caused by individual stego bit hiding
is used in most real cases.

Selection of pixels to be used during message embed-
ding (2) is performed by heuristic rules that assess noise
level in a local neighborhood of (i,j)™ pixel [14]. This
allows achieving state-of-the-art empirical security of
formed stego images while preserving computational ef-
fective optimization methods for cost estimation.

The examples of state-of-the-art AEM are HUGO [7],
MG [15] and MiPOD [16] methods. Let us consider in
more detail these methods. The HUGO method is based
on minimization of CI distortion under constrain of mes-

sage length [M|=H (r) [71:

min Ex (D)= ¥y .y 7(Y)- D(X.Y), 3)
wrt. |M | =D vey n(Y)-log(r(Y)).

Filler et al. [7] proposed to numerical solving of eq.
(3) by using adjacency matrix C,, (X) for estimation of

CI distortions during message hiding:

D(X.Y)= e s @ Hin (Y ) 4)

(k,l)e\s.ka > 0.

For instance, matrix H in the case of row-wise image
processing and left-to-right pixels scanning can be calcu-
lated as [7]:

Hiop(X.Y)=(N-(m -2)]"
Zi,j”(Dl_J): DI NES! XY): (kal)]l - (5)
[(DI—J>’ D, J+1XX): (k:|)]| |,

(DI7>7 Di J+1XX): (k

& B30 =K Bi () =1) ©

Matrix H for other types of cliques C=C~u

ucucTuc! can be calculated in a way similar to eq.
(5)—~0) [7].

In contrast to HUGO method, MG and MiPOD em-
bedding methods are aimed at minimization both CI dis-
tortion and statistical detectability of formed stego image
[15, 16]. It is achieved by usage of locally-estimated mul-
tivariate Gaussian model of CI noises. The model allows
deriving the closed-form expression of SD performance
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as well as capturing the non-stationary character of natu-
ral images [16].

The CI processing pipeline is similar for both MG
[15] and MiPOD [16] methods. Firstly, image context is
suppressed using denoising filter Fyp :

r=X—Fgn(X)

Secondly, the variance o/’ of obtained residuals I is
measured with linear model:

n=Ga +&le[;M-N] (7)

Sedighi et al. [16] proposed to use Maximum Likeli-
hood estimation of model parameters:

of =HPér| H/(p2 “qlgen.

Here, P, represents the orthogonal projection of re-
sidual I on (p2 —q) dimensional sub-space spanned by

left eigenvectors of matrix G . Residuals I} are evaluated

within p-p block surrounding the I™ pixel of CI.
The simplified estimation of variance o> is used for

MG method [15]:
2
/(p _q)vq eN.

Thirdly, embedding changes B, Ie[l;M-N] that
minimizes deflection coefficient { is estimated:

of =|n —G(GTGTIGTr,

CZ(B|):2M£B%GF4 SN Hy (B )=const min,  (8)
=1

H,(z)=-2zlog(z)-(1-22)log(1-22).

The deflection coefficient {* (7) is used as a measure
of divergence between cover and stego images distribu-
tions [15, 16].

The optimization problem (8) can be solved using La-
grange multiplier method [16]. Then, change rate 3 and
Lagrange multiplier A, can be determined by numerical
solving of next equations:

Lln[ﬁ}l e[;M-N]
2h Bi

proi” =
Then, estimated B is converted to corresponding cost
pi of stego bit hiding in I™ pixel of CI:

p) =—In(B; -2) ©)

Finally, a message M is embedded into CI using syn-
drome-trellis codes with pixel costs determined according
to eq. (9).

