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ABSTRACT

Context. We investigate the Kolmogorov-Wiener filter weight function for the prediction of a continuous stationary random
process with a power-law structure function.

Objective. The aim of the work is to develop an algorithm of obtaining an approximate solution for the weight function without
recourse to numerical calculation of integrals.

Method. The weight function under consideration obeys the Wiener-Hopf integral equation. A search for an exact analytical so-
lution for the corresponding integral equation meets difficulties, so an approximate solution for the weight function is sought in the
framework of the Galerkin method on the basis of a truncated Walsh function series expansion.

Results. An algorithm of the weight function obtaining is developed. All the integrals are calculated analytically rather than nu-
merically. Moreover, it is shown that the accuracy of the Walsh function approximations is significantly better than the accuracy of
polynomial approximations obtained in the authors’ previous papers. The Walsh function solutions are applicable in wider range of
parameters than the polynomial ones.

Conclusions. An algorithm of obtaining the Kolmogorov-Wiener filter weight function for the prediction of a stationary continu-
ous random process with a power-law structure function is developed. A truncated Walsh function expansion is the basis of the de-
veloped algorithm. In opposite to the polynomial solutions investigated in the previous papers, the developed algorithm has the fol-
lowing advantages. First of all, all the integrals are calculated analytically, and any numerical calculation of the integrals is not
needed. Secondly, the problem of the product of very small and very large numbers is absent in the framework of the developed algo-
rithm. In our opinion, this is the reason why the accuracy of the Walsh function solutions is better than that of the polynomial solu-
tions for many approximations and why the Walsh function solutions are applicable in a wider range of parameters than the polyno-
mial ones. The results of the paper may be applied, for example, to practical traffic prediction in telecommunication systems with
data packet transfer.

KEYWORDS: Kolmogorov-Wiener filter weight function, continuous random process, Walsh functions, Galerkin method,
power-law structure function.

NOMENCLATURE o’ is a process variance;

T is a time interval on which the input process data o is a proportionality constant between the process

are observed; ) structure function and the power-law term;
Z is a time interval for which the forecast should be o .
H are the Hadamard matrices;

made;
h(t) is a Kolmogorov-Wiener filter weight function; W are the Walsh matrices;
H is a Hurst exponent; W, are the components of the Walsh matrices;
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wal, (t) are the Walsh functions;

0,, are the coefficients multiplying the Walsh func-
tions;

g is a column vector of the coefficients g, ;

Left(t) is a left-hand side of the Wiener-Hopf integral
equation

Right(t) is a right-hand side of the Wiener-Hopf inte-

gral equation;
G, are the integral brackets;

G is a matrix of the integral brackets;
B, are the free terms in the linear set of algebraic

equations in g, ;
B is a column vector of the free terms B, ;
V,; are auxiliary integrals needed for the calculation

of the integral brackets;
V' is a matrix of the integrals V; ;

X, are auxiliary integrals needed for the calculation

of the function Left(t) ;
N is a number of points in the numerical integration.

INTRODUCTION

Random processes with a power-law structure func-
tion are widely used in different fields of knowledge. For
example, they are used in plasma physics, statistical phys-
ics, in the study of financial markets (see corresponding
references in [1]), in astrophysics [2, 3], in the description
of turbulent flows [4] and so on. In particular, random
processes with a power-law structure function may be
used for the telecommunication traffic description (see,
for example, [5—7]). The problem of telecommunication
traffic prediction is very important for telecommunica-
tions because of its applications to power saving, optimal
use of network resources, and detection of security attacks
(see, for example, 8, 9]). There are plenty of telecommu-
nication traffic models [10]. In the simplest models, tele-
communication traffic in systems with data packet trans-
fer is considered as a self-similar stationary random proc-
ess [10]. One of the known telecommunication traffic
models is the model where the traffic is considered to be a
stationary random process with a power-law structure
function [5]. In the case of a large amount of data, traffic
may be treated as continuous random process [5].

