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ABSTRACT

Context. Niching genetic algorithms are one of the most popular approaches to solve multimodal optimization problems. When
classifying niching genetic algorithms it is possible to select algorithms explicitly analyzing topography of fitness function
landscape; multinational genetic algorithm is one of the earliest examples of these algorithms.

Objective. Development and analysis of the multinational genetic algorithm and its modifications to find all maxima of a multi-
modal function.

Method. Experimental analysis of algorithms is carried out. Numerous runs of algorithms on well-known test problems are con-
ducted and performance criteria are computed, namely, the percentage of convergence, real (global, local) and fake peak ratios; note
that peak rations are computed only in case of algorithm convergence.

Results. Software implementation of a multinational genetic algorithm has been developed and experimental tuning of its pa-
rameters has been carried out. Two modifications of hill-valley function used for determining the relative position of individuals have
been proposed. Experimental analysis of the multinational genetic algorithm with classic hill-valley function and with its modifica-
tions has been carried out.

Conclusions. The scientific novelty of the study is that hill-valley function modifications producing less number of wrong identi-
fications of basins of attraction in comparison with classic hill-valley function are proposed. Using these modifications yields to per-
formance improvements of the multinational genetic algorithm for a number of test functions; for other test functions improvement of
the quality criteria is accompanied by the decrease of the convergence percentage. In general, the convergence percentage and the
quality criterion values demonstrated by the algorithm studied are insufficient for practical use in comparison with other known algo-
rithms. At the same time using modified hill-valley functions as a post-processing step for other niching algorithms seems to be a

promising improvement of performance of these algorithms.

KEYWORDS: multimodal optimization problem, niching genetic algorithms, multinational genetic algorithm, hill-valley
function, genetic algorithm convergence, real peak ratio, fake peak ratio.

ABBREVIATIONS

ASD is an adaptive species discovery;

GA is a genetic algorithm;

HillVallEA is a hill-valley evolutionary algorithm;

HTS is a history-based topological speciation;

HVcMO is a hill-valley-clustering-based variable
mesh optimization;

HVF is a hill-valley function;

MMOP is a multimodal optimization problem;

MNGA is a multinational genetic algorithm;

MNGA, j v is a MNGA with F¢ j, ;

MNGA,, ; v is a MNGA with Fy

MNGAm_h_v_rand is a MNGA with Fm_h v_rands

MNGA" is a MNGA with national selection to the
mating pool;

MNGA" is a MNGA with weighted selection to the
mating pool;

MNGA"™ is a MNGA with mixed selection to the mat-
ing pool;

NBC is a nearest-better clustering;

RS-CMSA is a covariance matrix self-adaptation evo-
lution strategy with repelling subpopulations;

SCGA is a species conserving GA;

TCGM_S2 is a GA of tournament crowding based on
Gaussian mutation, with S2 parameter set;

TS is a topographical selection;

TSC is a topological species conservation.
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NOMENCLATURE

d(x,y) is an Euclidean distance between individuals X
and y;

f is a fitness function;

f(s) is a fitness value of an individual s;

Fc nvis aclassic HVF;

Fm_n v is a modified HVF;

Fm_h v rand 18 @ modified HVF with randomized inter-
mediate points;

FPR is a ratio of the number of fake peaks found by
the algorithm to the total number of species formed by the
final population;

g(k, t) is a number of politicians of the k-th nation at
the t-th algorithm step;

GP is a number of real global peaks found in one run
of the algorithm;

GPR is a ratio of the number of real global peaks
found by the algorithm to the total number of global
peaks to be localized;

gr=[gr;, gr, ...,
0<gr;<gr,<...<grg<l;

ij is a j-th politician;

K is a size of gr and a number of intermediate points
used by HVF;

LP is a number of real local peaks found in one run of
the algorithm;

gr] is a sample array,
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LPR is a ratio of the number of real local peaks found
by the algorithm to the total number of local peaks to be
localized;

n is a search space dimension;

NP is a number of real peaks found in one run of the
algorithm;

NSeeds is a power of Seeds, i.e. a number of species
or, equivalently, a number of peaks (real and fake) found
in one run of the algorithm;

O,(x") is an e-neighborhood of the point x;

<po, P1, P2s ---» P> Px+1> 1S an ordered list of points
used by HVF, pe XS R,

Do 1s a first test point;

P, is a probability of crossover;

p; 1s an i-th intermediate point, 0<i<K+1;

pi is a j-th coordinate of the i-th point;

Pk+1 1s a second test point;

pl(?) is a policy of the k-th nation at the #-th algorithm
step;

P, is a probability of mutation;

PR is a ratio of the number of real peaks found by the
algorithm to the total number of peaks to be localized;

S is a set of individuals encoding XS R";

s;1s an individual encoding point p;, 0<i<K+1;

Seeds is a set of the best individuals of each species;

SucRuns is a percentage of successful runs of the algo-
rithm;

d is a function accuracy parameter;

& is a random value from (0, 1);

o is an argument accuracy parameter.

INTRODUCTION

Niching GAs, based on the phenomenon of speciation
and specialization in natural ecosystems, are one of the
most popular approaches to solve MMOPs. These prob-
lems aim to find multiple extremums (global, local) of a
given function and arise in many areas of science and
technology, see [1-5] for examples.

It can be shown that solving an arbitrary, including
multimodal, optimization problem in the form

F(x) > max,x¢ XS R" €]

reduces to solving by a GA an optimization problem in
the form

f(s) — max, se S. 2)

Here with, an arbitrary feasible solution of problem (2) is
called an individual of the population, and it is said about
genotype and phenotype of the individual. The objective
function of (2) is used to estimate the quality of solution
of (1); crossover (the exchange of segments between dif-
ferent solutions) and mutation (disturbance) operators
ensure transition from one solution to another.
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A niche in GA is a subdomain of the search space (a
region around a certain optimum of the fitness function),
and species is a subpopulation of individuals located in a
given niche. Niching GAs tend to structure population
into stable subpopulations (species) in the search space in
a way that each subpopulation is formed around one of
the sought optimums. To date, several dozen niching GAs
of different performance reflecting various approaches to
solve MMOPs have been developed. Surveys of niching
GAs and their classifications are available at [1, 6, 7].

In recent years topological niching GAs are of grow-
ing interest. To capture the landscape topography and
identify basins of attraction for given individuals the
topological niching GAs analyze relationships between
locations and fitness values of individuals. Based on the
basin identification method these algorithms can be
roughly classified at the algorithms based on TS [8, 9],
algorithms based on NBC [10-13], and algorithms using
HVF. Last class includes but not limited to MNGA [14,
15], TSC and TSC2 [16, 17], ASD [18], HTS [19], Hill-
VallEA [20, 21], HVcMO [22, 23], RS-CMSA [24, 25].