The locally-estimated multivariate Gaussian model (7)
allows accurately measuring local distortions of CI caused
by message hiding [16]. This makes possible achieving
state-of-the-art empirical security of formed stego images
without taking compute-intensive statistical models.
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Wide range of DI statistical models was proposed for
revealing stego images formed according to AEM, such
as SRM [6], PSRM [10]. Feature of these models is image
pre-processing stage for increasing stego-to-cover ratio.
In most cases, this stage includes image high-pass filter-
ing with enormous set of two-dimensional filters for im-
age context suppression [6]. This approach shown out-
standing result for detection of stego images formed ac-
cording to AEM. Nevertheless, it became possible due to
meticulous selection of filters that allows revealing spe-
cific alterations of CI for each embedding method. The
selection requires a priori information about peculiarity of
EM that may by unavailable in real cases. Therefore, the
topical task is development of new IC techniques that do
not depend on a priori information of embedding process.

For solving mentioned task we proposed to increase
stego-to-cover ratio by amplification of negligible chang-
es of CI. It can be achieved by image noising since mes-
sage hiding is performed with usage of noise components.
The paper focuses on the case of DI noising with thermal
and shot noises that accompanied image capturing proc-
ess. These noises can be accurately modeled with Gaus-
sian and Poisson distributions. Therefore, we may substi-
tute pre-processing stage for widespread DI statistical
models with noising operation.

Unfortunately, features obtained for modern statistical
models of DI are closely related to image high-pass filter-
ing [6]. Therefore, we took SPAM model [17] that allows
estimation correlation features of calibrated DI without
any additional processing. Let us describe this model in
details.

The calculation of SPAM-features starts by computa-
tion the difference array D by processing an image in
row-wise and column-wise orders. For example, the array
D for the case of row-wise processing and left-to-right
pixels scanning of grayscale image U with size M-N pix-
els can be calculated as [17]:

N
Di.j =Vij-Yiju

UeSMNiiclim]je[N-1]

The first-order SPAM features F, are used for model-

ing array D with first-order Markov process [17]. For the
considered example, it leads to:

MLKI ZPI'(DL_}H =Uu | DI,—I ZV)
uvel-T;T|TeN.

(10)

If probability Pr(Difj :v) is equal to zero, then

Mgy =0 as well.
The second-order SPAM features F, are taken for

modeling difference array D with second-order Markov
process [17]. Similarly to eq. (10), we obtain:
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M = Pr(Di242 = D4 =v, D =w)
uv,wel[-T;T}TeN.

(11)

Similarly to F; features, MLI:,,W is equal to zero if
Pr(Dij.+l =v,D] = W): 0.
The features F| and F, for other scanning directions,

namely ce {-,«,1,{}, can be estimated in the same way to
eq. (10)—(11).

For decreasing dimensionality of SPAM-features, the
assumption that statistics in natural images are symmetric
with respect to mirroring and flipping [17] is used. Thus,
we can separately averaging matrices for horizontal, ver-
tical and diagonal directions to form the final features:

A :(M*+M“+M¢+M¢j/4,
F(k+1).__2k:(Ma+Mb+M°+Md)4.

Number of parameters for the first-order SPAM model
is k=0T + 1)2 , while for the second-order one —

k=0T +1)7.

Practical application of SPAM-features requires theirs
pre-processing before using in a classifier. The modern
methods of feature pre-processing for DI steganalysis can
be divided into next groups [3, 12]:

1. Non-calibrated features — corresponds to the case of
feature extraction from unprocessed image:

Foc =FeU) (12)

2. Features of calibrated image — corresponds to fea-
tures obtained after image noising:

Froise = Fe(C(U )) (13)

3. Linearly transformed features of calibrated image —
correspond to the difference between features of cali-
brated and unprocessed images:

FDF = Fnoise - Fnc' (14)

4. Cartesian calibrated features — corresponds to the
case of merging features of unprocessed and calibrated
images:

FCC = [Fnc; Fnoise]' (1 5)
Today, non-calibrated features (12) are rarely used
due to theirs negligible differences for cover and stego
images [1]. On the other hand, Cartesian calibrated fea-
tures (15) are widely used for improving SD performance
since they preserve features for both initial and calibrated
images [3]. Linearly transformed features (14) do not get
much attention today [12]. Therefore, performance analy-
sis of stegdetector by usage of these features takes special
interest.
4 EXPERIMENTS
Performance analysis of statistical SD by image nois-
ing was performed on ALASKA dataset [18]. The sub-set
of 10,000 grayscale images with size 512-:512 pixels was
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pseudo randomly chosen from the dataset. The case of
message embedding into CI with HUGO, MG and Mi-
POD methods was considered. The CI payload Ap was
changed in range — 3%, 5%, 10%, 20%, 30%, 40%, 50%.

