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ABSTRACT
Contex. The article deals with the actual problem of numerical optimization of slowly computed unimodal functions of one
variable. The analysis of existing methods of minimization of the first and second orders of convergence, which showed that these
methods can be used to quickly solve these problems for functions, the values of which can be obtained without difficulty. For slowly
computed functions, these methods give slow algorithms; therefore, the problem of developing fast methods for minimizing such

functions is urgent.

Objective. Development of a combined third-order Newtonian method of convergence to minimize predominantly slowly
computed unimodal functions, as well as the development of a database, including smooth, monotonic and partially constant
functions, to test the method and compare its effectiveness with other known methods.

Method. A technique and an algorithm for solving the problem of fast minimization of a unimodal function of one variable by a
combined numerical Newtonian method of the third order of convergence presented. The method is capable of recognizing strictly
unimodal, monotonic and constant functions, as well as functions with partial or complete sections of a flat minimum.

Results. The results of comparison of the proposed method with other methods, including the fast Brent method, presented. 6954
problems were solved using the combined Newtonian method, while the method turned out to be faster than other methods in 95.5%
of problems, Brent’s method worked faster in only 4.5% of problems. In general, the analysis of the calculation results showed that
the combined method worked 1.64 times faster than the Brent method.

Conclusions. A combined third-order Newtonian method of convergence proposed for minimizing predominantly slowly
computed unimodal functions of one variable. A database of problems developed, including smooth, monotone and partially constant
functions, to test the method and compare its effectiveness with other known methods. It is shown that the proposed method, in
comparison with other methods, including the fast Brent method, has a higher performance.

KEYWORDS: unimodal function, Brent method, combined Newton minimization method, method speed.

ABBREVIATIONS

BM is a Brent method;

DS is a dichotomous search;

GSS is a golden section search;

EDS is an economical dichotomous search;

MF is a minimizing function;

N30 is a Newton’s method of the third order of
convergence.

NOMENCLATURE

f(x) is an unimodal function;

G =[a, b] is an uncertainty segment;

€ is a calculation accuracy;

E =p'“ is an efficiency index;

p is an order of convergence of the method;

o 1s a number of calculations;

4 is a number close to machine zero;

Xi is a current point of the iterative process, a;, b; are
the current boundaries of the uncertainty segment at
iteration with number i, § is a number close to machine
Zero;

h =a —a)
excessive convergence between a new point and the
boundaries of the uncertainty segment to hamper the
slowdown of the computational process;

o < 0.5 is a coefficient;

is a minimum gap restricting the
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ky is a number of calls of the GSS to the MF necessary
to solve the problem.

INTRODUCTION

Numerical optimization of one-variable functions is
one of the most common computational problems [1-4].
In practice, minimization of unimodal functions [5—8] that
may have an extremum in a point or segment of the
uncertainty segment where the function is constant is one
of the most frequently used procedures. Most often, it is
for unimodal functions that numerical minimization
methods are developed.

First- and second-order convergence methods applied
to solve these problems quickly and without difficulties
[9-11]. The difference in their use becomes only visible
when the computation time required to calculate the
minimizing function becomes many times greater than the
execution time of computational operations that
implement the optimization method. Although the method
itself operates fast, it is the slow MF computations that
eventually slow down the solution algorithm.

1 PROBLEM STATEMENT
The class of slow-computed MF’s is very broad.
Typical examples are functions obtained by solving
computational problems for theoretical models of various
technical objects, where mathematical modeling involves
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one or more multidimensional differential equations,
often nonlinear. The numerical methods used to solve
these problems usually require a large amount and high
accuracy of calculations, thus consuming a significant
amount of computer time to calculate a single MF value.

The proposed method is designed to find the abscissa
x of the minimum of the unimodal one-variable function
f(x) on the segment G = [a, b] up to &.

During the search for a solution, at each iteration, a
part of the current uncertainty segment G is cut off until
the condition

o, —a|<e[x|+3. (1)

The value of the parameter & was chosen from the
following considerations. If the arithmetic type of
machine variables equals to 2m significant decimal digits,
then we can put § = 107", which allows you to confidently
operate with small numbers, without risking to affect the
result of rounding errors when performing arithmetic
calculations [16].