The object of study is a niching GA as a method to
solve MMOPs.

The subjects of study are the HVF, MNGA and how
MNGA parameters affect algorithm performance.

The purpose of the work is the development and per-
formance analysis of MNGA and its modifications. Recall
that the experimental analysis of heuristic algorithm per-
formance is to evaluate statistical data collected as a result
of conducting a series of independent runs of the algo-
rithm for each problem from the benchmark suite.

1 PROBLEM STATEMENT
In this paper the MMOP (1) is considered in the fol-
lowing formulation. Let F: X — R be a function defined

on some set XS R". A point x'e X is called a point of lo-
cal maximum of F over X if there exists a number £>0
such that ¥ xe XNO,(x"): F(x)>F(x). A point x'e X is

called a point of global maximum of F over X if V xe X:

F(x"y>F(x). The problem is to find all points of local and
global maxima and the values of function F' at these
points.

The MNGA analysis is to compute well-known crite-
ria characterizing the number and accuracy of problem
solutions found by the MNGA and to compare the crite-
rion values obtained for various values of the MNGA
parameters.

2 REVIEW OF THE LITERATURE

A significant drawback of many niching algorithms is
so-called niche radius problem. The performance of radii-
based niching algorithms heavily depends on the niche
radius value while estimation of this value is a complex
task requiring prior knowledge of the search space land-
scape [1, 6]. As opposed to radii-based niching algo-
rithms, the MNGA presented in [14, 15] divides popula-
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tion into subpopulations without using the niche radius
concept. To determine whether two individuals occupy
the same niche (whether the points encoded by these indi-
viduals are in the neighborhood of the same extremum)
the fitness-topology function HVF is used. This function
analyzes the search space landscape between two points
based on the fitness values of individuals encoding points
located on the straight line that connects two test points.

In MNGA the following metaphor is used. The popu-
lation of individuals represents the world (the entire popu-
lation of the planet), each subpopulation represents the
nation, and the fittest individuals in the subpopulation
represent the government of the nation; these individuals
are referred to as the politicians. The government deter-
mines the policy of the nation, which is a single point
representing the peak the nation is formed around; this
point is the centroid of the subpopulation fittest individu-
als. Policy calculation is needed to determine possible
migrations of individuals between nations as well as to
distinguish nations from each other. The evolution of the
world obeys the following rules.

1. Migration. This rule regulates movement of indi-
viduals between nations and creation of new nations in
“uninhibited” areas of the search space.

2. Merge. Nations are merged when they are formed
around the same extremum.

3. Selection to the mating pool. The following modifi-
cations of binary tournament selection are considered.

1) Weighted selection. In this case fitness value of an
individual is divided by the total number of individuals in
its nation. This approach reduces the probability for a
nation to die out because of small subpopulation size.

2) National selection is conducted within each nation,
therefore, the number of individuals in a nation after se-
lection remains unchanged. This implies that migration is
the only way to change the nation size.

3) Mixed selection is a combination of weighted and
national selections.

4. Election. This rule describes how the government of
a nation is elected and how its policy is calculated. Note

glk,0)
—— D'i; is computed coordi-
gk) S
natewise. If the number of individuals in a nation is less
than predefined value g, then the number of politicians is
equal to the number of individuals in the subpopulation.

5. Mating. Only individuals belonging to the same na-
tion may produce offspring. This limitation is because the
crossover of two individuals located in the neighborhoods
of two different optima may produce an offspring much
worse than each of the parents. The mutation operator that
adds noise generated by normal distribution to an individ-
ual is called in [15] the mutation based on the distance
policy; this name looks reasonable as the operator pro-
vides minor changes to individuals that are close to the
nation policy and significant changes to individuals lo-
cated far from it. In literature, this operator is also known
as Gaussian mutation. In [14] it is proposed to perform
mutations within nations, i.e. an offspring is accepted
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that formula pl; (¢) =

only if it occupies the same niche as its parent. To reduce
the algorithm execution time, this restriction was not ap-
plied in our research.

6. Initialization of the start nation. At the start of the
algorithm, all individuals belong to the same initial na-
tion.

MNGA works as follows. In every generation, each
individual is compared to the policy of its nation. If the
individual and the policy are located around different op-
tima, the individual migrates to the nation with policy in
the individual’s peak neighborhood. If such a nation does
not exist, the individual founds a new one; this nation
corresponds to a potentially new peak the individual is
approaching. If a nation with a very small number of in-
dividuals is formed at the end of the migration process,
this nation is strengthened by new individuals generated
from the nation policy with the use of Gaussian mutation.
Instead, the worst fitness individuals of other nations are
removed from the population. After completion of all
necessary migrations, the pairwise comparisons of poli-
cies of all nations are carried out to ensure there are no
nations following the same peak; if two nations around
the same peak are found, the corresponding subpopula-
tions are merged. Thereafter, standard actions are per-
formed to move to the next generation, i.e. selection to the
mating pool and applying genetic operators. The MNGA
scheme is provided below.

0. Encoding of solutions.

1. Initialization. The initial population is generated
randomly.

2. Fitness calculation for all individuals in the popula-
tion.

3. Initialization of the start nation. Determining politi-
cians and calculation of the policy.

4. Migrations of individuals.

5. Recalculation of all nation policies.

6. Strengthening small nations.

7. Merging nations.

8. Selection to the mating pool.

9. Applying genetic operators (crossover, mutation).

10. Fitness calculation for all obtained offspring.

11. If the stop condition is fulfilled, then goto step 12,
otherwise goto step 4.

12. Stop the algorithm.

To implement processes of migration of individuals
and merging of nations the HVF is used. This function
determines the positional relationship of two selected in-
dividuals, in fact of points encoded by these individuals.
HVF returns TRUE if these points are located in the
neighborhoods of different maxima (there is a "valley" in
the fitness function landscape between the points). HVF
returns FALSE if these points are located in the neighbor-
hood of the same maximum (there is a "hill" in the fitness
function landscape between the points).

The idea of the HVF is as follows. A set of points dis-
posed on the line connecting two test points is generated,
to calculate these intermediate points a predefined array
gr is used. If fitness of all intermediate individuals is not
less than fitness of the worst of the test individuals, these
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test individuals are considered to be located around the
same maximum (the HVF returns FALSE); otherwise
they are considered to be located around different maxima
(the HVF returns TRUE).

The F. , , computation scheme proposed in [14, 15] is
given below.