As is known [11], the Kolmogorov-Wiener filter
maybe applied to the prediction of stationary processes.
The Kolmogorov-Wiener filter is a linear stationary filter,
so this filter is rather simple and in our opinion it is quite
natural to apply it to the prediction of stationary random
process with a power-law structure function. There are
plenty of rather complicated approaches to the prediction
of random processes (see, for example, approaches to
traffic prediction [8, 9]). However, as far as we know, a
rather simple approach based on the use of the Kolmo-
gorov-Wiener filter has not been sufficiently developed in
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the literature, and so the results devoted to this approach
have scientific novelty.

Our previous papers [5-7] were devoted to obtaining
the Kolmogorov-Wiener filter weight function for the
prediction of a random process with the power-law struc-
ture function. Papers [5—7] were based on the truncated
polynomial expansion method, which has some draw-
backs. To overcome these drawbacks, in the framework of
this paper we propose to derive the unknown filter weight
function on the basis of a truncated Walsh function ex-
pansion.

The object of study is the Kolmogorov-Wiener filter
for the prediction of a random process with a power-law
structure function.

The subject of study is the weight function of the
corresponding filter.

The aim of the work is to obtain the weight function
on the basis of expansion into a truncated Walsh function
series.

1 PROBLEM STATEMENT
As is known [5], the Kolmogorov-Wiener weight
function for the prediction of a random process with a
power-law structure function is the solution of the follow-
ing Wiener-Hopf integral equation:

!drh(r)(cz —%|t—r|2Hj:02—%(t+ )™ (D)

The problem statement is as follows: to obtain the un-
known filter weight function as an approximate solution
of the integral equation (1) on the basis of a truncated
Walsh function expansion.

2 REVIEW OF THE LITERATURE

Our previous papers [5-7] were devoted to a search
for the unknown weight function on the basis of the inte-
gral equation (1) with the help of the truncated polyno-
mial expansion method. In paper [5] the polynomials or-
thogonal without weight were used, and papers [6, 7] are
based on the Chebyshev polynomials of the first and sec-
ond kind, respectively. The behavior of polynomial solu-
tions in [5—7] is almost identical.

It should be stressed that nowadays the truncated pol-
ynomial expansion method is rather popular for the solu-
tion of integral equation in different fields of knowledge
(see, for example, [12—14]). However, in the framework
of the problem under consideration polynomial solutions
have several drawbacks. Some polynomial approxima-
tions in [5—7] indeed give good results, but some ap-
proximations absolutely fail. In our opinion, the fact that
polynomial solutions lead to the product of very large and
very small numbers may cause such failures. Moreover,
the analytical calculation of the integral brackets in the
framework of the polynomial method meets difficulties.
Exact analytical expressions for the integral brackets may
be obtained, but they are too cumbersome and, in fact,
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they are not applicable in the framework of approxima-
tions of a rather large number of polynomials.

The truncated polynomial expansion method is a spe-
cial case of the Galerkin method [15], in the framework of
which the solution of an integral equation is sought in the
form of a truncated orthogonal function series. As men-
tioned above, the use of orthogonal polynomials has some
drawbacks. So, in order to avoid such drawbacks, we pro-
pose to use the orthogonal Walsh functions [16] instead of
polynomials. The Walsh functions are step ones [16], thus
allowing one to obtain analytical expressions for the inte-
gral brackets which are also applicable in the case of a
rather large number of Walsh functions. Moreover, the
use of the Walsh functions does not lead to the product of
very large and very small numbers, so Walsh function
solutions are applicable in a wider range of parameters
than polynomial ones.