2 REVIEW OF THE LITERATURE

Even for fast-computed functions, when a large
number of calls to the algorithm is required to achieve the
result, it also becomes slow. Such problems include, for
example, multi-parameter optimization of dynamic
systems by performance criteria, where one-dimensional
optimization is used [12, 13].

For algorithms with slow-computed functions and
intrinsically slow algorithms, a significant efficiency
factor is the number of k calls to the MF, which
determines the speed of the algorithm and the
corresponding method. Obviously, the less calls are
required to the MF, the higher the speed of the algorithm
and method.

For local minimization of one-variable functions,
numerical first-order convergence methods are usually
used. The preferred ones are the dichotomy search [2, 5],
the golden section search [14] and the economical
dichotomy search, the latter being superior in speed [15].
More often, second-order convergence methods are used,
among which the leadership belongs to the Brent
combined parabolic method [16]. The first-order methods
are offer guaranteed reliability, however, in comparison
with BM, with the same accuracy, they require a
significantly larger number of k calls to the MF.

Along with BM, the Newton’s analytic method [2, 9,
10], which has a second order of convergence, is used,
which is highly efficient, especially when minimizing
smooth functions. However, in terms of speed, when
applied to slow-computed functions, a similar method
based on numerical determination of the first derivative is
noticeably inferior not only to BM, but even to first-order
convergence methods. On this basis, it believed that for
MEF’s requiring numerical differentiation, the Newton
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method does not have any competitive advantage over the
above-mentioned methods.

For optimization, we can try to apply new
interpolation methods of third-order convergence, which
give a quick solution to nonlinear equations [17]. When
applied to smooth functions for the first derivative of the
MEF, these methods can yield a quick solution to the
problem under consideration. The study of this
opportunity is one of the objectives of this article.

In mass computing processes, monotonous, constant,
or partially constant functions are often minimized. The
Brent method applied to such functions does not give a
gain in speed as compared to first-order methods, while
monotonicity or constancy of the MF can be determined
several times faster than the BM solution or one of the
first-order methods. To study the opportunity to accelerate
the minimization procedure for this class of functions is
one of the goals of this study.

The following sections of the article discuss the
method to attain the two above-mentioned objectives.

3 MATERIALS AND METHODS

The method includes two procedures to find the
minimum MF

— Newton’s method of third order convergence,

— method to identify its monotony and constancy
segment.

The method is based on the provisions of [17], which
outlines the idea of solving a nonlinear equation for

smooth functions using the two-point iterative
Weerakoon-Fernando method
2f(x
n + n
. f(x,) 2)
Xy = Xy ————.
£'(x,)

In relation to the considered problem, one should
search for the zero of the first derivative of the MF in
which its minimum is achieved, therefore, to use the
method (2), it is necessary to replace the MF in it with its
first derivative, and the latter with the second derivative
of the MF.

Method (2) has a third order of convergence with the

efficiency index Y3 ~144 [17]. It works faster than the

Newton method since its efficiency index V22141 is
less (by the efficiency index we mean the quantity
E= pl/cr).

In accordance with the proposed method, at each
iteration, the MF is calculated only once; therefore, for
6 = 1, the efficiency index (3) for polynomial
approximation will be E = 3 against the Newton method
for which E = 2.

In the process of calculations, a sequence of points
P(@i) = (Xo, Yo), (X1, Y1), ---,(X;, Vi) is formed. The necessary
derivatives of the MF will be found by polynomial
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approximation of the MF with respect to the last n + 1
points of the sequence P. Discarding the previous points,
we obtain the sequence P(n).