1. Puti=1; found = FALSE.

2. If i < K and found == FALSE, then goto step 3 (in-
termediate point calculation); otherwise goto step 6.

3. For each j from 1 to n do: p{ = pi+(px.-1/— pd)*gr:.

4. If f(s;) < min(f{so), f{sx+1)), then put found = TRUE.

5.Puti=i+1.

6. Return found.

For example, let n=2 and gr=[0.25, 0.5, 0.75]. Then,
to determine the relative position of points (0, 1) and (1,
2), the intermediate points (0.25, 1.25), (0.5, 1.5) and
(0.75, 1.75) will be analyzed by the algorithm above.

In [15] the array [0.25, 0.5, 0.75] is used to ensure the
migration process, and the array [0.02, 0.25, 0.5, 0.75,
0.98] is used to ensure the merging process. The exten-
sion of the sample array by two extra points is explained
by the fact that merging subpopulations is more drastic
operation than migration of an individual from one nation
to another.

3 MATERIALS AND METHODS
In some cases the F. j , return values are wrong. Let
us consider functions F; and F, of dimension 1, see Sec-
tion 4, and determine the positional relationship of the
points 0.13 and 0.97 by the F,, ,, gr=[0.02, 0.25, 0.5,
0.75, 0.98]. Notice that each of the functions has five
peaks and test points are located on the first and the fifth
peaks with respect to the left-to-right peak numeration
alongside the X-axis. But F, ;, ,(0.13, 0.97)=FALSE. This
means that points 0.13 and 0.97 are in the neighborhood
of the same peak according to F, ; ,. Table 1 provides F
and F), values at the test and intermediate points.

Table 1 — Values of F and F, at the points analyzed by HVF

i Pi Fl F2
0 0.13 0.50036 | 0.49939
1 0.1468 | 0.16654 | 0.16575
2 0.34 0.28038 | 0.24749
3 0.55 0.125 0.08061
4 0.76 0.04124 | 0.01605
5 0.9532 | 0.09102 | 0.01881
6 0.97 0.00876 | 0.00170

The first proposed HVF modification F),, j , is the fol-
lowing. Test points are considered to be located in the
neighborhood of the same maximum if, moving along the
list <py, p1, P2,---» Px> Px+1> from p; to p;iq, 0<i<K+1, fit-
ness changes of individuals encoding these points con-
form to one of the rules below:

— from a smaller value to a bigger one;

— from a bigger value to a smaller one;

— from a smaller value to a bigger one and again to a
smaller value.
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Test points are considered to be located in the neighbor-
hoods of different maxima in all other cases.

As an example, let test points pg, pg+1 such that f{sy)=2
and f{sg+1)=1 be given. The above modification considers
these points as points located around the same maximum
if the list of fitness values <2, 3, 4, 5, 7, 3, 1> is analyzed,
and as points located around different maxima if the list
of fitness values <2, 3, 5, 3, 7, 4, 1> is analyzed.

It is readily seen that F,, , , returns correct value for
the above example defined for F; and F), test functions:
Fo 5 (0.13,0.97)=TRUE.

Assume that all the points (test as well as intermedi-
ate) are related to individuals of equal fitness. Notice that
in this case the F. , , treats test points as being located
around the same maximum (assuming a plateau), and the
F, » treats them as being located around different
maxima (assuming existence of neighbor peaks). In gen-
eral, the presence of plateaus in the fitness function land-
scape should be avoided since in this case GA can not
compare individuals properly.

There exist cases when both F,, , and F), ; , return
wrong values. For instance, points 0.09 and 0.91 lie on
different peaks of functions F| and F, of dimension 1, but
they are in the neighborhood of the same peak according
to both F, ; , and F), , , when gr=[0.02, 0.25, 0.5, 0.75,
0.98] is used: F. , ,(0.09, 0.91)=FALSE and F,, ; ,(0.09,
0.91)=FALSE. Table 2 provides F| and F, values at the
test and intermediate points. The F; graph with circles
designating all target points is given in Fig. 1.

Table 2 — Values of F; and F} at the points analyzed by HVF

I Di Fl Fz
0 0.09 0.92837 | 0.92817
1 0.1064 | 0.97009 | 0.97000
2 0.2950 | 0.98165 | 0.90403
3 0.5 1.0 0.70711
4 0.705 0.98165 | 0.44425
5 0.8936 | 0.97009 | 0.24794
6 0.91 0.92837 | 0.22414
10
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Figure 1 — Graph of F; with points from Table 2

The second proposed HVF modification F), 4 y rana 1S
to add random values §,, &, to the sample array gr=[0.25,
0.5, 0.75]; these random values should be generated at

each iteration of the algorithm. Such a dynamic array re-
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duces the probability of wrong values returned by the
F, 1 v as far as different sets of intermediate points may
be used for two test points. In particular, in the example
above there could be generated the sample array gr=[0.25,
0.35, 0.5, 0.6, 0.75] ensuring the F, , , correct return
value. Table 3 provides F and F, values at the test and
intermediate points. The F| graph with circles designating
all target points is given in Fig. 2.

Table 3 — Values of F and F} at the points analyzed by HVF

i Di F F,
0 0.09 0.92837 0.92817
1 0.295 0.98165 0.90403
2 0.377 0.00195 0.00165
3 0.5 1 0.70711
4 0.582 0.00047 0.00029
5 0.705 0.98165 0.44425
6 0.91 0.92837 0.22414
10
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Figure 2 — Graph of F; with points from Table 3

Preliminary tests revealed significant differences in
the F; j, v, Fiu p v and F, 5, , ranq Tesponses. The statistics of
these function calls for one MNGA run on the F) test
function is shown in Table 4. Following sections provide
the benchmarking of the MNGA with F_ , ,, F, , , and

F, m_h_v_rand-

Table 4 — Differences in responses of F.. j, v, Fou i vs Fon i v rand

for one MNGA run on F
Number of different responses for: n=1 n=3
F.,,and F, ; , 2616 1020 942
Fepvand Fu by rand 1900 1114164
Funvand Fy v rand 872 253978
Total number of HVF calls: 23265 5209 793
4 EXPERIMENTS

Recall that in this paper the experimental analysis of
performance of the MNGA and its modifications is used.
Thus, test problems and performance criteria should be
defined.

Test suite of benchmark functions used in this re-
search is given below.

1) Equal Maxima function (Deb’s 1):

© Gulayeva N. M., Yaremko S. A., 2021
DOI 10.15588/1607-3274-2021-2-8

1
y:FI(xl,xz,...,xn) ;z in (STUC)
i=1
0<x;<1,i= I,_n

The function has 5" equally spaced global maxima.
2) Decreasing Maxima function (Deb’s 2):

x,—0.1)

n —2(1n2)[ s ) .
y:Fz(xl,xz,...,xn):Ze : sin” (5nx;),

i=1

0<x;<1,i=1n.

