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ABSTRACT

Context. One of the leading problems in the world of artificial intelligence is the optimization of complex systems, which is of-
ten represented as a nonlinear function that needs to be minimized. Such functions can be multimodal, non-differentiable, and even
set as a black box. Building effective methods for solving global optimization problems raises great interest among scientists.

Objective. Development of a new hybrid genetic algorithm for solving global optimization problems, which is faster
than existing analogues.

Methods. One of the crucial challenges for hybrid methods in solving nonlinear global optimization problems is the rational use
of local search, as its application is accompanied by quite expensive computational costs. This paper proposes a new GBOHGA hy-
brid genetic algorithm that reproduces guided local search and combines two successful modifications of genetic algorithms. The first
one is BOHGA that establishes a qualitative balance between local and global search. The second one is HGDN that prevents re-
exploration of the previously explored areas of a search space. In addition, a modified bump-function and an adaptive scheme for
determining one of its parameters — the radius of the “deflation” of the objective function in the vicinity of the already found local
minimum — were presented to accelerate the algorithm.

Results. GBOHGA performance compared to other known stochastic search heuristics on a set of 33 test functions in 5 and 25-
dimensional spaces. The results of computational experiments indicate the competitiveness of GBOHGA, especially in problems
with multimodal functions and a large number of variables.

Conclusions. The new GBOHGA hybrid algorithm, developed on the basis of the integration of guided local search ideas and
BOHGA and HGDN algorithms, allows to save significant computing resources and speed up the solution process of the global op-
timization problem. It should be used to solve global optimization problems that arise in engineering design, solving organizational
and management problems, especially when the mathematical model of the problem is complex and multidimensional.

KEYWORDS: nonlinear optimization, global minimum, randomized search heuristics, hybrid approach, genetic algorithm, de-
flation operator, guided local search.

ABBREVIATIONS

GA is a genetic algorithm;

BFGS is a Broyden-Fletcher-Goldfarb-Shanno algo-
rithm;

L-BFGS is a modification of the Broden-Fletcher-
Goldfarb-Shanno algorithm (with limited memory);

L-BFGS-B is an extended modification of the Broden-
Fletcher-Goldfarb-Shanno algorithm;

BOHGA is a best offspring hybrid genetic algorithm;

PSO is a particle swarm optimization algorithm;

HGDN is a hybrid genetic deflated Newton method;
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GBOHGA is a guided best offspring hybrid genetic
algorithm;

BH is basin-hopping, a technique for global optimiza-
tion;

DA is a dual annealing algorithm;

DE is a differential evolution, a population-based
metaheuristic search algorithm.

NOMENCLATURE
f (x) is an objective function;
Vi (x) is a gradient of a function f(x);

H(x) is a Hessian matrix f(x);
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X * is a global optimum of a function f(X);
X = (X,X2,...,X,) 1s a point of n-dimensional real

space, current position;

y is an improvement from the current positions to the
next;

le), k =1,K are deflation points of the function, local
optimums found at the current moment of the algorithm;

r is a radius around the deflation point;

I is an adjustable radius around the deflation point;

bx0 (X) is a bump-function (a smooth function with

compact support);
A € (1,2] is a parameter of the GBOHGA;

o is a coefficient for adjusting the shape of the bump
function.

INTRODUCTION

Today in the world of artificial intelligence one of the
leading problems is the optimization of complex systems,
which are reduced to many socio-economic, technical,
organizational and managerial tasks [1, 2]. It is often pre-
sented as a nonlinear function that needs to be optimized.
Problems of nonlinear optimization also arise in engineer-
ing design and in the fundamental sciences, such as in
physics, chemistry, molecular biology, and others [3, 4].
Numerical solutions to such problems can be associated
with significant difficulties because the objective function
can be multi-extreme, non-differentiable and, in general,
given in the form of a black box. In addition, each calcu-
lation of a function may require significant computational
resources.