3 MATERIALS AND METHODS
As is known, the Hadamard matrices are introduced
by the following recursive definition [16]:

() _| H AN 2) (1 1 j
SR R RO - . @)
L) ) -

The set of rows of the Walsh matrices coincides with
that of the Hadamard matrices, but the numeration of the
sets is not the same. The rows of the Walsh matrices are
numerated as follows [16]: the smaller the number of sign
changes in a row, the smaller the number of the row. The
Walsh functions in the Walsh numeration are defined on
the time interval t €[0,T] as follows:

Wk(lzm) ,t € |:0,l:|

m

Wk(zzm)vte(Lm’%}
wal, (t)=1 22

W) te{(2"‘—1)T ’T}

(€)

K2m ?

where m is the least natural number for which the ine-

quality 2™ >k holds. As can be seen, the Walsh func-
tions (3) are step ones, they may take only the values +1
or —1. The Walsh functions form a complete orthogonal
function system on the time interval t €[0,T].

The unknown weight function h(t) in the approxima-
tion of n=2" is sought in the form
h(7)= 2.9, wal, (). @
m=1

On substituting (4) into (1) one can obtain
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which after multiplying by wal, () and integrating over
t leads to the following system of linear equations:

n J—

Y Guln =B, k=1, (6)

m=1

TT
6. = [ Jageval, (vt (0 514" ] )
00

and
p o 2H
B, :Jdtwalk (t)(cz —E(t+z) j ()
0
The matrix form of the system (6) is as follows:
Gg=8B, )
where
Gll GIZ Gln Bl gl
G G.21 G‘22 . G:2n B- B.z ,g= 9, (10)
Gﬂl an Gnn Bn gn

The Walsh functions obey the property

wal, [IH),k:Z
T 2
wal, | ——t|=
2

—wal, [I+t),k12
2
which with account for the fact that the absolute value is
sign-independent leads to the following properties of the
integral brackets:

> an

Gks = Gsk )
G, =0 if k,s are of opposite parities,

(12)

see a similar derivation of (12) in [5]. So, a straightfor-
ward calculation is needed only for the integral brackets
G, where k>m and k,m are of the same parity. Ana-
Iytical expressions for the integral brackets may be ob-
tained on the basis of the fact that the Walsh functions are
step ones:

Gy = ZWQE)WJB” )VBS

B.,5=1

(13)

41



e-ISSN 1607-3274 PapioenexTpoHika, inpopmaTuka, ynpasminas. 2021. Ne 2
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2021. Ne 2

where

BT/n 3T/n a o
Vs = j J d'[dr(cs2 —E|t—r| j

(B-1)T/n(8-1)T/n

(14)
The integrals Vy; obey the properties
V[35 :V[3+1,5+1 5 V[ss :VBB . (15)
This can be demonstrated as follows:
BT/n  &T/n
Vs = J I dtdr(cs2 —%|t—r|2Hj:

(B-1)T/n(8-1)T/n

e
={X=t+—,y=1+—¢=
n n

(B+1)T/n (8+1)T/n

= j I dXdy[G ——|X Y| ) BHLE+L "

BT/n 8T/n

(16)

and

3T
j‘ tdt(cz —g|t —t|2H j =
(61T 2

{<—>r|t 1:| |r t|}
8T BT

n

j dtdr(c ——|t r| j 5 -
(8-1)T (B-1)T
n n

L'—.J ‘m

>

(17)

’—.3‘

So the matrix V takes the form

V11 V12 oV

V = V21 sz eV _

Vm
V12 V13 Vln (18)
V1

V12 V11 Vl,n—2

<

<
<
<

w

Il
<

Vln Vl,n—l Vl,n—z V11
and a straightforward calculation is needed only for the
first row in (18). Let us obtain analytical results for the

quantities V. First of all, from (14) one can see that
LI 18
TY of t 2H
Vi =| o— ——Jdt j dift-1" =
n 29 oy

(19)

T (BT

T 2 n n
:{y:t—r}:(cﬁj —%Idt I dy|y|2H_
BT

0

n

For the quantity V|, the integrand is of alternating sign

and
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t
H J‘dyyZH
0

which after a straightforward calculation leads to

2
0 o(sT-
n (2H +1

It

a I 2H+2
2H+2)\n ’