The function has 5" equally spaced maxima of different
heights.
3) Uneven Maxima Function (Deb’s 3):

n
lzsin"’(Sn(x?-75 ~0.05)),
niz

Ole-Sl,

y=F(x,x0,..,X,) =

i=ln.

The function has 5" global maxima that are at different
distances from each other, and the distance between the
points of maximum increases with increasing value of the
argument.

4) Uneven Decreasing Maxima function (Deb’s 4):

y= F4(x1, XD 5eees xn) =
2
n =2(In 2)(7”_0'08} )
= Ze 0854/ sin (57r(x0 75 —0.05))
i=l1

The function has 5" maxima of different heights that are at
different distances from each other, and the distance be-
tween the points of maximum increases with increasing
value of the argument.

5) Six-Hump Camel Back function:

y=Fs5(x;,x) =
2 x4 2 2 2
=] 4-2.1x +?1 X+ X%y +4(x5 —1)x3

3<x <3, 2<x,<2.

The function has 2 global and 4 local maxima.
6) Griewangk’s function is considered in the follow-

ing form:
[f j ’
—600 < x; <600,

The function has 1 global and many local maxima, and
the height of the local maxima decreases with increasing
distance from the global maximum.

n 2

=Fe(X1,X,...,X,)=n—
y=Fg(x1,x2,...,%,) 4000 L

izl,n.

75
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7) Rastrigin’s function is considered in the following
form:

n
Y= Fy (X)X X)) = Z(lOcos(27txl-)—xl-2)—lOn ,
i=1
~5.12<x;<5.12, i=1n.
The function has 1 global and 10" local maxima, and the
height of the local maxima decreases with increasing dis-
tance from the global maximum.
8) Modified Rastrigin’s function:

y=Fg(x;,xy)=-10-9cos(6mx;) —10-9cos(8nx,),
0<xp,xy <1.

The function has 12 global maxima.
9) Xin-She Yang’s function:

n n
y=Fy(x1,%9,...,%,) = {Z|xi|Jexp(—2x?] s
i=1 i=1

-10<x; <10, i=Ln.
The function has several global maxima located at a small
distance from each other. In particular, for n=1 the func-
tion has 2 global maxima, and for n=2 the function has 4
global maxima.

Detailed description and plots of the functions above
can be found in [26, 27].

To specify the performance criteria we begin with two
definitions: the algorithm stop conditions and whether the
extremum is found when the algorithm stops.

GA stops if either population convergence is detected,
i.e. the changes in the average population fitness value do
not exceed 0.0001 over the last 10 generations, or 40000
algorithm iterations are carried out. This means that if
convergence was not detected the algorithm has been ter-
minated after the specified number of iterations. The algo-
rithm run stopped under the convergence condition is
called successful.

The maximum is found if the algorithm convergence is
detected and there is at least one individual of the final
population such that the individual fitness value differs
from the sought maximum value at most 6 and the point
encoded by this individual is located within the maxi-
mum’s neighborhood of radius o. Let us set 6=0.01 and
0=0.01 for all test functions.

As stated in [28], when algorithm stops under any
condition including convergence, individuals of the final
population may be located not only in the small radius
neighborhoods of function peaks but individuals may also
form clusters on the peak slopes and even in the valleys.
Thus, to analyze the algorithms, standard performance
criteria are used as well as proposed in [28] F/PR criterion
that in fact estimates number of clusters formed by indi-
viduals located far from the sought maxima. Note that big
value of FPR criterion is a significant drawback of a
niching algorithm as far as it makes use of such algo-
rithms impractical for problems of finding all (local,
global) maxima.
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To determine species (and, consequently, niches)
formed by the final population the algorithm of [28] pre-
sented below is used; £=0.03.

1. Put Seeds = @.

2. Choose the best unprocessed individual s from the
population; mark it as the processed one: 5.

3. Put found = FALSE.

4. If there exists an individual s€ Seeds such that

d(s" ,5)<e, then put found = TRUE; otherwise, create a new
species with the best individual s: put Seeds =

SeedsU {s'}.

5. If unprocessed individuals are remained in the
population, then goto step 2.

To separate real species from the fake ones the ele-
ments from Seeds should be compared with real peaks of
the fitness function using parameters 6 and .

The criteria calculated for each run of the algorithm
are the following ones: NSeeds, NP, GP, LP, PR, GPR,
LPR, FPR. Note that NP=GP+LP, 0<PR<l, 0<GPR<],
0<LPR<1, O<FPR<1. The FPR criterion is calculated as
NSeeds — NP

NSeeds

For algorithm analysis average values of the PR, GPR,
LPR, FPR criteria are computed over all runs as well as
the SucRuns criterion; the SucRuns is computed as the
ratio of the number of successful runs to the total number
of runs, in percent. Criterion values of unsuccessful runs
are not used to calculate averages; recall that the unsuc-
cessful runs are the runs stopped under the condition of
reaching maximum iteration number.

The software implementation of the MNGA with the
classic HVF and its both modifications was developed.
The criteria above were computed with the following pur-
poses. First, to tune the parameters of the MNGA with
F. s . Secondly, to conduct comparative analysis of the
MNGA with F, ; y, Fy 5 vand Fy, j, » rana-

To calculate averages of the criteria above there were
conducted 10 runs of the algorithm for each set of pa-
rameter values and for each benchmark problem. Note
that the initial population is the same for all sets of pa-
rameter values at the i-th run; this guarantees the same
start point for corresponding runs of the algorithms using
different sets of parameter values.

The authors of this research tried to follow the [14,
15] recommendations on setting the algorithm parameter
values. If such recommendations were not provided in
[14, 15], the algorithm parameter values have been set
based on the authors’ experience or by conducting ex-
periments. The predefined MNGA parameter values used
in this research are listed below.

— Number of individuals in the population: 500.

— Number of individuals in the government: 8.

— Array to implement migration of individuals and
merging of nations:

- [0.02, 0.25, 0.5, 0.75, 0.98] for functions F, , ,
and F; m_h_vs

FPR =
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~ [0.25,

F m_h_v_rand-

“In [15], small nations are strengthened by the nation
policy mutants, i.e. by addition of a small noise to the
policy of the nation. To reduce the algorithm computation
complexity the zero noise is used in our research, i.e.
small nations are supported by copies of their policies.
Since there is no information in [14, 15] about nations to
be small or large, we define the small nation as a nation
with population size less than 30% of the average number
of individuals per nation at the current algorithm iteration,
and the large nation as a nation with population size ex-
ceeding 50% of the average number of individuals per
nation at the current algorithm iteration. This implies that
the number of policy copies strengthening a small nation
ensures population size of this nation to be not less than
30% of the average number of individuals per nation at
the current algorithm iteration.