Unfortunately, there is no universal method for deter-
mining the global solution of the nonlinear optimization
problem in the general formulation. Most traditional op-
timization methods are deterministic and local. They are
often unable to leave the areas of attraction of local opti-
mums. The use of the found local solutions may be insuf-
ficient because the global optimum can give a significant
advantage over local ones. But there is an alternative ap-
proach — the use of evolutionary methods of global opti-
mization and the deliberate introduction of an element of
randomness into the search algorithm. These methods are
based on the natural behavior of biological and physical
systems and are able to overcome the shortcomings of
traditional methods of “stuck” in the local optimum [5]. In
addition, randomness can serve the purpose of collecting
information about the behavior of the object of study and
management objectives. The advantages of such methods
are considered to be their increased speed; low sensitivity
to irregular behavior of the objective function and the
presence of random errors in calculating the function;
relatively simple internal implementation; low sensitivity
to the growing dimensionality of the optimization prob-
lem; the possibility of natural introduction into the search
process of learning and self-learning. Besides, within the
known random search schemes, new algorithms are easily
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built that implement various heuristic adaptation proce-
dures.

A popular representative of evolutionary strategies is a
genetic algorithm. In its classical form, it successfully
explores the search space but has a slow convergence. To
get rid of this shortcoming developed and widely used in
the practice implementations that combine genetic algo-
rithm and methods that in the process of their work use
local information about promising areas of search. Such
methods are called hybrid. One of the important issues in
them is the balance between their components, and one of
the well-known problems is the repeated exploration of
the same area with the repeated finding of the already
known local solution. Therefore, the development and
research of new effective methods and algorithms for
finding the global optimum of a multi extreme function
continues.

This paper presents a new hybrid genetic algorithm
GBOHGA for solving the global optimization problems,
which integrates methods that can solve the above prob-
lems. One way to balance the components of the algo-
rithm is to manage the proportion of the population that
should perform a local search. For this purpose, the
scheme laid down in the BOHGA method was used [6].
To prevent re-exploration of previously visited areas, the
idea of “deflation” of the function from HGDN [7] was
borrowed to “remove” already found solutions, but it is
proposed to use it to the objective function, which is ideo-
logically similar to guided local search [8] from combina-
torial optimization. In addition, a new adaptive scheme is
proposed to establish the size of the radius of the “defla-
tion” area in order to avoid the unsuccessful selection of
this parameter. As will be shown below, all this provides
significant savings in computing resources and speeds up
the algorithm, as it prevents the unnecessary use of local
search.

The object of study is the problems of global optimi-
zation.

The subject of study is local search methods and ran-
domized search heuristics for solving global optimization
problems, their computational characteristics, and condi-
tions of application.

The purpose of the work is to develop a new hybrid
genetic algorithm for solving the problem of global opti-
mization, devoid of the shortcomings of existing analogs.

1 PROBLEM STATEMENT
We will consider the problem of optimization in the
next statement:

f*=min f(x),
) M
where the feasible set is n -dimensional parallelepiped
Q={xeR", a; <x; <bj,i=1,n}. )

Since the aim of the research is to develop an algo-
rithm for solving the problem (1), (2) for the widest pos-
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sible class of objective functions, we will assume that the
function f(Xx) is continuous, but can be multimodal,

nonlinear, non-differentiable, have a ravine relief or high
computational complexity.

2 REVIEW OF THE LITERATURE

The variety of global optimization problems entails a vari-
ety of approaches to their solution [1, 9]. An extensive over-
view of such problems and methods is given in [10]. Many
studies are devoted to the study of the peculiarities of the use
of methods for specific problems of global optimization. Let
us recall only some of the known approaches, and review the
latest developments in this field, without claiming to be
complete.

There are so-called passive (non-adaptive) algorithms, in
which the calculation points of the objective function are
selected before the search from some a priori ideas about the
problem and can not be changed during the operation of the
algorithm. This approach usually requires a very large
amount of computation to obtain a reliable estimate of the
global solution. When using sequential (adaptive) schemes
for placing the calculation points of the function, both a pri-
ori and information about the problem obtained during the
search process are taken into account. Adaptive methods are
generally characterized by a denser placement of the points
of calculation of the function in the vicinity of the solution
and rarer outside of it. Consistent are, for example, branch-
and-bound algorithm, Bayesian methods, algorithms based
on interval arithmetic, methods of multiple local descent, and
many others [10]. Within the framework of interval analysis,
the technique of multiple partitioning is intensively devel-
oped, as well as more complex partitioning strategies based
on simplexes [11] and various auxiliary functions [12]. Each
of the techniques is common enough to solve different
classes of global optimization problems.