1)

For B >1 the integrand in (19) does not change the sign:

which after a straightforward calculation leads to

o) s
" n) 2(2H+1)

idea:
BT
B, = ZWk(ﬁn) J'

p=1 (B-1)T
n

G

(e ]

The free terms B, may be calculated by a similar

dt[cs2 —%(H z)ZHJ

which after a straightforward calculation leads to

B, _ZW(”){

[0

ey -

S

So the algorithm of obtaining the coefficients multi-
plying the Walsh functions may be formulated as follows:
1. Calculate V|, by formula (21).

2. Calculate Vg,

B =2 by formula (23).

3. Form the matrix V by formula (18).
4. Calculate the integral brackets G,, by formula (13)

where K >m and k,m are of the same parity

(22)

(23)

24)

(25)
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5. Calculate all the other integral brackets on the basis
of the properties (12) and form the matrix G of the inte-
gral brackets (see (10)).

6. Calculate the free terms B, by formula (25) and

form the column vector B of the free terms
7. Calculate the column vector g of the unknown co-

efficients by the following formula (26):
g=G'B. (26)

In order to verify the obtained solutions, the left-hand
side and the right-hand side of (1) should be numerically
compared for the obtained solutions:

Leﬂ(t):idrh(r)(cz " j

Right (t) = o> —%(I+Z)ZH .

27)

The obtained weight function h(t) is a step one, so
the function Left(t) may be calculated as

Left(t) = > h, X, (t) (28)
=1

where

i),

2 n n 2n
and
[id
X, (t)= j dt[cz—%h—rrHJ:
(B-1)7
BT (30)
T o f 2H
=0 ——— j d‘t|t—‘t|
n Z(HT
which yields
, o t (B—I)T 2H+1
n 2(2H+1) n
2H+1
_(t_ﬂj :|,t BT
n n
21_# (ﬂ_ jZHH_
n 2(2H+1)[\n
Xy (t)= G1)

n n

+(t_(B_1)T JMH},(B‘I)T <t<PT
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The mean average error (MAE) may be calculated in or-
der to estimate the accuracy of the obtained solutions:

MAE = Tl ! |Left(t) - Right(t)] . (32)

The integral (32) may be numerically calculated, for
example, as follows:

2N

1N
MAE ~ —
T

Lef (M]_

2N N (33)

In this paper, the value N =107 is used.
So the algorithm of the MAE obtaining is as follows:
1. Calculate the quantities h, by formulas (29).

2. Introduce the functions X, (t) by formulas (30).
3. Introduce the function Left(t) by formula (28).
4. Introduce the function Right(t) by formula (27).

5. Calculate the MAE by formula (33).

It should be stressed that the only integral that should
be numerically calculated is the integral (33) for the MAE
calculation. For all the other integrals, applicable analyti-
cal expressions are obtained.

—Right (

4 EXPERIMENTS
The numerical calculations are made in the Wolfram
Mathematica package. The results for the following set of
parameters are investigated:
T=100,z=3,H=08,6=12, a=3-10". (34)
The results for the polynomial solutions for the parame-
ters (34) were investigated in [5—7]. It was shown that the
approximations of a number of polynomials from 9 to 15
absolutely fail (the corresponding MAE is greater than
10%, the graphs of Left(t) and Right(t) are totally differ-
ent). On the basis of the Walsh functions the following
MAE are obtained, see Table 1.
As can be seen, the approximations of n=2" Walsh
functions are rather accurate, and the accuracy increases
with m. For graphical visualization, the graphs of Left(t)

and Right(t) are given for the approximation of 256

Walsh functions, see Fig. 1.
As can be seen from Fig. 1, an almost ideal coinci-
dence of the curves takes place.
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Table 1 — MAE for the parameters (34) for the approximations
of N Walsh functions rounded off to two significant digits

n MAE
2 3.2-107
4 24107
8 9.2-107
16 7.4-107
32 1.1-10™
64 2.0-107
128 3.8:10°°
256 7.6-107
5L - ——-Leftz)
—Right(¢}

=]

=]
o
T

=]
n

The left-hand and the right-hand
sides of the integral equation (1)

=]

Figure 1 — Comparison of the left-hand and right-hand sides of
eq. (1) for parameters (34) for the approximation of 256 Walsh
functions.