Let us remark that step 5 of the MNGA (the recalcula-
tion of all nation policies) is not specified in [14, 15]. We
have added this step to ensure the use of actual nation
policies while strengthening small nations and merging
nations.

Further on, the following MNGA parameter values are
analyzed experimentally.

— Encoding methods: real numbers and Gray codes
encoding sample points to three decimal places. Notice
that binary codes are used in [14] and real numbers are
used in [15].

— Selection to the mating pool: the weighted selection,
the national selection and the mixed selection. For mixed
selection 50% of individuals are selected using weighted
selection and 50% of individuals are selected using na-
tional selection [15].

— Genetic operators used for binary encoding are one—
point crossover and density mutation. The analyzed val-
ues of P.are 0.6, 0.8, 0.9 and 1. The analyzed values of
P, are 0.001, 0.01 and 0.025. In [14] values P.=0.9 and
P,=0.025 are recommended. Gaussian density mutation is
the only genetic operator used for encoding in real num-
bers, P,=1 [15]. In this case noise determined by standard
normal distribution is added to each gene encoded vari-
able.

Generally, 39 parameter sets are analyzed in this re-
search.

For MNGA parameter tuning the F—F, functions are
used. These functions have different properties, e.g. exis-
tence of only global maxima (F, F3) or global and local
maxima (F,, Fy), location of the maxima at equal (F}, F)
or at different (F3, F,) distances from each other. There-
fore, Deb’s benchmark functions are widely used for ex-
perimental analysis of algorithms solving MMOPs. Hav-
ing regard to the function properties two test suites for
parameter tuning are composed:

— T1 includes functions F, and F, having one global
and many local maxima;

— T2 includes functions F; and F; having many global
and no local maxima.

0.5, 0.75]u {&, &} for function
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5 RESULTS

The convergence of the MNGA with F, , , was not
observed for any parameter set using binary codes; ex-
periments were conducted for both T1 and T2 test suites.
Therefore, parameter sets with binary codes were ex-
cluded from further analysis.

Results obtained for real number encoding and Gaus-
sian density mutation, P,=1, are given in Table 5. It is
easy to see from the table that the percentage of success-
ful runs is poor in most cases. Moreover, it is worthwhile
to consider only national selection method as far as
MNGA", ; v converges only when n=1 while for
MNGA", ,, , the SucRuns criterion value is close to 0%.

We assume that proposed HVF modifications return
wrong values more rarely in comparison with F j ,; thus,
using F, j, , or F, 4 v rana instead of F ; , should improve
the overall performance of the MNGA. With regard to
above, the MNGA runs for classic HVF and its modifica-
tions were conducted using national selection method;
results obtained for test suites T1 and T2 are given in Ta-
ble 6. It is easy to see from the table that using HVF
modifications gives higher percentage of successful runs
for test suite T1, but decreases this percentage for test
suite T2. Anyway, the SucRuns criterion value is still poor
in most cases.

Assuming that another selection method tuned for ap-
propriate HVF modification could improve the MNGA
performance, the MNGA runs for different HVFs and
different selection methods were conducted; both T1 and
T2 test suites were used. Experiments have shown the
thorough improvements of algorithm convergence. In
particular, best results of SucRuns criterion were achieved
by the MNGA%, ;. (98.33%) and MNGA™, 1 y rand
(91.67%) on T1 test suite (functions having one global
and many local maxima), and by the MNGA" ;.
(100%) and MNGA";, b v rana (100%) on T2 test suite
(functions having many global and no local maxima). On
the other hand, the quality criteria become worse with
increasing the convergence criterion value, in particular,
the PR criterion value decreased 1.7-8.6 times. Support-
ing data (averages computed over all runs for functions
F\—F}) are provided in Table 7. Note that computation of
averages over all benchmark functions makes sense as far
as the function surfaces are not known in advance for
most practical problems.

We have also developed the software implementation
of the SCGA [29] intending to analyze this algorithm and
to develop its hybridization with the MNGA; this seems
to be a promising area [16, 17]. Parameter tuning con-
ducted for this algorithm led to the following parameter
values: SUS selection, one-point mutation, P,=0.01, no
crossover, Euclidean distance, o©,=0.2. Experimental
analysis of the SCGA with mentioned parameter values
was conducted for functions F—F}; results are given in
Table 7. It is obvious from the table that though the
SCGA provides satisfactory percentage of the algorithm
convergence the quality parameter values of this algo-
rithm are poor.
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Table 5 — Results of experiments: MNGA with classic HVF

Parameters Test suite T1 Test suite T2
Selection Criteria: average values over 10 runs Criteria: average values
method Comment over 10 runs Comment
SucRuns PR GPR LPR FPR SucRuns | PR=GPR FPR
Weighted | 31.67% | 0.2 0 0.25 0 Convergence | ¢ cro0 | 0 Convergence
only if n=1 only if n=1
National 45% 0.0898 | 0.4444 | 0.0749 0.7567 93.33% | 0.5051 0.4287
Convergence
Mixed 0% 2% 0.9667 0.0040 only for F,
if n=1 or n=2
Table 6 — Results of experiments: MNGA with classic HVF and its modifications
Test suite T1 Test suite T2
Algorithm Criteria: average values over 10 runs Criteria: average values over 10 runs
SucRuns PR GPR LPR FPR SucRuns PR=GPR FPR
MNGA" 4 v 45% 0.0898 0.4444 0.0749 0.7567 93.33% 0.5051 0.4287
MNGA"; 1 v 63.33 % 0.6158 0.5790 0.6173 0.4173 68.33% 0.6092 0.4361
MNGA"; b v rand 63.33 % 0.5737 0.6053 0.5680 0.3542 53.33% 0.79 0.1919

Table 7 — Results of experiments: MNGA with classic HVF and its modifications, SCGA, TCGM _S2; functions F'|—F,

Algorithm Criteria: average values over all runs Comment

SucRuns PR GPR LPR FPR
MNGA". 4 v 69.17% 0.3700 0.4854 0.0749 0.5354
MNGA"; 1 v 65.83% 0.6124 0.5946 0.6173 0.4270
MNGA" 1 v rand 58.33 % 0.6726 0.6897 0.5680 0.280
MNGA" 1 v 99.17% 0.1904 0.1799 0.0863 0.4622
MNGA" 1 1 v rand 95.83 % 0.1908 0.2023 0.0735 0.2783
SCGA 90.83% 0.2680 0.4481 0.025 0.6773
TCGM_S2 100% 0.9563 0.8908 0.4744 0.1538 see [28]

6 DISCUSSION of  the algorithm: MNGA".,,, MNGA",,,,

From the Table 6 it follows that using HVF modifica-
tions improves the performance of the MNGA solving
optimization problems for functions having global and
local maxima. Indeed, the SucRuns increased by nearly
41%, the PR increased nearly 6.86 times for F), , , and
6.39 times for F), 4  yana (Mainly due to the greater num-
ber of local peaks found), the FPR decreased signifi-
cantly, to be exact by 55% for F,, , , and by 47% for
Fo b v rana- Let us remark that F), j , ,ae gives better re-
sults in comparison with F,, , , in terms of GPR and FPR,
but worse results in terms of LPR. Fig. 3 illustrates the
forgoing via a histogram.