For many practical problems (solving systems of nonlin-
ear equations and inequalities, optimization of hierarchical
models associated with placement problems, service systems,
etc.), the assumption that the functions characterizing the
system of study are Lipschitz functions is typical. The devel-
opment of the theory and methods of numerical solution of
problems of this type is the subject of Lipschitz global opti-
mization [13, 14].

Special mention should be made of adaptive stochastic
search strategies, many of which underlie heuristic global
optimization algorithms (simulated annealing methods, ge-
netic algorithms, tabu search methods, and others). Different
strategies for approaching and relaxing the original problem
are also used, which involve the consistent construction of
auxiliary subtasks: their solution allows to improve the esti-
mation of the global optimum [15-17]. In [15, 16] methods
and algorithms for solving optimization problems are stud-
ied, which do not use information about the derivatives of
the objective function but require only knowledge of its val-
ues. In [15] a systematic comparison of existing implementa-
tions of such algorithms on a large set of test problems, con-
vex and nonconvex, smooth and non-smooth is presented.
The authors single out global solvers that are superior to
local ones, even for convex problems, and demonstrate ex-
cellent performance in terms of improving suboptimal solu-
tions.
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Geometric and information bases for the construction of
global optimization algorithms are considered in [16].

Here are some new ideas for speeding up the search so
that accelerated optimization methods automatically imple-
ment local behavior in promising regions and do not stop the
search process of a global minimum. The authors emphasize
that a reasonable combination of new and traditional compu-
tational steps leads to two dozen different global optimiza-
tion algorithms. All of them are studied and numerically
compared on three test sets of functions and applied prob-
lems.

For costly, in terms of computing resources, black-box
problems surrogate models are now widely used to reduce
computation time and effort in finding the global optimum.
Thus, in [17] a new global optimization method is proposed,
which uses an ensemble of surrogates and reduction of hier-
archical design. The search uses an ensemble of three repre-
sentative surrogate methods with optimized weights to select
promising sampling points, narrow the study space, and de-
termine the global optimum. The new proposed global opti-
mization method tested using eighteen representative func-
tions and two engineering design optimization problems,
demonstrated improved capabilities in identifying promising
search areas and reducing design space, as well as excellent
search efficiency and reliability in determining global opti-
mum. Fundamental problems that arise during global optimi-
zation based on surrogates from the point of view of the
practitioner, including the selection of concepts, methods,
techniques, and engineering applications, are discussed in
[18]. Providing a comprehensive discussion of the issues
raised, the paper explores the latest achievements in the
planning of experiments, methods of surrogate modeling,
criteria for filling and reducing the project space.

New sampling points are needed to increase the accuracy
of the surrogate model forecast. The decision-making strate-
gies for the following promising samples are called the fill-
ing criteria, the so-called adaptive sampling methods. The
filling criteria (which are conventionally classified as exploi-
tation, exploration, combined exploitation, and research)
may well guide the selection of new sampling points depend-
ing on the information from the optimization process to be
used. On the one hand, operating methods may focus on re-
gions located in the area of the best point that has been found
so far, but which may not even be stationary for the function.
This can only lead to a local approximation and a local opti-
mum. On the other hand, exploration and combined exploita-
tion usually explore rare regions or regions with high uncer-
tainty. However, only the use of exploration strategy can
lead to the depletion of computational resources when ap-
proaching the global minimum with a given accuracy. In
general, high accuracy is needed in potentially promising
regions. Therefore, the authors [19] propose to combine ex-
ploitation and exploration to balance competing goals be-
tween lower cost and more accurate assessment of the opti-
mal solution. The work focuses on parallel algorithms of
effective global optimization. Here, a multi-point fill crite-
rion is developed, which uses entropy to accurately measure
the uncertainty of the Kriging surrogate, and then balances
global exploration and the local exploitation of multi-point
selection criteria. A strategy for optimizing the decomposi-
tion of domains, which provides a small amount of training
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data, is also proposed. According to the authors, compared to
several other methods, it has an obvious advantage in solving
complex optimization problems in a large-scale parallel
computing environment.