Imagine the MF polynomial

y(x) = Ze L0 =T,(0.L, (x) = ;

(3)
L., 00=L(x)(x=x);i=0,1..,n-1
and find the unknown coefficients
y1 - yo yn _Tn—l(xn)
e, =V,e = yerns € = )
‘ yo 1 Xl - XO I-n (Xn) (4)
The formulas to calculate the derivatives of the

function y(x) are obtained using recurrence formulas
similar to the Aitken scheme [18-20]

Y = Ze L3, L1(x) = 0,

L, (X) = L'(xX)(x=x)+ L (x), )
i=0,1,..,n-1,

y'(x) = Ze L (0.1, (x) =0,

" . ' (6)
L (0 =L (00— %)+ 2L (x),
i=0,1,.,n-1.
Now method (6) takes the form
_2y(x,)
n+l — n CINES
Y )+ Y (%)
Vx) (7
X, =X, ————.
y'(%,)

The above considerations regarding the effectiveness
of the methods correspond to the exact MF and its
derivatives, however, in our case, the application of

formulas (2)—(7) gives approximate dependences,
therefore, the effectiveness of such a process requires a
further study.

The solution finding process begins with

determination of the initial segment of uncertainty with
the boundaries a, = a, by = b and two initial points

1 b,(1-
X0 :W’yo — f(XO)’
Xl = a()(l_g);rb()(l—‘rs)’yl = f(Xl)‘

If yy = y;, then the solution is found in kK = 2 MF
calculations.

Otherwise, in accordance with the dichotomy method,
a new segment of uncertainty [a;, b;] is built by removing
from segment [a,, by] segment [a,, Xo] or segment [X;, by]
and the third point is determined
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k=2 = 1) ®)
Next, a parabola built at three points
Y(X) =C, +C,(X—X,) +Cy (X=X, )(X—=X,), ©)
where
C, = V.G, = Yi— Y c, = Vs — Yo —Ci (% —Xo)_
X — %, (X = X)X —X%y)

For ¢, > 0, the parabola has a minimum at the point

1 c]
X =7 x0+x1—g :

If a; < x; <b;, then the point is considered
conditionally suitable, since verification of x3 is required
to meet the condition

a +h <x<b -h. (10)

If and (5) is satisfied, then the abscissa of the new
point is obtained and now we can calculate its ordinate
¥s = f(xs).

In cases when parabolic approximation does not yield
a new point, it is determined by the half division method
similarly to (8).

Then, the left or right segment of the uncertainty
segment is again discarded, thereby giving its reduced
analogue [a,, bs].

Subsequent points are determined similarly, that is,
using a parabolic approximation. The only difference is: if
the point is suitable, then it is only the initial
approximation for the Newtonian process, which is
represented by formulas (4)—(7). In cases where parabolic
approximation does not yield a result, the last point of the
sequence P is taken for the initial approximation for
method (4)—(7).

If in this case the found abscissa x falls into the
current segment of uncertainty G; = [a;, b;], but does not
satisfy condition (10), then it is corrected by the formula

an

a, +h,x<a +h,
X =
b, —h,x>b -h.

If for k > 3 at the current iteration neither the parabolic
method nor the method (4)—(7) gives a result, then the
new point is determined by the half division method. The
process is repeated until the convergence condition (1) is
satisfied.

While searching for the abscissa of the minimum, we
also monitor the monotonicity and presence of constancy
segment of the MF.

To monitor monotonicity, upon completion of the
current iteration, sequence P is sorted by argument. If,
after such sorting, the corresponding sequence of MF
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values turns out to be monotonic, then starting from a
certain iteration, the monotonicity of the MF is monitored.

It is known that the monotonicity of a unimodal
function is detected in 4 MF calculations [8]. However,
with a small number of points of the sequence P,
monotonicity monitoring can slow down the optimization
process, in cases where the MF is not monotonic.

Therefore, this monitoring is only advisable when a
true monotonicity of the function under minimization is
highly probable.

Monotonicity monitoring is based on the number of k
calculations of the MF necessary to achieve the result.

If the sorted sequence P gives a monotonic sequence
of ordinates, then two additional calculations of the MF at
one of the ends of the segment can quickly give a solution
to the problem.