The SD includes ensemble classifier with Fisher Lin-
ear Discriminant base learner [19] trained with second-
order SPAM model [17] with threshold parameter T=3,
leading to 686 features.

The stegdetector was tested according to cross-
validation procedure by minimization of detection error
P (1) [19]. The dataset was divided 10 times into training
(50%) and testing (50%) sub-sets during cross-validation
for estimation averaged values of P..

Image noising was performed with usage of Gaussian
and Poisson noises. The former noise is related to thermal
noise that influence of CCD based image sensor during
data acquisition. In most cases, this noise is well modelled
with zero mean Gaussian process. The latter noise is re-
lated to shot noise that originates from stochastic process
of electron emission by photons hitting of CCD elements.

During the analysis, variance of thermal noises was
estimated with two-dimensional Wiener filter [13, 20].
The window size Ws was varied in range — 3-3, 55, 7-7,
99, and 11-11 pixels. The estimated variance was used
for generation of corresponding zero-mean Gaussian
noise. The mean A for Poisson distribution was estimated
with sliding window of size 5-5 pixels.

5 RESULTS
After performance analysis of statistical SD by image
noising with Gaussian and Poisson noises the dependen-
cies of detection error for AEM and features (13)—(15)
were plotted. Fig. 1-5 graphically illustrates the averaged
detection error as a function of CI payload and size of
sliding windows for F . (Fig. 1-2), F,. (Fig. 3) and

F.. (Fig. 4) features for the case of image Gaussian nois-

ing.

10 15 0
Cowver ima

Figure 1 — Detection error P, as a function of the cover image

payload and size W; of sliding windows for F . features and

Gaussian noising for HUGO method. The P, values for Fnﬁ

features are represented by ws = 0 (pixels)

It can be seen from the Fig. 1-2 that images noising
with Gaussian noise leads to significant increasing of P,
(about 5%) for medium (A e [10;25]) and high (A,>25)

payloads of CI even for small sliding window (ws= 3).
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Figure 2 — Detection error Pe as a function of the cover image pay-

load and size W of sliding windows for F features and Gaussian

noise

noising: a — MG method; b — MiPOD method. The Pe values for
=0 (pixels)
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c
Figure 3 — Detection error Pe as a function of the cover image pay-
load and size ws of sliding windows for F_ features and Gaussian

noising: a — HUGO method; b — MG method; ¢ — MiPOD method.
The Pe values for F = features are represented by Ws = 0 (pixels)
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Usage of linearly transformed features Fpg (Fig. 3)
leads to negligible decreasing of detection error for
HUGO embedding method (about 2—3%, Fig. 3) for me-
dium and high values of Ap while preserving similar P,

values for MG (Fig. 3b) and MiPOD (Fig. 3¢) methods.
On the other hand, applying of Cartesian calibrated fea-
tures allows increasing detection error values (about 1—
2%) for all considered methods.

Applying of Cartesian calibrated features F_. (Fig. 4)

allows achieving P similar to transformed features F__

(Fig. 3). Therefore, usage of these features is impractical
since significant decreasing of P, was not achieved.