Bayesian optimization, which is used to search for the
global minimum of computationally expensive black-box
functions when the evaluation of functions is costly and the
optimum can be achieved with a relatively small number of
evaluations, is becoming increasingly popular today. How-
ever, its application for multidimensional problems with
several thousand observations remains a difficult task, and
the improvement of appropriate methods and approaches is
an important area of modern research. Thus, [20] proposed
ensemble Bayesian optimization to simultaneously solve the
problems of large-scale observations, large dimensionality of
the input space, and the choice of batch requests that balance
quality and diversity. In [21] the authors proposed the
TuRBO algorithm based on a collection of local probability
models that provide local search trajectories that can be used
to quickly identify the best values of the objective function.
This approach is complemented by a so-called gangster strat-
egy, which distributes samples across trust regions, implic-
itly trading exploration and exploitation.

Therefore, deterministic methods have an advantage in
the guaranteed quality of the solution found, but the compu-
tational complexity of such methods is exponential in the
worst case. In fact, no method is better for the worst case of a
function than passive grid search. Because optimization
problems usually come from an arbitrary source and there-
fore tend to have unknown statistical characteristics, alterna-
tive approaches to solving such problems, including adaptive
search strategies and statistical modeling tools, are becoming
important tools, especially in the case of high-dimensional
problems.

Significant results show evolutionary strategies that
mimic biological and social models of evolution. Different
deterministic and stochastic algorithms can be built on the
basis of different evolutionary rules. This is evidenced, for
example, by the successful application of the genetic algo-
rithm to real problems in a wide range of industries [22].
Although metaheuristics are considered reliable, their con-
vergence slows down when solving complex problems, be-
cause they do not involve the use of local information about
promising areas of search. To combat this defect, the idea of
combining local search with various metaheuristic algo-
rithms is being increasingly introduced.

The following is a brief description of the genetic algo-
rithm, together with its modifications and methods of con-
structing hybrids based on it.

3 MATERIALS AND METHODS

The genetic algorithm is an iterative optimization method
based on the concept of natural selection known in genetics.
Variables that characterize the solution are represented as a
set of genes on a chromosome. For example, a point in N -
dimensional space can be encoded by a characteristic vector
X =(Xy5..., Xp) - GA operates with a finite set of solutions
(population), generates new solutions as different combina-
tions of parts of others, using operators such as selection,
crossover and mutation [22]. The new solutions are posi-
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tioned in the population according to their position on the
surface of the studied function.

At the beginning of the algorithm, initialization is per-
formed — the formation of the initial population randomly.
Next, the selection of chromosomes is done, which consists
of selecting those that will produce offspring for the next
population. Genetic operators that form a new population are
applied to the selected chromosomes. Crossover is a key
operator based on the assumed high probability that the new
solution obtained from two sufficiently good solutions of the
problem will be good or even better than the previous ones.
An important but still secondary role is played by the muta-
tion operator, which introduces new genetic material into the
population to maintain population diversity and prevents
losses that could occur due to the exclusion of any significant
gene as a result of crossbreeding.

The steps described above are repeated many times until
the algorithm’s stop criterion is met, for example, when the
already achieved value of the objective function does not
improve for some time. Or the operation of the algorithm can
be strictly limited by a predetermined duration or number of
iterations.

In order not to waste significant computing resources
when solving complex problems, after crossover and muta-
tion, an additional operator is used. It performs a local
search, starting in a certain area of the promising area. Such
algorithms are called hybrid. Methods and algorithms of
local search most often find the nearest extremum, and the
trajectory of their movement significantly depends on the
choice of the starting point and the nature of the target func-
tion.

The choice of local search method for inclusion in the
hybrid should be made taking into account the benefits and
costs of using each of the approaches. Genetic algorithm
operators also partially perform the role of local search with
relatively low computational cost compared to more accurate
local search methods. Therefore, it is rational to limit the
usage of a local search operator. A specific scheme for de-
termining individuals from the population to whom it is de-
sirable to apply local search is offered by the BOHGA [6].
The algorithm’s scheme proposes to perform a local search
only when the best representative of the offspring population
is also the best in the current parent population. When such
best offspring appear, it is very likely that such offspring will
explore a new area, and therefore local knowledge will be
used to accelerate the search for the most promising region.