So if the sequence turns out to be increasing, then it
suffices to calculate at the points X =a and x =a + ¢. If,
by adding the ordinates of these points to the above
mentioned sequence, the monotonic sequence is obtained
again, then the solution is X =a.

A descending sequence is identified similarly, point
X = b being the solution to the problem.

The procedure to identify constant functions and
presence of individual sections of constant MF allows to
accelerate the MF optimization. The procedure is very
simple and obvious: if the sorted sequence P contains
three points with the same ordinates, then the abscissa of
any of them is a solution to the problem. This procedure
does not require calculation of new MF values, however,
for a number of functions it can significantly reduce the
number and time of calculations.

4 EXPERIMENTS

To verify the method and other research goals, a
problem base was built, its scope is determined by the
product of the number of MEF’s used and the
corresponding variants of uncertainty segments.

In numerical experiments, were used 26 extreme (the
minimum of which is inside the uncertainty segments),
two monotonic (increasing and decreasing), one constant
and one partially constant functions.

Variants of the uncertainty segments for these MF’s
were found based on the following considerations. Each
function was associated with a sufficiently wide segment
G = [a, b] and using the GSS, which was used as the
control method, the abscissa X, was determined by
solving the problem accurate to machine zero. Then we
randomly found two points ¢, d on the segment [a, b], so
that d — ¢ > t(b — a). This allowed us to obtain the
uncertainty segments [c, d] to solve the set of problems
for a single function.

In the calculations, parameter t was set from the range
0.25 <t < 1, which made it possible to vary the length of
the experimental segments for a certain function from a
quarter to the full length of the segment G. The functions
on the segments [, d] could be either monotonic, partially
constant, or extreme.
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When conducting a computational experiment, the
solution of X problems was found accurate to € = 10°° for
arithmetic quantities supporting 19-20 significant digits.
In the calculations, o = 0.12499 was assumed.

The calculation results were compared with the
indicators DS, EDS, GSS and BM.

The Brent method is programmed according to the
original procedure [16], EDS is encoded based on the
algorithm described in [15], DS and GSS are not difficult
to encode.

5 RESULTS

To study the efficiency of the Newtonian third-order
convergence procedure, only those segments [c, d] and
those functions that gave extremal problems for which the
abscissa of the minimum of the MF fell inside these
segments were selected.

A complete set of mass calculations was performed
for all 30 functions for T = 0.33. In total, this amounted to
7.530 problems. Of these, 2.566 were identified as
problems with monotonous functions. Using the
combined Newtonian method, 7.215 were solved faster
(95.8%), the Brent method was superior for only 4.2% of
the problems. By the Brent method, the problems were
solved within 127.461 calls to the MF; the combined
method required 76.665 calculation of the MF. That is,
the latter worked 1.66 faster than the first.

6 DISCUSSION

A typical optimization example is shown in Figure 1.
Given: the MF and the boundaries of the segment of
uncertainty [c, d]. To solve the problem, 5 methods were
used: DS (Bisec), GSS (Gold), EDS (Eds), BM (Brent),
N3o (N3o).

The lowest performance was shown by the DS, when
used to solve the problem, it was required to calculate the
minimized function 44 times. The GSS gave 31
calculations, the EDS required 26 calculations, the Brent
method —10, and the proposed Newtonian method gave
the best result — 8 calculations.

Vo

18 |
16 f(x)=e" —cos(x+1) l
c=0.1,d=26 |
14 kBisec = 44
kGold = 31
12 1 KEds = 26
10 - kBrent = 10
kN3o = 8
8

6 1y

TN
N,

0.0 0.5 1.0 15 2.0 2.5 X

Figure 1 — Extreme function minimization results
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When performing mass calculations on extreme
problems for 26 functions, the minimum of which is
inside the uncertainty segments, it was found that the
Newtonian method is 13% faster than the Brent method.
When solving problems, the Brent method required
63.092 calls to the MF, the Newtonian method — 55.873
times. In 4.830 problems out of 5.131, the Newton
method worked faster (94.1%) and only in 301 cases the
Brent method worked faster (5.6%). Thus, the Newtonian
method showed the best result in mass calculations.