E]

Window size, pixels
n
e

Cover image payload, %
a

Window size, pixels

s

Window size, pixels
I T

20 25 30 35 40 45 50
Cover image payload, %

c
Figure 4 — Detection error P, as a function of the cover image
payload and size w; of sliding windows for F. features and

Gaussian noising: a — HUGO method; b — MG method; ¢ — Mi-
POD method. The P values for F_ features are represented by

w = 0 (pixels)

Detection error P as a function of CI payload by Pois-
son noising is represented at Fig. 5—6.
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error P, %

Detection

Cover ||I1:.|_uc pay ;
Figure 5 — Detection error P, as a function of the cover image
payload by Poisson noising for HUGO method

G-Features F__

Detection error i'l_."..

Detection err

Figure 6 — Detection error P, as a function of the cover image
payload by Poisson noising: a — MG method;
b — MiPOD method

It can be seen from the Fig. 5-6 that proposed ap-
proach allows decreasing detection error up to 2%—3% for
all considered AEM. The biggest impact on P, values was
obtained for HUGO method (Fig. 5) while reducing of P,
values for MG (Fig. 6a) and MiPOD (Fig. 6b) methods is
negligible (up to 1%—1.5%). Usage of features for noised
images F . leads to detection accuracy closed to random

noise

guessing.

6 DISCUSSION

Message embedding into CI can be represented as
adding noises into high-textures areas of images [1, 2].
Amplification of these changes can be achieved by addi-
tional noising of analyzed image, for example with noises
related to image capturing process [4]. Obtained results
for Gaussian noise (Fig. 1-4) showed that this approach is
ineffective irrespective of used features (13)—(15). Apply-
ing of F _ features leads to catastrophic decrease of de-

tection accuracy in whole range of CI payload (Fig. 1-2).
This can be explained by substantial excess of introduced
noise’s energy in comparison to changes caused by mes-
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sage hiding. Therefore, added Gaussian noise totally elim-
inates CI influence caused by data embedding for all con-
sidered steganography methods.

Applying of linearly transformed features F__ (Fig. 3)

allows improve detection accuracy a bit for HUGO em-
bedding method (Fig. 1) — up to 2%—-3% for medium and
high payload of CI (more than 25%). Changes of detec-
tion error P, are negligible and close to calculation errors
for model-based MG (Fig. 2a) and MiPOD (Fig. 2b)
methods. In this case, obtained amplification of CI altera-
tions is insufficient for improving SD performance.

A similar situation exists for Cartesian calibrated fea-
tures (Fig. 4) — image pre-noising leads to decreasing
stegdetector accuracy a bit (about 1.5%—2%) for consid-
ered EM. Therefore, usage of these features is impractical
— stored information about initial and noised images do
not allow distinguishing stego images from cover ones.

On the other hand, adding Poisson noises to DI allows
reducing detection error P, even for low payload of CI
(less than 10%). Similar to previous case, this is achieved
for Cartesian and linearly transformed features (Fig. 5-6).
Noteworthy that revealed decreasing of detection error
was obtained for all considered EM. This makes image
preprocessing with Poisson noise valuable for steganaly-
sis of natural digital images.

Obtained results for Gaussian and Poisson noises
showed that introduced distortions to analyzed image ef-
fectively masking negligible changes caused by message
hiding. This masking effect can be reduced only by usage
of special types of features, namely Cartesian and linearly
transformed ones. Therefore, further research of special
types of images noising for accurate amplification of CI
distortions caused by message hiding is needed.

CONCLUSIONS

The topical problem of reliable detection of stego im-
ages formed by advanced adaptive embedding methods
was considered. The case of stego-to-cover ratio increas-
ing by image pre-noising with Gaussian and Poisson
noises was investigated.

The scientific novelty of obtained results is perform-
ance analysis of special types of digital image calibration,
namely image noising. Proposed approach allows ampli-
fying negligible changes of cover image caused by mes-
sage hiding even in case of limited a priori information
about used embedding method. This gives opportunity to
improve statistical stegdetectors performance in case of
analysis natural images that characterize high level of
parameters variability.