The following set of parameters is also investigated:

T=1000, z=3, H=08, 6=12, a=8-10". (35)
As indicated in [5-7], in fact only the approximation of
two polynomials is valid for the parameters (35). As for
the Walsh solutions, we have the following, see Table 2:

Table 2 — MAE for the parameters (35) for the approximations
of N Walsh functions rounded off to two significant digits

n MAE
2 3.2:107
4 3.8:107
8 4.1-107
16 4.1-10*
32 6.0-10°
64 9.8-10°¢
128 1.7-10°

256 3.2-1077

So the solutions based on the Walsh functions give
good results for the parameters (35). For graphical visu-
alization, the graphs of Left(t) and Right(t) are given for

the approximation of 256 Walsh functions, see Fig. 2. As
can be seen from Fig. 2, an almost ideal coincidence of
the curves takes place.

It should also be stressed that even for the parameters
(34) the Wolfram Mathematica is not able to build a graph
for Left(t) for a number of polynomials greater than 18.
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The method based on the Walsh functions allows one to
treat several hundreds of functions.

o
T

----Lefi(1)
—Right(t)

[=]

0 0 £00
200 400 500

Time (0.}

The left-hand and the right-hand
sides of the integral equation (1)

Figure 2 — Comparison of the left-hand and right-hand sides of
eq. (1) for parameters (35) for the approximation of 256 Walsh
functions

So one can conclude that the method based on a trun-
cated Walsh function expansion works very well and the
accuracy of the approximations of rather high numbers of
Walsh functions are very accurate.

5 RESULTS

The Kolmogorov-Wiener filter weight function for the
prediction of a random process with a power-law structure
function is investigated. The investigation is based on the
Galerkin method, in the framework of which the unknown
weight function is sought in the form of a truncated Walsh
function series. An algorithm of the weight function deri-
vation is developed, this algorithm does not require a nu-
merical calculation of the integrals.

In order to verify he results, the mean average error
(MAE) of the residual (the difference of the left-hand side
and the right-hand side) of the integral equation (1) is
introduced. The sets of parameters (34) and (35) are in-
vestigated (the corresponding sets were also investigated
for polynomial solutions [5-7]). It is shown that the
Walsh function approximations give good results and the
approximations of a rather large number of the Walsh
functions are very accurate (they lead to a very small
MAE).

It is found that the Walsh function solutions are much
better than the polynomial ones in the framework of the
problem under consideration.

6 DISCUSSION

In this paper we propose to realize the Galerkin meth-
od for obtaining the weight function on the basis of a
truncated Walsh function expansion. The corresponding
algorithm of the weight function derivation is developed.
In contrast to the truncated polynomial expansion method,
the proposed algorithm have the following advantages:

1. The numerical calculation of the integrals is not
needed for the weight function obtaining (the only nu-
merical calculation of the integral is needed for MAE
obtaining, not for the weight function obtaining). In par-
ticular, applicable analytical expressions for the integral
brackets are obtained.
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2. The calculation of the left-hand side of the Wiener-
Hopf integral equation does not require numerical calcu-
lation of the integral, the corresponding analytical expres-
sion for the function Left(t) is obtained.

3. The use of the Walsh functions does not lead to the
products of very small and very large numbers, which can
hardly be calculated numerically.