It was established that the Brent method had
advantages over the Newton method only for slowly
varying functions on the uncertainty segment. That was
the function f(x) = 1000 (x-2.8)* — 1.6. For example, on
segment G = [2.2, 3.2] was obtained kBrent = 25,
kN3o = 31.

For any function in the minimization process, the
monotonicity identification procedure described in
Section 2.2 was applied.

As mentioned, monotonicity identification requires 2
additional function calculations. Therefore, in order not to
lose speed, on the one hand, the procedure should be
applied only at a high probability that the function is
monotonic, and, on the other hand, the speed of the
procedure should not be inferior to the Brent method for
extreme functions, an example of which is shown in
Figure 1.

Conducted above analysis showed that for the used
extremal problems BM works approximately three times
faster than the GSS. Therefore, the identification of the
monotonicity of the function should be included if two
conditions are satisfied: the ordinates k, — 2 of the
calculated points must form a monotonic sequence and
the condition ky, > K¢/3 must be satisfied.

So for the one shown in Figure 1 example of k; = 31.
Therefore, monotonicity identification should be carried
out when k, = 31/3-2 = 8 ordinates of the calculated
points give a monotonic sequence. Having computed the
MF at two more points, we obtain the speed k, =8 +2 =
10, which corresponds to the speed of Brent method for
extreme MF.

Figure 2 shows an example of a function monotonic
on a segment of the uncertainty of a function. Obviously,
the Brent method’s speed approximately corresponds to
that of the GSS. At the same time, the monotonicity
identification procedure made it possible to increase the
speed by approximately a factor of three, which
corresponds to the speed of the Brent method for extreme
problems, the analysis of which presented above.

In order to verify the efficiency of the combined
method combining Newtonian search with the
monotonicity identification procedure, mass calculations
were carried out for 26 extremal and two montonic
functions for the segments [C, d] with the parameter
T = 0.33. In total, this yielded 7.028 problems, of which
2.075 turned out to be problems with monotone functions,
the rest of 4.953 were extremal.
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kBisec = 42

40 kGold = 30
kEds = 10
kBrent = 27

30 kN3o = 10

20

10 \\..

0

0.5 1.0 1.5 X

Figure 2 — Monotonic function minimization results

The combined method under consideration turned out
to be the best, which solved all the problems having made
74.727 calls to the MF. The Brent method required
113.603 MF calculations. Thus, the combined method
completed the problem 1.52 times faster.

Finally, the third kind of optimization problems are
problems with fully and partially-constant functions. An
example of such a function shown in Figure 3. The
function has a flat bottom, any point of which is a
solution to the problem.

¥ T

c=0.5,d=06.0

1.0 1 kBisec = 46

0.8 A kGold 31
kEds = 6

0.6 kBrent = 29
kN3o = 4

0.4

0.2 1

0.0

| [
-0.4 /
N/

| f(x)=Max(cos x, —0.6)|

0 2 4 X
Figure 3 — Partial constant function minimization results

Identifying the minimum point of such a function is
quite simple. In this case, no additional calculations are
required. As mentioned above, if, during the calculation,
sequence P gets three points with the same abscissas, then
any of them will be a solution to the problem. For a
problem with a function shown in Figure 3, the algorithm
finds such a solution in just 4 calls to the function.

It is noteworthy that the EDS for monotonic and
partially constant shows the same or close to the Newton
method speed of solving problems. This is due to the fact
that the described improvements are implemented in this
method.
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CONCLUSIONS

The paper considers and solves the problem of fast
minimization of unimodal functions of one variable. A
combined third-order Newtonian method of convergence
is proposed for minimizing predominantly slowly
computed unimodal functions of one variable. A database
of problems has been developed, including smooth,
monotonic and partially constant functions to test the
method and compare its effectiveness with other known
methods. The performance of the proposed method is
compared with other methods, including the fast Brent
method. Analysis of numerous data obtained using
computational experiments showed that the proposed
method has the highest performance. For smooth extremal
functions, the method works 13% faster than Brent's
method, for monotone functions its speed is 3 times
higher, for partially constant functions the speed of the
method is even higher.