However, in the described scheme, there can still be a re-
application of local search to individuals that fall into the
same area of gravity of the search space, so in order to pre-
vent unnecessary computational costs in [7], a deflated New-
ton modification was proposed that is a key idea of the
HGDN method. This hybrid uses a genetic algorithm as a
global search method and deflated Newton scheme as a local
search operator. This modification of Newton’s method ef-
fectively identifies several local optimums in the immediate
vicinity of the starting point and accordingly changes the
function. Here is the main idea of the method.

It is known that Newton’s method calculates the gradient
and Hessian of the objective function at the current point and
uses this information to predict the new location of the solu-
tion by solving the equation H(x)y = —Vf (x) . The deflated

Newton scheme is that Newton’s algorithm looks for station-
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— be the sta-

tionary points defined at the moment. Then other such points
can be found by applying the deflation of the gradient of the
function f by the formula:

ary points of function f(x). Let X%),X%,...,XO

Vi)

fhei

Vi, (%)=
3)

The deflated function has no roots in the found opti-
mums, and therefore, the local search method will no longer
be able to converge to these points. The principle of opera-
tion of this approach is shown in Fig. 1 [7]. Thus, in Fig. 1, a
the genetic algorithm applies the local search operator to
each individual of the population, and in the next iteration,
the same optimum is identified again. To combat this behav-
ior, formula (3) is used to calculate the gradient of the func-
tion, i.e. the roots are removed (Fig. 1,b), and therefore the
already found optimums cannot be identified again, and each
individual can find new optimums (Fig. 1, c).

Since the proposed deflation formula is often unreliable
in the computational sense, alternative deflation operators are
being developed [7, 23].

The localized operator proposed in [7], in order to affect
only the area close to the deflation, uses the bump-function
(smooth function with compact support) in the following
form:

X0i)?

1 Xpj =1 < Xj < Xgj +T1,

else,

with X as a deflation point. And the deflated function itself
has the form:
Vi (x)
1- bxo (X)
We will build a new global optimization algorithm that

combines the above-described BOHGA and HGDN hybrids,
as both seek to reduce the number of function evaluations by

foo (x)=

-~ &

hOantat - o=

a
Figure 1 — Demonstration of deflated Newton’s method [7]:

b

eliminating the useless use of the local search operator to
individuals who are either in non-promising regions or in the
same one.

In addition, we develop the idea of a guided local search
algorithm [8], which has successfully proven itself in
combinatorial optimization [24-26]. The latter was proposed
by Voudouris and Tsang and is a meta-heuristic method that
during the search process constructs penalties and uses them
to help local search algorithms get out of the minimum
already found, and even from almost horizontal areas.

As soon as the search algorithm falls within the local
minimum, the objective function is modified in a certain
way, and the local search works with this modified function.

In the new algorithm GBOHGA to modify the objective
function in the areas of attraction of already found local
extrema, we will use the bump-function introduced in

HGDN. That is, the function f(x) in these areas is replaced
by the following:

f(x)

fxo (X):TO(X).

®)

Thus, in this way, the algorithm forces the individual to
look for a new optimum elsewhere, preventing re-
convergence to the point X . However, with the long-term

operation of an algorithm with a highly multimodal function,
the set of local optimums found can become very large,
which affects both the amount of memory consumed and
computational costs. Besides, in practice, there is a question
of choosing a value for the parameter I that is responsible
for the size of the radius of the deflation point of the
previously found optimum. If you choose too small a value,
its positive effect on the algorithm will not be noticeable, in
addition, it can lead to a significant number of local
optimums in the same area of attraction of the search space.
On the contrary, choosing too large a value of this parameter,
we assume that the local search algorithm qualitatively
explored this region and provided the best possible solution
from it.

Although, of course, it may happen that this relatively
small area itself is very complex, and, therefore, such a
choice of the radius of deflation can cause premature
convergence of the algorithm.

C

a — the hybrid method applies local optimization to each individual. In

the next iteration, the same optima can be identified again; b — the gradient of the function is deflated at the optima of the function;
¢ — HGDN removes any identified optima after each iteration. Therefore, already found optima cannot be identified again
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To overcome this uncertainty, the new algorithm
proposes to use an adaptive scheme for selecting the value
of the parameter r, that responds to the frequency of
falling into the area of attraction of the local optimum.
Given the type of objective function, for each found point
x of the local optimum, a certain rather small initial
value ry is choosen. Next, in the case of repeated

convergence to the previously found optimum at a
distance less than or equal to Arj, from two points of the

optimum — new Xg and X(') save the one that corresponds

to the smaller value of the function, with radius r =Ar;.
The bump-function has the form:

ex —¢
2 K2
n e — (X —Xoi) ifHX XkH<r
— ’ A0 ks
b=t (L, ©
0 else.