Now let us analyze the influence of F,, , , and F, 5 ,.
_rana ON performance of the MNGA solving optimization
problems for functions having only global maxima. From
the Table 6 we see that SucRuns decreased considerably,
namely by 27% for F,, ; , and by 43% for F), j , yana. At
the same time, the PR increased by 21% for F,, ; , and by
56% for F, j v rana. Note that F,, 4, yana gives better re-
sults in comparison with F,, ; , in terms of GPR and FPR,
but provides worse algorithm convergence. Fig. 4 illus-
trates the forgoing via a histogram.

Consequently, the performance improvement of the
MNGA using HVF modifications can be observed when
the objective function has global and local maxima. If the
objective function has only global maxima, the quality
criteria improvement is accompanied by the decrease of
the convergence criterion value.

Let us consider other test functions. Functions Fg and
Fy have only global maxima. Experiments conducted for
these functions of dimensions 1 and 2 showed 100% of

convergence and GPR value close to 1 for all three kinds
© Gulayeva N. M., Yaremko S. A., 2021
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MNGAnmihivirand .

Functions Fs, Fg and F; have global and local maxima.
Experiments conducted for functions Fs5 of dimension 2
and F; of dimensions 1, 2 and 3 revealed the advantage of
modified HVFs over classic HVF in terms of PR (mainly
due to the greater number of local peaks found). How-
ever, modified HVFs provide worse algorithm conver-
gence. Function Fy is defined on the wide range of argu-
ment values; therefore, to find maxima of Fy the popula-
tion size parameter of the MNGA was increased to 1000
individuals. Experiments were conducted for function Fj
of dimensions 1, 2 and 3. The MNGA",, ; , algorithm
demonstrated significantly better results both in terms of
convergence and quality of found solutions: Su-
cRuns=90% for MNGA",  , and SucRuns=50% for
MNGA"; ,,, GPR=0.4074 for MNGA",,, and
GPR=0.2667 for MNGA" }, ..

Fm_h_v_rand

Fm_h_v

Fc_h_v

Figure 3 — Histogram with criteria values obtained for MNGA
using different HVFs, test suite T1
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+HHGPR

—=—FPR

Fc_h_v

Fm_h_v Fc_h_v_rand

Figure 4 — Histogram with criteria values obtained for MNGA
using different HVFs, test suite T2

From the stated above it can be concluded that
MNGA",, 1 y performance is either close to the perform-
ance of MNGA"_ ; , or is better in terms of PR; at the
same time improvements in PR are accompanied by the
decrease of SucRuns for some functions. This is also the
case for the MNGA", 1 v rand» though MNGA", 1, y rand
often gives worse results than the MNGA",, 1, ,, especially
in terms of convergence.

By analyzing data from Table 7 providing benchmark-
ing results for functions F;—F, we can state that generally
all kinds of MNGA studied in this research are unaccept-
able for practical use as far as they are characterized ei-
ther by low value of convergence criterion (that is less
than 90%) or by low ratio of real peaks and high ratio of
fake peaks found by the algorithm. This is also true for
other test functions. As for Fy, there are observed Su-
cRuns=100% and GPR value close to 1 for all kinds of
MNGA. This can be explained by the specific surface of
Fy: the function curve is a plateau with four peaks close to
each other. Such a surface is a challenge for most optimi-
zation algorithms but turned to be solvable for MNGA.

Note that all experiments in our study are conducted
for test functions of small dimensions (1<n<3). The rea-
son is the long algorithm execution time caused by a
number of factors including the low convergence percent-
age. For example, the MNGA", ., MNGA", .,
MNGA™, 1, y running time to find optimums of Fs—Fj
took about 48 hours. The computer configuration used to
run these algorithms was the following: processor Intel(R)
Core(TM) i5-7200U CPU @ 2.50GHz 2.71 GHz; 8.00
GB RAM (7.88 GB available); 64-bit Windows 10 oper-
ating system, x64 processor, 2 cores, 4 logic processors.

CONCLUSIONS

In this paper, the MNGA parameter tuning was carried
out and experimental analysis of the MNGA performance
was conducted. Two modifications of the HVF used to
determine the relative position of individuals were pro-
posed. Benchmarking of MNGA with classic HVF and
with its modifications was carried out. Experiments
showed that proposed modifications had increased the
number of real extrema found by the algorithm for most
test functions. Stated above determines the scientific nov-
elty of the obtained results.

The practical significance of the obtained results lies
in the following statements.

© Gulayeva N. M., Yaremko S. A., 2021
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— First, as HVF modifications produce less number of
wrong basin identifications in comparison with classic
HVF, it is recommended to use F,, ; v, Fou 4 v rana In Other
GAs using HVF [16-25].

— Secondly, as the overall performance of MNGA is
poor in comparison with other known GAs, the MNGA is
not recommended for practical use.

Indeed, GAs solving multimodal optimization prob-
lems, i.e. the problems of finding several optimums, con-
tribute to grouping individuals of final population into
species so that the best individual of each species repre-
sents one of the sought optimums. Obviously, it is worth-
while to analyze groups of individuals only in case of GA
convergence. Generally, the number and location of func-
tion optimums are not known a priory for practical prob-
lems. It is known, that individuals of the GA final popula-
tion may be located in the neighborhoods of function
peaks as well as far from them, clustering on peak slopes
or even in the valleys. Therefore, to choose an algorithm
to solve practical MMOPs, in particular problems of find-
ing global and local peaks, it is important to analyze crite-
ria representing number of real peaks found by the algo-
rithm as well as number of fake species formed by the
algorithm. These are the PR, GPR, LPR and FPR criteria.