The scientific novelty of the results obtained lies in
the fact that for the first time a method for minimizing the
minimization of unimodal functions of one variable was
proposed, which in general works faster than the well-
known fast methods. The most effective method for
minimizing monotonic, constant and partially constant
functions. The efficiency of the method is achieved
through the use of a computational scheme that
guarantees the third order of convergence to the minimum
point of the optimized function. The practical value of the
results obtained lies in the fact that the proposed method
generally works faster than the known methods, which
makes it possible to reduce the optimization time for
unimodal functions. Prospects for further research are that
the developed method can be extended to other functions,
for example, to periodic, bimodal and other types of
functions.
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KOMBIHOBAHUI HBIOTOHIBCHKOI METO/I TPETHOI'O MMOPAJKY 3BI)KHOCTI JIJISI MIHIMI3ATIIIQ
®YHKIIA OJHIET SMIHHOIO

Koausuko B. A. — 1-p TexH. Hayk, mpodecop kadeapu craHmapTH3allii, METPOJIOTii Ta YIpaBIiHHSA sKicTIO, IlomiTexXHIuHMIA
iHcTuTyT CHbipchKOTO (enepansHoOro yHiBepcurery, KpacHosperk, Pocis.

I'purop’eBa O. A. — KaHA. TeXH. HayK, JIOLEHT KadeIpu CTaHAApTH3alil, METPOJIOrii Ta ynpaBiiHHA sKicTio, [TomiTexHiqHmiA
iHctuTyT Cnbipcskoro denepanbHoro yHiBepcurery, KpacHosipesk, Pocis.

Crpok JI. B. — acnipant Cubipcbkoro denepanbHoro yHisepcutety, Kpacnospesk, Pocis.

AHOTAIIS

AKTyaJIbHICTB. Y CTaTTi pO3MIIAAAETHCS aKTyalIbHA MPOOJIeMa YUCEIBbHOT ONTHMI3alil HOBUIBHO OOYHCIIIOBAHUX YHIMOJAIBHUX
¢byHkuii ouiel 3minHOI. [IpoBeeHo aHaii3 iCHYI0YMX METOMIB MiHIMi3aLil HepLIoro i Apyroro mopsaky 30DKHOCTI, SIKHii MOKa3aB,
IO Wi METOAM MOXYTh OyTH BMKOPUCTAHI Ul LIBHAKOTO BUPILIEHHS IMX 3aBAaHb I (QYHKLIH, 3HAYEHHS SKMX MOXYTb OyTH
oTpuMaHi 0e3 TpyaHomIiB. [y MOBUTPHO OOYHCIIOBaHMX (YHKIIM LI METOAM HAIOThH MOBUIBHI alTOPUTMH, TOMY aKTyaJbHOIO €
3aa4a po3pOOKH MIBHIAKUX METOIIB [UIS MiHIMI3aIlii TaKUX QYHKIIIH.

Meta. Po3poOka KoMOIHOBAaHOTO HBIOTOHOBCKOTO METOIY TPETHOTO IOPSIKY 301KHOCTI Ul MiHIMi3allii mepeBakHO ITOBUIBHO
00YHCITIOBaHNX YHIMOJANbHUX (DYHKIIH, a TaKOX po3poOKa 0a3w JaHWX, IO BKIFOYAE TIAJKi, MOHOTOHHI 1 YaCTKOBO MOCTIiiHI
GbyHKUIi, IUIs IepeBipKH METOAY 1 MOPIBHSHHS HOro e()eKTUBHOCTI 3 IHIIMMH BiJIOMUMHU METOJIAMHU.