In order not to perform a costly operation of local
search in those areas that are likely to be of no use, we
will use the BOHGA scheme of a selection of individuals
to which the deflation operator (5), (6) is applied with an
adaptive choice of parameter r. Thus, the scheme of the
GBOHGA is as follows.

GBOHGA algorithm

1. The operators of the genetic algorithm are deter-
mined; parameters I, o, A are set.

2. The initial population is randomly generated.

3. Evaluation of the objective function for each indi-
vidual of the initial population is performed.

4. A population of offspring is created using genetic
algorithm operators.

5. The objective function of each individual of the
population of offspring according to formulas (5), (6) is
estimated.

6. It is determined whether the best offspring individ-
ual among the offspring population is also the best among
the current parent population.

6.1 If not, go to step 7 (local search is not performed).

6.2 In the case of such a descendant, the local search
operation is applied only to it and the suitability of the

new solution xlé is estimated.

6.3 It is checked whether the new solution is similar to
any previously found. That is, whether the new solution

X(|§ is located at a distance less than Arj, from the i-th
previously found local optimum.

6.3.1 If not, then a new solution xg with a radius ry
is added to the set of

{(Xévrl)(xgvrzl---’(xg_lafk—l )}

local  optimums
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6.3.2 Otherwise, from the two points of the local op-
timum — the new X'é and X(') — we keep the one that

corresponds to the smaller value of the function, with a
radius r =Ar;.

7. It is decided which individuals to include in the next
population and which parents should also be left in the
new generation according to the elitist approach.

8. If the stop criterion is met, the procedure stops, oth-
erwise, the transition to step 4 is performed.

4 EXPERIMENTS

To test and compare the efficiency of the developed
and existing, the best for today, optimization algorithms
among the known modern artificial landscapes [27] se-
lected 33 functions with different properties in terms of
modality, separability, scalability, and landscape of the
valley. The choice of functions for testing is justified by
the following considerations.

Multimodal functions with many local minima form
one of the most complex classes of optimization problems
for many algorithms and are used to test the ability of the
algorithm to proceed from any local minimum. If the al-
gorithm has a poorly designed research process, it cannot
effectively investigate the landscape of functions and is
stuck at the local minimum. Also for algorithms, func-
tions with flat surfaces can cause difficulties, because
their invariance does not give the algorithm any informa-
tion to direct the search process to the minima (for exam-
ple, Stepint or Powell Sum).

Among the test functions, there are separable and non-
separable. Usually, it is much easier to optimize the for-
mer, since each variable of such a function is independent
of the others, it is possible to perform a sequence of n
independent optimization processes to find the optimal
value of the respective variables.

An important indicator of the effectiveness of optimi-
zation algorithms is the ability to overcome the problem
of dimensionality because it is known that with the in-
creasing number of parameters, the search space also in-
creases, and exponentially. Therefore, the set of test func-
tions includes functions with the ability to increase the
number of their components.

For some functions, the area containing global minima
is very small compared to the whole search space, for
example, Powell or Schaffer problems. For the last prob-
lem, the global minimum is very close to the local min-
ima. And if the algorithm does not have time to change
direction in functions with a narrow curved valley, or
inefficiently explores the search space, in the case where
the functions have several global minima, such an algo-
rithm will not be able to cope with these problems. The
choice of test functions is made taking into account the
variety of the functions’ hypersurfaces [28].