Experimental analysis of the MNGA with both classic
HVF and its modifications has revealed the unacceptably
low value of the convergence criterion (SucRuns<90%)
and unacceptable for practical use values of the quality
criteria, i.e. small values of PR, GPR, LPR accompanied
by the high value of the FPR. Generally, depending on
algorithm parameter values there is observed either im-
provement of quality criteria values accompanied by the
worse algorithm convergence or higher convergence per-
centage accompanied by deterioration of quality criteria
values. Note that quality parameter values of the SCGA
algorithm developed for farther hybridization [16, 17]
with MNGA are also poor. Let us remark that in [28]
there was proposed TCGM_S2 algorithm; criterion values
computed in [28] for this algorithm are given in Table 7.
It is readily seen that this algorithm provides better crite-
rion values in terms of convergence percentage as well as
in terms of quality of the solutions found. Thus it is rea-
sonable to say that it is impractical to use MNGA to find
global and local optima of a multimodal function. On the
other hand, hybridizations of MNGA with other algo-
rithms could be an option.

Let us remark that there still exist situations when
Fy h v Fu v rana return wrong values. Let us consider
function F; and sample array gr=[0.02, 0.25, 0.5, 0.75,
0.98] from [15]. Points 0.0 and 1.0 are wrongly attributed
to the same basin of attraction by both F. , , and F,, , ,;
return value of F, ; , r4na 1S Wrong with a certain probabil-
ity. To overcome this, modifications of F, , , can be pro-
posed. Modifications regarding a method to construct
sequences of sample points are an option. Several of these
were proposed in [18-20, 24, 30], e.g. replacement of
equidistant test points by a golden section search or
changing quantity of test points dependent on the distance
between individuals.
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In [14] it is stated that MNGA forms only one sub-
population in the neighborhood of every peak. Prelimi-
nary experiments have shown that using HVF to deter-
mine species (niches) formed by the final population in-
stead of the algorithm used in this research (the algorithm
from [28]) gives better results in terms of FPR. At the
same time SucRuns, PR, GPR and LPR criteria values
obviously stay the same. We believe it is worth to conduct
benchmarking of different niching GAs using HVF or its
modifications as the algorithm to determine species (or,
equivalently, as a post-processing step for every algorithm
after its convergence).

Thus, we see two main directions for further re-
search: improvements of the HVF and using HVF as a
post-processing step for other niching GAs. This will be
the object of another paper.
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AHOTAIIA

AKTyalbHicTh. ['©HETHYHI adrOPUTMH YTBOPEHHs HIll € OJHAM 3 HAMIOMIMPEHINIMX MiIXOAIB OO pO3B’s3aHHS 3a1adu
GaraToekcTpeManbHol ontumizaiii. [Ipu npoBeaeHHi kiacudikalii HUX aNrOpPUTMIB MOKHA BHIUIMTH aJArOPUTMH, IO IPYHTYIOTHCS
Ha sIBHOMY aHaii3i Ttomorpadii maummadry ¢yukuii npucrocoBanocti. OZHHUM 3 paHHIX MNPHKIALIB TaKHX alrOPUTMIB €
OaraToHaIIOHAJILHUI TeHETUYHUH alTOPUTM.

MeTta. Po3poOka Ta aHami3 0araToHAIiOHAJBHOTO TEHETUYHOTO AITOPUTMY Ta HOro Moam@ikamiif. AJITOPHTM 3aCTOCOBYETHCS
IUTSL pO3B’A3aHHS 3aa4i MOIITYKY BCiX MAKCUMYyMiB OaraToeKcTpeMalbHOT (pyHKIIIi.

MeTtoa. BukoHaHO ekcrieprMeHTaNbHHUI aHaji3 anropuTMiB. [IpoBeieHO YNCICHH] MPOTOHM aJITOPUTMIB HA BIJOMHX TECTOBHX
3amadyax Ta OOYMCIICHO KpHUTepii epeKTHBHOCTI poOOTH aIropUTMIB, a came, BiICOTOK 30DKHOCTI, YacTKa peasbHuX (TII00aIbHUX,
JIOKJIBHUX) Ta XHOHUX ITiKiB; 3ayBa)KUMO, 1[0 YaCTKH MIKiB 00UHCITIOIOTHCS TUTBKH B pa3i 301KHOCTI aJITOPHTMY .

Pe3yasTaTn. Bukonano mporpamny peaiizamnilo 6araTOHaliOHAJBHOIO T€HETHYHOI'O AITOPHTMY Ta NPOBEIECHO EKCHEePHMEH-
TalbHE HAJALITYBaHHS HOro mapamerpiB. 3amporoHoBaHo JBi Moxudikarii GpyHKUT DoMuH 1 maropOiB, sika BUKOPUCTOBYETHCS B
QITOPUTMI ISl BU3HAYEHHS B3aEMHOTO PO3TalllyBaHHs ocoOuH. [IpoBeneHo ekcriepruMeHTaIbHIN aHalli3 0araToHaliOHAILHOTO TeHe-
THUYHOTO aJITOPUTMY 3 KJIACHYHOTO (DYHKIIi€0 1oNuH i maropOiB Ta 3 il Moaudikanisamu.

BucnoBku. HaykoBa HOBU3HA po0OTH mojsirae B TOMY, 1o Oyiu 3ampornoHoBani Moaudikanil GyHkuii qonuH i maropOis, ski
MPOAYKYIOTh MEHIIY KiIBKICTh MOMHJIKOBHX igeHTH(IKaLiil 30H NPUTAraHHs MOPIBHIHO 3 KJIACHYHUM BapiaHTOM wi€l QyHKIii. Sk
HACII0K, BUKOPUCTAHHA IUX MOAM(DIKAii MPU3BOANTH N0 MOKPALICHHS MPOAYKTHBHOCTI 0araTOHAIiOHAJBHOTO T€HETHYHOTO all-
TOPUTMY IS HU3KH TECTOBHUX 3aad. BTiM, Ui IESKUX TECTOBHX 3a/ad MOJIMIICHHS KPUTEPIiIB SKOCTI CYIPOBOKY€ETHCS 3MEHILICH-
HSIM BIJICOTKa 301KHOCTI. 3araioM, BiICOTOK 301)KHOCTI Ta 3HaYEHHS KPUTEPiiB AKOCTi, MPOAEMOHCTPOBAHI TOCITIHKEHHM allTOPUT-
MOM, € HEJOCTAaTHIMU JUIsl TPAaKTUYHOTO BUKOPHCTAHHS 0araTOHaIiOHAJbHOTO MCHETHYHOIO aJTOPHTMY Y IMOPIBHSHHI 3 iHIIMMH
BIJIOMAMH QJITOPHTMaMH. Y TOIf XxKe 9ac, BUKOPUCTaHHS MOAU(IKOBaHUX (YHKIIIH TOIHH i maropOiB SK eTamy IocToOpoOKH B iHIINX
ITOPUTMAaX YTBOPEHHS HIlll BUIAETHCS NEPCHEKTUBHUM MiJIX0JJOM 0 ITOKPAIIEHHS pOOOTH LIUX alrOPUTMIB.