Meton. BukinagaeTscs MeToMKa 1 arOpUTM BHPIIICHHS 3aBAaHHS MIBUAKOI MiHiMizarii yHIMoqanbpHOT GyHKIIT oxHiel 3MiHHOT
KOMOIHOBaHMM YHCEJIbHHUM HBIOTOHOBCKMM METO/IOM TpPEThOro MOPsAKY 30DKHOCTI. Meron 3maTHHil pO3Mi3HABAaTH CTPOTrO
yHIMOZaJIbHe, MOHOTOHHI 1 MOCTiiHI (yHKLIT, a TaKoX (YHKILIT 3 YACTKOBUMH a00 HOBHUMH JAUISTHKAMH IUIOCKOTO MiHIMyMY.

PesyabraTu. HaBoasThest pe3ynbTaTH IOPIBHAHHS 3alPONIOHOBAHOTO METOAY 3 IHIIMMH METOJAaMH, B TOMY YHCIi LIBHUIKHM
MeTonoM bpeHra. 3a momoMoror KoMOiHOBAaHOTO HBIOTOHOBCKOTO METOIY BHUpIMIEHO 6954 3aBmaHHS, IPH EOMY METOJ BUSIBHBCS
MIBHIIIIE 32 iHIIUX MeToNiB B 95,5% 3aBnanb, MeTox bpenTa npairoBap mBuie aumie B 4,5% 3aBaanb. B minomy anaii3 pe3ynbTariB
PO3paxyHKy IOKa3aB, 10 KOMOIHOBaHHI METO/I MPaIioBas B 1,64 pa3u mBuIIe, HiX MeTOx bpeHTa.

BucHoBKH. 3anponoHOBaHO KOMOIHOBaHMH HBIOTOHOBCKHH METOJ TPETHOro MOPSAKY 30DKHOCTI Julsl MiHIMi3amlii mepeBa)kHO
MOBIJIBHO OOYHCITFOBAHUX YHIMOAANBHUX (YHKIIIHM oHieT 3MiHHOI. Po3pobiieHo 6a3y naHuX 3aBlaHb, BKIFOYAKOUH IJIaJKi, MOHOTOHHI
1 YaCTKOBO MOCTiiHI QYHKIT, 1JIsl IepeBipKU METOAY i HOPIBHAHHS HOro epeKTHBHOCTI 3 iHIIMMH BigoMUMH MeToxaMu. [lokasaHo,
10 3alpOMOHOBAaHUII METOA B MOPIBHSHHI 3 IHIIMMH METOJAMH, BKJIOYAOYM MIBUAKUII MeTon bpeHra, Mae Oimbll BHCOKY
IIBUAIAKOIIFO.

KJIFOYOBI CJIOBA: yHimonansHa ¢ynkmis, metoq bpenra, meron HeroToHa, IIBUAKICTH METOLY.
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KOMBUHUPOBAHHBII HBIOTOHOBCKHUI METO/ TPETHEIO MMOPAJKA CXOJAUMOCTH JJ14
MUHUMM3ALIMA ®YHKIUAN OJHOM MEPEMEHHOM

Konusinko B.A. — 1-p TexH. Hayk, npodeccop kadenpsl cTaHIApTH3ALMH, METPOJIOTMH ¥ YIPABICHUS KadeCTBOM,
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I'puropseBa O. A. — KaHA. TeXH. HayK, MOLEHT Kadelpsl CTAaHJApPTU3aNUH, METPOJOTMH M YINPABICHHS KauecTBOM,
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AHHOTALIUA

AKTyalbHOCTh. B cTaThe paccmaTpuBaeTcs akTyallbHas INpoOieMa 4YHCIEHHOH ONTHMHU3ALUH MEUIEHHO BBIYHUCIISEMBIX
YHUMOJAJIbHBIX (QYHKIMIT OIHOW nepeMeHHOH. IIpoBeseH aHanM3 CyIIECTBYIOIMX METOAOB MHHMMM3ALUM HEPBOrO M BTOPOTO
TOPAAKA CXOAMMOCTH, KOTOPBIA ITOKa3al, YTO 3TH METOABI MOTYT OBITh HCIIONB30BAaHBI IJISI OBICTPOTO PEINCHUs 3THX 3a4ad Uit
(GyHKIMi, 3HaYCHNS KOTOPBIX MOTYT OBITh MOMy4eHbI 0e3 3aTpyAHeHUH. I MeIIeHHO BBIYUCIAEMbIX (GYHKINI 3TH METOIBI JAI0T
MEJUICHHBIE aITOPUTMBI, IOATOMY aKTyaJIbHOH SIBIISIETCS 3a/1ada pa3pabOTKU OBICTPEIX METOJIOB JUISI MUHUMHU3AIUH TaKUX (QYHKIUI.