It is shown that for the same parameters the solutions
based on the Walsh functions are much better than the
polynomial ones. They are applicable in a wider range of
parameters, and they lead to far smaller values of the
MAE (the MAE for the 18-polynonial approximation for
the parameters (34) is of the order 10, the MAE for the
256 Walsh function approximation is of the order 107).
The use of the Walsh functions allows one to numerically
treat the approximations of several hundreds of Walsh
functions (in contrast to only several tens of polynomials).
Moreover, there are no Walsh function approximations
that absolutely fail, in contrast to polynomial ones.

CONCLUSIONS

The Kolmogorov-Wiener filter weight function for the
prediction of a random process with a power-law structure
function is investigated on the basis of a truncated Walsh
function expansion. It is shown that in the framework of
the problem under consideration the Walsh function solu-
tion is much better than the polynomial solutions investi-
gated in the authors’ previous papers.

Random processes with a power-law structure func-
tion are widely used indifferent fields of knowledge (in
particular, for the telecommunication traffic description).
So the results of this paper may be useful for practical
prediction of stationary random processes with a power-
law structure function in various fields of knowledge (in
particular, for telecommunication traffic prediction in
systems with data packet transfer).

The scientific novelty of the paper is the fact that for
the first time the weight function under consideration is
found on the basis of a truncated Walsh function expan-
sion. The proposed algorithm of the weight function deri-
vation does not lead either to numerical calculation of
integrals or to the product of very large and very small
numbers. It is shown that for the problem under consid-
eration the Walsh function solutions are much better than
the polynomial ones.

The practical significance is that the obtained results
may be applied for the practical prediction of stationary
random processes with a power-law structure function in
various fields of knowledge.

Prospects for further research are to obtain a practi-
cal prediction on the basis of the obtained results.
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BepecuteT «JlHinpoBcrbka [lomitexHikay, JHinpo, YkpaiHa.

AHOTAIIA

AxTyanbHicTh. Po3risnyTo BaroBy ¢yHkuito ¢insrpa Konmoroposa-Binepa asist mporao3yBaHHs HEEPEpBHOrO CTAIliOHAPHOTO
BUIIa/IKOBOTO TIPOIIECY 31 CTENEHEBOIO CTPYKTYPHOIO DYHKIIi€FO.

Meta podoTu. MeToro poboTu € po3poOUTH aNrOPUTM OTPUMaHHS HAOIIKEHOTO PO3B’SA3KY AJIs BaroBoi QYHKIII, IKU HE Mic-
TUTH YHCIOBOTO OOYHMCIICHHS 1HTETPAJIiB.

Metoa. BaroBa ¢yHKIis, 0 PO3MIISAAETCS, MIIIOPSIIKOBYETECS IHTETpaJbHOMY piBHSHHIO Binepa-Xonda. ITomryk TodHOTO
AQHAJIITHYHOTO PO3B’S3KY BiJMOBIZHOTO IHTErPAIBPHOIO PIBHAHHS CTHUKAETBCS 3 TPYIHOLIAMH, TOX IIYKA€ThCS HAOIMKCHHI
Po3B’s130K a1 BaroBoi QyHKIIT B pamkax Meroxy ['anepkiHa, sikuid 6a3yeThcsi Ha OCHOBI 00ipBaHOTO PO3BHHEHHS B Psi 32 (DyHKIis-
MH Yomma.

Pe3yabTaTn. Po3pobieHo BinnoBinHui aaropuT™ oTpuMaHHs BaroBoi QyHKIT. Yci iHTerpaiy 004YHCICHO aHATITHYHO, a HE Y-
cenbHO. Bijblie Toro, mokasaHo, 10 TOYHICTh OTPUMAHHUX HAOJIMKEeHb, 110 0a3yloThess Ha QYHKIiIX Youa, € 3Ha4HO KPaIloko 3a
TOYHICTB MOJIIHOMIaJIbHUX PO3B’S3KiB, OTPUMAHUX y TMOIEpeIHiX podoTax aBTopiB. Po3B’s13kH, 1m0 0a3yroTbes Ha QyHKIIAX Yooma,
€ 32CTOCOBHHMH y HIMPIIOMY Aiana3oHi MapaMeTpiB, HK MOTIHOMIaIbHI PO3B’A3KH.