KJIFOYOBI CJIOBA: 3ana4ya GararoeKCTpeMaibHOI ONTHMI3aNii, TeHeTHYHI aJITOPUTMH YTBOPEHHS Hilll, OaraToHaNiOHAIbHUMA
TeHETUYHHI aNrOpUTM, (yHKIsI JOJIHMH i maropOiB, 30DKHICT TEHETHYHOTO aNTOPUTMY, 4acTKa PEAbHUX MIiKiB, 4aCTKAa XHOHHX
IKiB.
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AHHOTAIUSA

AKTyaabHOCTB. ['eHeTHUeCKHe anropuTMBI 00pa30BaHUS HHUII SBISTIOTCS OJJHUM M3 CaMbIX PacIpOCTPaHEHHBIX MOJXOMO0B K pe-
IIEHWIO 33/1ad MHOTO3KCTpeManbHOW onTtmMmsanmu. [Ipm mpoBemeHHMn xiraccuuKaniy TeHETHYECKHX alTOPHTMOB 00pa3oOBaHUS
HHII MOXXHO BBIJICIIMTH aJITOPUTMBI, OCHOBAaHHBIE Ha SIBHOM aHajM3e Tornorpaduu jaHamadTa GyHKIMY IPUCIOCO0IEHHOCTH. MHO-
TOHAI[MOHAIBHBIA TeHETHYECKHH alNTrOPUTM SIBJISIETCS. OTHMM M3 PAaHHHUX IIPUMEPOB TAKHUX aJlTOPHTMOB.

Heas. Pa3paboTka W aHaIM3 MHOTOHAMOHAJIBHOTO T€HETHYECKOTO AITOPHTMA U ero Moaudukanuii. AITOpUTM MpPUMEHSETCs
JUIsL peLLICHUS 3a/lauM IOUCKA BCEX MAaKCHUMYMOB MHOTO3KCTPEMAJIbHOM (DYHKIIMH.

Mertopa. BrinoiaHeH 3KCIepUMEHTANbHbINA aHATN3 alropuTMOoB. IIpoBeaeHsI MHOTOUHCIIEHHBIE TIPOTOHBI AITOPUTMOB Ha U3BECT-
HBIX TECTOBBIX 33/1a4aX ¥ BBIYMCICHBI KpUTEPHU 3P(HEKTHBHOCTH pabOTHl aITOPUTMOB, @ UMEHHO, MPOLEHT CXOJIMMOCTH, 10JIs pe-
QIIBHBIX (TT00aNBHBIX, JIOKAIBHBIX) U JOKHBIX ITMKOB; OTMETUM, YTO JOJIS MTHKOB BBIYUCISIETCS TONBKO B CIy4ae CXOAUMOCTH ajro-
puTM™Ma.

Pe3yabTaTsl. BrimonHena nporpaMMHasi peasin3aliiss MHOTOHAIIMOHAILHOTO TEHETHYECKOTO aJITOPUTMA M IIPOBEICHA SKCIIEPH-
MEHTaJIbHAsI HACTPOHKa ero rmapaMeTpoB. [Ipemnokens! e MoauuKayn GYHKIMH XOJIMOB U JOJIMH, UCHIONB3yEMOH B alropuT™Me
JUISL OIIpeJIeNIeHNsT B3aUMHOTO PACIIONOXKEeHUsI 0coOeil. BrImosHeH sKkcrieprMeHTaIbHBIH aHaIi3 MHOTOHAIIMOHAIBHOTO TeHETHIECKO-
T'0 aJIropuTMa ¢ KJIACCHYEeCKON (yHKIHEil XOJIMOB U JIOJUH U € €¢ MOJU(DUKALMSIMH.

BriBoabl. Hayunast HOBH3HA pabOTHI COCTOUT B TOM, YTO OBUTH MPEIOKEHBI MOAN(GUKAIMN (QYHKIUH XOJIMOB M JJOJIUH, IIPHBO-
JIUe K MEHbLIEMY KOJIMYECTBY HENPABUIIBHBIX ONpPEAETICHUN 30H MPUTSHKEHHS IO CPAaBHEHUIO ¢ KIaCCMYECKMM BapHaHTOM 3TOH
¢ynknun. Kak crnencTsue, HCMONB30BaHUE 3TUX MOAU(UKALNHA TPHBOIUT K MOBBIMIEHHUIO TPOM3BOIUTENLHOCTH MHOTOHAI[HOHAIIb-
HOTO TEHETHYECKOr0 aJrOpUTMa JUIsl Psifia TECTOBBIX 3aaa4. OHAKO I HEKOTOPBIX TECTOBBIX 33/1a4 YIyUlleHUEe KPUTEPHUEB KadecT-
Ba COMPOBOX/AETCS YMEHBIIEHUEM ITPOLIEHTa CXOAUMOCTH. B 11e/10M, MPOIEHT CXOAUMOCTH M 3HAUSHUsS] KPUTEPUEB KayecTBa, Mpo-
JEMOHCTPUPOBAHHBIE UCCIEAYEMBIM AJITOPUTMOM, HEIAOCTATOUHBI ISl MPAKTHIECKOTO MCHOJIB30BAaHNS MHOTOHAIIMOHATBHOTO TeHe-
THYECKOTO AJITOPUTMA MO CPABHEHHUIO C JPYTHMH M3BECTHBIMHU aJTOPUTMAaMH. B To ke Bpems, NCHONb30BaHNEe MOIU(PUIIIPOBAHHBIX
(yHKIUI XOJIMOB M JIONHMH B Ka4eCTBE IIara mocToOpadOTKH B APYTUX alrOpUTMax 00pa30BaHUs HUII MPEACTABIAECTCS MHOT000e-
IIAIOIIUM IT0JIXOJIOM K YITy4IICHUIO IPOU3BOAUTEIEHOCTH STHX aJlTOPHTMOB.

KJIIOUEBBIE CJIOBA: 3agaua MHOTOAKCTPEMAIBHOH ONTHMH3AIMH, TCHETHIECKHE aJlTOPUTMBI 00pa30BaHMs HUII, MHOTOHA-
IMOHAIBHBIA TeHEeTHYECKUIl aNropuT™, (QYHKIHSI XOJIMOB H JIOJNUH, CXOJHUMOCTb TeHETHUECKOTO alTOpUTMAa, JIOJIST PEabHBIX ITHKOB,
JI0JIs1 JTOXKHBIX ITUKOB.
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