The practical significance of obtained experimental
results is dependencies of detection error on cover image
payload for state-of-the-art adaptive embedding methods
HUGO, MG and MiPOD. These results allow us to rec-
ommend Cartesian and linearly transformed features to be
used for improving stegdetector performance by natural
image pre-noising.

Prospects for further research are to investigate ef-
fectiveness of special types of images noising, such as
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fractal noises, for amplification of cover image cover im-
age distortions caused message hiding.

10.
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BII/IMB NONNEPEJHBOI'O 3AINYMJIEHHS HIU®POBUX 30BPA’KEHDb HA EOEKTUBHICTD CTATUCTUYHHUX
CTETOJAETEKTOPIB

Iporonos [I. O. — kaHx. TeXH. HayK, JIOLEHT, TOIEHT Kadenpy (iznko-TeXHIYHUX 3ac00iB 3axucTy iHpopmanii HarionansHoro
TeXHIYHOTO yHiBepcuTeTy «KuiBchkuii moniTexHivnuit iHCTUTYT iMeHi Irops Cikopceskoroy», Kuis, Ykpaina.

AHOTAIIS
AxTyanbHicTh. Po3risinyTo npobiemy 3axucty koH¢igeHwUiiHOI iHbopMawii M Yac nepeaadi JaHUX y cHCTeMax 3B’s3Ky. [lo-
CITI/KEHO BHMIAJOK BHSBJICHHS cTeraHorpaM, c¢()OpMOBaHUX 3TiHO HOBITHIX METOIB MPHXOBaHHs HoBimomieHb. O6’€KTOM I0OCITi-
JDKEHHS € METO/IM BHSBJICHHS CTETraHOTpaM 3 IaHUMH, BOYJIOBaHUMH 3TiJIHO aIallTHBHUMHU CTeraHorpad)iuyHuMU METOAMH.
MeTton. 3amporoHOBaHO METOJ MONepeaHb0l 00poOKH 300paxeHs (KamiOpyBaHHS) IJIS MiJBHINCHHS CIIBBIIHOIICHHS CTETO-
KOHTEHHep JUIsl CyJacHHUX aJanTHBHHUX MeToniB BOynoByBanHs HUGO, MG ta MiPOD. Metop cripssMoBaHUI Ha IIOCHJICHHS HE3Ha-
YHUX 3MiH 300pakeHHSI-KOHTEHHEPY, 0OYMOBICHUX IPUXOBAHHIM IOBIIOMIICHb. [liABUIEHHS NOCSTA€THCS IUIIXOM BHECEHHS 10
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300pakeHHs JJOAATKOBUX LIYMIB, 110 MAlOTh IayCOBHil a00 myacoHOBHil po3moii. ITepiuuii THII LIyMy HOB'S3aHUN 3 TEIUIOBUM LIY-
MOM, SIKHii BIUIMBAa€ Ha MATpHULIO (HOTOENEMEHTIB mix yac hopMyBaHHS 300paxkeHHs. [{pyruil TUI UIyMy [OB'S3aHHM 31 CTOXaCTHY-
HOIO TIPUPOIO0 TIPOLIECY BUIPOMIHIOBAHHS CIEKTPOHIB ()OTOHAMH, IO TMOTPAILISIOTH Ha €lIeMeHTH Marpuli dortoenemenris. Juc-
Nepcis TEIUIOBHX LIyMiB OLIIHIOBANACs 3 BUKOPUCTAHHIM JBOBHMipHOTo (inbTpa Binepa npu Bapiauii po3mipy koB3Horo BikHa. ITa-
pametpu posnoiny Ilyaccona Gyiio BU3Ha4€HO 3 BUKOPUCTaHHSIM KOB3HOTO BiKHA PO3MIpOM 5-5 miKcediB.