Table 1 contains a general description of a set of se-
lected artificial landscapes listed above. The list of all test
functions used in the work with their mathematical nota-
tion is given in the Table 2, and in Fig. 2 are presented the
landscapes of some of them.
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Table 1 — General characteristics of a set of artificial landscapes

A property that is typical for a function from Percentage of
the set of artificial landscapes functions in the set
continuity 91
differentiability 73
separability 36
unimodality 58
convexity 42

Table 2 — Artificial landscapes

n-1

f()= Z[IOO(XM “x2f (-1 }

i=1
—30<x <30, i=1Ln, x"=(L...0, f(x)=0

N Name, mathematical notation, optimal solution N Name, mathematical notation, optimal solution
1 | Ackley 1 11 | Schwefel 2.21
002 R h S cosme) f(x):lmgizgg]‘xi , —100< x; <100, i=1,n,
f(x)=-20e = g = +20+e . .
. . x =(0,0,...,0), f(x )=0
-35<x; £35, x =(0,0,...,0), f(x )=0
2 | Alpine 1 12 | Schwefel 2.22
n o n n .
f(x) =[x sin(x;)+0.1x;| .~ —10<x <10, i=1n, £ =3 [xi|+[]|xi| - ~100 < x; <100, 1=1n,
i=1 i=1 i=1
X" =(0,0,...,0), f(x")=0 X" =(0.0....0), f(x")=0
3 Chung Reynolds 13 | Schwefel 2.23
2 n
4 10 .
f(x):[inzj ,—100 < x; <100, F(0)=2%".-10<x <10, i=Tn,
i=1 i=1
x* =(0,0,..,0), f(x)=0 X" =(0,0,...0), f(x") =0
4 | Exponential 14 | Sphere
n _ n .
f(x):—exp(—O.SZij,—lgxi <li=1,n, f(x):in2 , 0<x <10, i=1n,
i=1 i=1
X" =(0,0,...,0), f(x") =1 X" =(0,0,....0), T (x")=0
5 | Griewank 15 | Step
2 n n
noxi X; .
f(x)= Y —]’[cos['_jﬂ,—loos xi <100, f0 =3 (x]). ~100<x; <100, i=1n,
i=14000 5 Wi =
X" =(0,0,..,0), f(x")=0 x* =(0,0,..,0), f(x")=0
6 | Hapy Cat 16 | Step 2
2® n ¥ (x 2., -100<x; < i=Ln
o= (4" -n)" |+ | oK+ 2oy, 100=3 L0357, 10023 <100 T=H
ni2 ia 2 =l
. . X" =(0.5,0.5,..,0.5), f (x")=0
-2<x; <2, o -real; X =(-L-1,...,-1),f(x )=0
7 | Periodical 17 | Step 3
) > x
n in — 2 ) 1 —
f(x)=1+ Y sin?(x; )—O.Ie[il . -10<x; <10, Fo _iZ;‘ X JJs 100<x; <100, T=Ln,
i=1 =
x5 = (0,0....,0), f (X*) -09 X = (0,0.,...,0), f(x*) =0
8 | Powell Sum 18 | Streched V Sine Wave
RN n-1 o 0.1
f(x): > X ,—1<x £1, i=1n, f(X):Z(Xi+l+xi2)4{s1n2{50(xi+l+Xi2) }+0.1}
i=1 i=1
X" =(0,0,..,0), f(x)=0 -10<x, <10, i=Tn, x" =(0,0,..,0), f(x")=0
9 | Rastrigin 19 | Sum Squares
n n .
f(X):10n+Z(Xi2—10cos(21'cxi )) f(X):Eli)(i2 ,—10<x; <10, 1=1,n,
i=1 i=1
—5.02<% <5.12, i =10, X" =(0,..,0), f (x) =0 X" =(0,0,...0), f(x")=0
10 | Rosenbrock 20 | Trigonometric 1

2

f(x)= i n— Zn:cos Xj +i(cos(X;j)—sin(X;))

i=1 j=1
0<x<m i=Ln, x*=(0,0,..0), f(x)=0

© Avramenko S. E., Zheldak T. A., Koriashkina L. S., 2021
DOI 10.15588/1607-3274-2021-2-18

180




e-ISSN 1607-3274 PapioenexrpoHika, inpopmaTuka, ynpasminas. 2021. Ne 2
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2021. Ne 2