Heab. PaspaboTka KOMOMHHPOBAaHHOTO HBIOTOHOBCKOTO MeETOJa TPETHEro MOpSJKa CXOJUMOCTH JUIS MHHHMH3ALUH
MIPEUMMYIIECTBEHHO MEJUICHHO BBIYHMCIISIEMBIX YHUMOAAIBHBIX (DYHKIMIA, a Takxke pa3padoTka 6as3bl JaHHBIX, BKIIIOYAIONIAs IIaJKHE,
MOHOTOHHBIE ¥ YaCTHYHO IIOCTOSTHHBIE (DYHKIMH, JUIS IPOBEPKU METOZA U CPaBHEHUS ero d(Q(QEeKTHBHOCTH C IPYTUMHU W3BECTHBIMHU
METOJIAMH.

Meton. M3maraercs MeTOAMKAa M aNrOpUTM pELICHUs 3a1add ObICTPOM MUHMMH3AIMU YHUMOAAIBHOW (YHKUUH OIHOU
MEPEeMEHHON KOMOWHHPOBAHHBIM YHCICHHBIM HBIOTOHOBCKHM METOJOM TPEThErO MOpAAKa CXOAMMOCTH. Mertox crmocobeH
pacmo3HaBaTh CTPOTO YHHMOJANbHBIE, MOHOTOHHBIE M MOCTOSHHBIE (YHKIUH, a TaKXKe (YHKIUH C YaCTHIHBIMH VIIM HOJHBIMH
ydJacTKaMH INIOCKOT0 MUHAMYMa.

PesyabTatel. [IpuBOASTCS pe3ynbTaThl CpaBHEHHE IIPEIaracMoro MeToja C APYTUMU METOJaMH, B TOM dHciIe OBICTpHIM
metogoM bBpenrta. C nomomnipio KOMOMHHPOBAHHOTO HBIOTOHOBCKOTO MeTOZa pemeHo 6954 3amadu, MpU 3TOM METOJ OKa3aycs
ObicTpee Ipyrux mMetonoB B 95,5% 3amau, meton bpenrta pabotan Owictpee nuib B 4,5% 3agad. B 1enom aHamu3 pe3ynbTaToB
pacueTta nokasai, YTo KOMOMHUPOBAaHHBIN MeToA paboTain B 1,64 pasa OvicTpee, ueM Meton bpenra.

BruiBoabl. IlpemnoskeH KOMOMHUPOBAHHBIH HBIOTOHOBCKMI METOXI TPEThETO MOPSAAKA CXOOMMOCTH [UIi MUHHMMH3AILMU
MIPENMYIIECTBEHHO MEUIEHHO BBIYMCIIEMBIX YHHMOJANBHBIX (YHKIUH OXHOI mepemMeHHOH. Pa3zpaborana 6aza maHHBIX 3a7ad,
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BKJIIOYasl IJIQJKHE, MOHOTOHHBIC M YAaCTUYHO IIOCTOSIHHBIC (DYHKLUH, IJISI IPOBEPKH METOAA M CpaBHEHHS ero 3(pQexTHBHOCTH C
JPYTMMH U3BECTHBIMH MeTonamu. [lokazaHo, 4TO IpeiaraeMblii METOJ 1O CPABHEHUIO C JPYTHMMH METOIAaMH, BKJIIOYasi OBICTPBII
Mmeron bpenra, umeer Oonee Bricokoe ObICTpOCHCTBHE.
KJIFIOUYEBBIE CJIOBA: yuumonanbHast ¢pyHkuus, meron bpenra, merox HploToHa, CKOPOCTh MeTOA.
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