Pe3yabraru. ITo0y10BaHO 3aJIeKHOCTI TIOMHJIKM BHSBIICHHS BiJl CTYIEHS 3allOBHEHHS 300pa)KeHHA-KOHTEHHEPY CTEroJaHUMHU
i Metoai BOynoByBanHss HUGO, MG ta MiPOD. Pe3ynpraTu npencrasieHi Ui BUIaAKy BHECCHHS 1O 300pakeHb IIyMy 3 Tay-
COBHM Ta IIyaCOHOBHM PO3IOiJIaMH, a TAKOXK 3aCTOCYBaHHI Pi3HUX METO/IiB IIONIEPEAHBOI 00POOKH XapaKTEePHCTHK.

BucnoBkun. [IpoBeneni excriepuMeHTH MIATBEPIIUIN €(EKTUBHICTD 3aIPOIIOHOBAHOTO IIXOMY JIO KaliOpyBaHHS 300pakeHb 3
BHKOPHCTaHHSM IyacOHIBChKHX IyMiB. OTpHUMaHi pe3ysibTaTH J03BOJISIIOTH PEKOMEHIyBAaTH BUKOPHUCTAHHS JICKApTOBUX 1 JIHIMHO
TpaHCGOPMOBAHHUX O3HAK CTEraHOIPaM IS IMiIBUIICHHS TOYHOCTI POOOTH CTEroAeTeKTopy. IIepCHeKTHBH MOAaNbIINX JOCIIKeHbD
MOXXYTh BKJIIOYATH BUBYCHHS e(pEKTHUBHOCTI 3aCTOCYBaHHs CHELIaJbHUX THIIB IIYMiB, 30KpeMa (QpakTaIbHHUX IIYMIB, 3 METOIO Mif-
BUILCHHS CIiBBiIHOIICHHS CTErO/IaHi-KOHTEHEep Ul Cy4acHHUX CTeraHorpadiyHuX METO/iB.

KJIFOYOBI CJIOBA: creroanainis mudpoBux 300paxeHp, aAalTHBHI METOIM MIPUXOBaHHs, [ aycoBuii rym, IlyacoHOBHIA HIIyM.
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BJUSTHUE IMTPEJABAPUTEJLHOT O 3AINYMJIEHUSA IUDGPOBBIX H30OBPAXKEHUN
HA 39®PEKTUBHOCTDb CTATUCTHYECKHUX CTETOJAETEKTOPOB

IIporonos /I. O. — xaHa. TeXH. HayK, JOLEHT, AOLEHT Kadeapbl (PU3NKO-TEXHMYECKUX CPEACTB 3aIiuThl MHpopMmanuu Hanumo-
HAJIBHOTO TEXHUYECKOTO YHUBepcuTeTa « KneBckuii monurexHumyecknit HHCTUTYT uMeHH Uropst Cukopckoro», Kues, Ykpanna.

AHHOTADIUSA

AxTyanbsHOCcTh. PaccMoTpena npo6ieMa 3amuTsl KOHGUISHIMAIEHOM HHOOPMAIUH NIPU Hepeade JaHHBIX B CHUCTEMaX CBSI3H.
HccnenoBaH citydail BBISIBICHUS CTETaHOTPaMM, C()OPMUPOBAHHBIX COTJIACHO COBPEMEHHBIM MeToJaM CKpbITHs HHpopmarmn. O0b-
€KTOM HCCIICJIOBaHUS SIBIIIOTCS. METOABI BBISIBICHUS CTETAaHOTPAaMM C JIaHHBIMH, BCTPOSHHBIMH COTJIACHO aJalTHBHBIM CTEraHOIpa-
(puuecKuM MeToIaM.