BucnoBkn. Po3pobieno anropurm orpumanHs BaroBoi ¢yHkuii ¢ineTpa Konmoroposa-Binepa mias mporHosyBaHHS Hemepe-
PBHOTO CTaIliOHAPHOTO BUITAAKOBOTO HMPOIECY 31 CTEHEHEBOIO CTPYKTYpHOIO (yHKITi€t0. OCHOBOIO alrOPUTMY € PO3BHHEHHS 32 (yH-
KuisiMu Yoomra. Ha BinMiHy Bix moniHOMIanbHUX PO3B’S3KiB, HOCTIIPKEHUX Y MUHYJIMX CTaTTIX, PO3POOJICHUH QJITOPUTM Ma€ HAacTy-
mHi nepeBaru. [lo-mepiire, yci iHTErpaau 00YHUCICHO aHATITUYHO, i HEeMae MOTPeOH B YHCIOBOMY PO3paxyHKy iHTerpaitis. [lo-apyre,
npobiema JoOyTKy Ay’e MajMX Ta JyXe BEJMKHX YMCeN BiACYTHSA B paMKax 3allpONOHOBAHOro anropurMmy. Ha Ham nmormsz, ue €
HOPUYMHOIO TOTO, IO TOYHICTH PO3B’SI3KiB, 110 0a3yIOThes Ha PyHKIisIX Youia, € Kpalok 3a TOYHICTh MOJIIHOMIaJIbHAX PO3B’SI3KiB
Ui 6araTh0X HAOMIKEHb, 1 1€ € MPHYMHOIO TOTO, IO PO3B’S3KH HA OCHOBI (PYHKIIH Y0JIIa € 3aCTOCOBHIMH Y MIUPLIIOMY Aiana3oHi
rmapaMeTpiB, HK TOJTIHOMIiabHiI po3B’3KH. Pe3ynpraTit po60TH MOXKYTh OYTH 3aCTOCOBaHi /10, HAPHUKIIA/, TPOrHO3YBAaHHS Ha MPAaK-
THIi TpadiKy B TEIEKOMYHIKalifHUX CHCTEMaX 3 IIAKETHOIO Iepeladeio JaHHX.

KJIIOYOBI CJIOBA: BaroBa ¢ynkuis ¢instpa Konmoroposa-Binepa, HenepepBHU BHIagkoBUi mpormec, GpyHKnii Youma,
meTox ["anepkina, creneHeBa CTPYKTypHa QYHKIIS.
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AHHOTALNUA

AKTyanbHOCTB. PaccmoTpena BecoBast ¢yHkius ¢uibtpa KomMoroposa-BuHepa [uis mporHO3UpOBaHUS HENPEPHIBHOTO CTa-
[HOHAPHOT'O CITyYaifHOTO MpoIlecca CO CTENCHHOW CTPYKTYPHOH QYHKIUCH.
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Leab padorsl. Llenbro paboTs! sBIseTCS pa3paboTaTh aNTOPUTM MOTYUCHUS TPHOIIIKEHHOTO PEeLIeHHs Ul BeCOBOH (DyHKIMY,
KOTOPBIH HE COJCPIKHUT YUCICHHOTO BHIYMCIICHHSI HHTEIPAJIOB.

Metoa. PaccmatpuBaeMas BecoBasi (pyHKIMSI, TOJUUHSCTCSI HHTErpaIbHOMY ypaBHeHHI0 Bunepa-Xonda. ITouck TouHoro ana-
JUTHYECKOTO PELIEHHUs COOTBETCTBYIOLIEr0 MHTETPANbHOTO yPABHEHUsI 3aTPyHEH, TaK YTO HILETCS MPUOIMIKEHHOE PEICHUE IS
BECOBOH (yHKIMH B paMKax MeToja ['anepkuHa, OCHOBBIBAEMOT0 Ha 0O0PBAHHOM PA3JI0KEHUH B sl 0 GYHKIUSAM Y OJIIIIA.