Metoa. Ilpennoxen Meron mpeaBapuTeNbHON 00paboTku (KaInOpOBKK) M300pakeHUN IS MOBBILICHUS! COOTHOIIEGHHS CTEro-
JAHHBIC-KOHTEHHEP TSI COBPEMEHHBIX aaNTHBHBIX creraHorpaduueckux metonoB HUGO, MG u MiPOD. Metox HampasiieH Ha
YCUJICHHE HEe3HAYUTETbHBIX HCKAXKEHHUH H300pakeHNI-KOHTeHHepa, 00yCIOBICHHBIX BCTPAaUBAHIEM JaHHBIX. Y CHIICHHE NCKaKEHUI
JOCTUTAETCSI IIyTeM BHECEHHS B M300pakK€HHE MONOIHUTENBHBIX IIyMOB, MMEIOIIUX I'ayCCOBBIH M ITyaCCOHOBBINH paclpeieneHHsI.
[lepBblif THI IIYMOB CBSI3aH C TEIUIOBBIM IIYMOM, KOTOPBIM BIMSET Ha JAATYMK M300pakeHNS Ha OCHOBE IPHOOpa ¢ 3apsIoBOM CBS-
3610 (I13C) Bo Bpems hopmupoBanus n3o0pakeHns. Bropoif T myMa cBs3aH ¢ ZpOOOBEIM IIyMOM, KOTOPHII BO3HHKAET B PE3YIIb-
TaTe CIyYaiHOro Mpolecca HUCIYCKaHUs 3JCKTPOHOB (pOTOHAMH, momaaaromume Ha snemenTsl [13C. Jlucnepceunst TEroBbIX MyMOB
OLICHUBAJIACh C IOMOIIBIO JIByMepHOro (GuibTpa BuHepa npu Bapuannu pa3mMepoB CKONB3sIIero okHa. [lapamerpsl pacnpeneneHus
IlyaccoHa oneHMBaIOCh € TIOMOILIBIO CKOJIB3SIIETO OKHA pa3MepoM 5-5 MUKCENeH.

Pe3zyabTarthl. IlocTpoeHs! 3aBUCUMOCTH OIIMOKU OOHAPY>KEHUSI OT CTEMEHH 3alONHEHUs N300pa’keHUs-KOHTEHHepa CTerofaH-
HbIMU 17151 MeTonoB BeTpauBanust HUGO, MG u MiPOD. Pesynbratsl npenctaBieHsl A Ciydas BHECEHHUS B M300paKeHHUS IIyMa ¢
TayCCOBBIM U ITyaCOHOBHM JIETICHUSMH, a TAKXKe IPHIMEHEHNH PAa3INIHBIX METOMOB IpeIBAPUTEIbHON 00pabOTKH XapaKTEePHCTHK.

BriBoasl. [IpoBeseHHbIC SKCIIEPUMEHTHI HOATBEPIIH () (HEKTUBHOCTS NMPEATOKEHHOT0 MOAX0/1a K KATHOPOBKE N300paXeHHH ¢
HCTIONF30BaHUEM ITyaCCOHOBCKUX IIyMOB. IloiydeHHBIE pe3yibTaThl MO3BOJISIOT PEKOMEHIOBATh HCIIOIb30BAHHE AEKAPTOBBIX U
JIMHEHHO NpeoOpa30BaHHBIX NMPU3HAKOB CTEraHOTPAaMM JUIsl MOBBIMICHHUS TOYHOCTH PabOTHI CTEroJeTeKTopa. I[lepcreKTHBhl aib-
HEWIINX MCCIIeIOBAaHNI MOTYT BKIIIOYATh H3ydeHHe 2 (HEKTUBHOCTH CHEHANTbHBIX TUIIOB IIYMOB, TAKHX KaK (paKkTaJbHbIC IIYMBI, C
LIETIBIO MOBBILIEHHS COOTHOIICHUS CTEr0JaHHbIe-KOHTEHHEp /Ul COBPEMEHHBIX CTEraHOTrpauuecKUX METO/OB.

KJIFOYEBBIE CJIOBA: creroananu3 uugpoBbiX H300paKeHHH, alaliTHBHBIE METO/IbI BCTpanBanust, ['ayccoBslil mrym, Ilyac-
COHOBCKMH HIyM.
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