PesyabTaThl. Pa3zpaboTan cOOTBETCTBYIOMINI aarOpUTM IONyYeHHST BECOBOW (YHKIMH. Bce WHTErpasibl BEIYMCICHBI aHATHTH-
9YeCKH, a He YHCICHHO. boiee Toro, moka3aHo, YTO TOYHOCTh HMOJyYESHHBIX NPUONIDKEHUH, 60a3upyeMbIX Ha (GYHKOUSIX Youma, 3Ha-
YUTEJBHO JIy4Ille, 9eM TOYHOCTh ITOJMHOMHANBHBIX PELISHHH, MOIYyYeHHBIX B MPEABITYIINX padoTax aBTOPOB. Pemienus, xoTopsie
6azupyrorcs Ha GyHKIUSIX Y oIa, IPUMEHUMBI B 00JIee IIMPOKOM JMala30He MapaMeTpoB, YeM ITOJIMHOMHUAIBHBIE PEIICHNS.

BriBoasl. Pazpaboran anroputm nosydeHus BecoBoil pyHkimn ¢punsrpa Konmoroposa-Bunepa aiist mporHo3upoBaHus CTaIHO-
HApPHOT'O HEMPEPBHIBHOTO CIIyYaiiHOTO MPOIIECCca CO CTENCHHOW CTPYKTypHOU (yHKIHeH. OCHOBHON alrOpUTMa €CTh PA3JIOKCHUE TI0
¢bynknusaM Younma. B otnuune oT MOTHHOMHANBHBIX PEIIEHUH, HCCIEIOBAHHBIX B MPEbIIYIINX CTAaThsAX, pa3pabOTaHHbIH alrOPHUMT
HMeeT CleAyIolue MPeuMyIiecTBa. Bo-nepBbIX, Bce HHTErpajbl BHIUMCIEHBI aHATMTHYECKH, U HET HEOOXOAUMOCTH B YHMCIEHHOM
BBIYHCIICHUN HHTETpPanoB. Bo-BTOpHIX, MpobiiemMa NMpOW3BEAEHHSI OUCHb MANBIX M OYECHb OONBIINX YHCEN OTCYTCTBYET B paMKax
MIPEUTOKEHHOTo anroputMa. Ha Hamm B3Tmsam, 3To SBISETCS IPUYHUHON TOTO, YTO TOYHOCTH PEIICHUH, OCHOBBIBAIOIIUXCS Ha (DYHKIIH-
sIx Yo, JIydIle, 9eM TOYHOCTb ITOJMHOMHAIBHBIX PEIICHUH, W 9TO SBIISETCS IPUIMHOI TOTO, YTO pEelIeHHs] Ha OCHOBE (DyHKIHI
VYomnma npuMeHHMBI B 60Jiee MIMPOKOM JUaIa3oHe IapaMeTpoB, YeM NMOJIMHOMHANIBHEIE pelIeHus. Pe3ybraTsl paboTsl MOTYT OBITH
INPUMEHUMBI K, HallpuMep, IPOrHO3UPOBAHMIO Ha IPaKTUKe Tpadduka B TeIEKOMMYHHUKAIMOHHBIX CHCTEMax C MaKeTHOW Iepenayeit
JTaHHBIX.

KJIFOYEBBIE CJIOBA: BecoBas ¢ynkuus ¢uiastpa Kommoroposa-Bunepa, HenmpepbIBHbIN CilydaiHBIA mpouecc, GyHKIUH
VYomura, meton ['anepkuna, cTeneHHast CTpyKTypHast QyHKIHS.
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