Continuation of the Table 2

21 | Salomon

f(x) :1—co{2n\/§]+0.1 ix% ,
i=1 i=1

~100< x; <100, i=1,n, X =(0,..,0), f (X ) =0

28 | Trigonometric 2

f(x)= 1+Zn:85in2(7(xi —0.9)2)+ 651112[14(x1 —0.9)2]+
i=l

+(x —0.9)°
X" =(0.9,09.,...,0.9), f(x") =1

,—500<x; <500,i=1n

22 | Sargan

f(x)=in[x?+0.42xixj}

i=1 j#1

~100 < x; <100,

29 | W/ Wavy Function

f(x):l—%icos(kxi)e_xiz/z, K
i=1

— JIiiCHE YKCII0

—n<x <m i=Ln, X =(0,0,..,0), f(x")=0

i=Ln, X =(0,...,0), f(x')=0
23 | Schaffer F6

2 2
A -0.5
f(X)=Z S XI +XI+1

i=1 [1+0 001(X| +X|+1)]

S

30 | Weierstrass

N\ Ko ‘ Ko K
f)=Y| > a“cos@nb®(x; +0.5)—-n D a cosh")

i=1| k=0 k=0

i=1
x" =(0,0,...,0), f(x")=0

. ~0.5<x; <05, i=Ln, X =(0,0,..,0), f(xX')=0
~100< x; <100, i=Ln, X" =(0,..,0), f(x") =0
24 | Schumer Steiglitz 31 | Whitley
n % " _ 2.2
f(x)zzxi“,x =(0,0,...,0), f(x) =0 f00 zz (100(x? — X ; ) +(1-xj)%)
= S5 4000
25 | Schwefel 2.20
n 2 2 2
f)==>|x |, -100<x; <100, i=1,n, —0os(100(xi" —xj)" +(1=xj)" +1)

x =L, f(x)=0

26 | Schwefel

o
n

f(x)= (z X?J , 0> 0 — giitcauit mapamerp
i=1

~100 < x; <100,
X" =(0,0,..,0), f(x )=0

i=1n,

32 | Xin-She Yang 3

~3 (4 /BP
f(x)=¢ =

*anxiz n
—2e il ~Hcosz(xi)
i=1

20<x;, <20, m=5,p=15, %" =0vi, f (x") =1

27 | Schwefel 1.2

™=

2
i
f(x) = [ X3 ] ,—100<x; <100, i=1,n,

i=1\ j=1

u0), F(x)=0

*

x =(0,0

33 | Xin-She Yang (Function 4)

—Zn: Xiz —Zn:sinz \/W

n
f(X)Z(-Zsinz(xi)_e ER= ,
i=1

~10<x <10, i=Ln, x" =(0,0,..,0), f(x") =

For all the problems consider an objective function
subject to bound constraints on the values of the variables.
All functions are scalable, which allows us to check the
behavior of algorithms in large-scale problems. Two-
thirds of all test functions are not separable, which is also
a challenge for most algorithms, but perhaps the most
difficult is multimodality, especially in multidimensional
spaces.

The testing was performed in comparison with other
popular evolutionary algorithms, including the BH, DA,
PSO, DE. For correct analysis, instead of independent
implementation of these methods, their open-source ver-
sions from the SciPy library were used.

A key aspect of developing a new algorithm is the de-
sire to reduce the required number of calculations of the

© Avramenko S. E., Zheldak T. A., Koriashkina L. S., 2021
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objective function with an adequate level of reliability of
the algorithm. Instead of counting the number of calls to
the objective function, we can also use the physical time
spent on solving problems, but this characteristic strongly
depends on the quality of the implementation of the algo-
rithm and the level of hardware, and therefore it is less
universal.

In order to obtain reliable comparison results, the ex-
periment was performed 50 times with random initial
populations, and the results were averaged. Fig. 3 showed
the performance profiles for BH, DA, DE, PSO, and
GBOHGA on the test data set using function evaluations
as performance criteria.
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Figure 2 — 3d-Surface and Contour Map of some test functions:
a — Salomon Function; b — Xin-She Yang Function; ¢ — Hapy Cat Function

5 RESULTS

Fig. 3 shows that for the test set of problems
GBOHGA is the best algorithm in terms of performance,
followed by DA and DE. The GBOHGA algorithm re-
quires 3 times fewer evaluations of the objective function
than DA and 6 times less than DE. At the same time,
these algorithms tend to outperform GBOHGA, solving
more problems by 5% and 6%, respectively. A detailed
description of the results obtained in terms of each func-
tion is given separately in the Table 3. For each of the 5
optimization algorithms in the first column (u) is given
the average value of the number of calls to the objective
function for each of the 33 test functions based on the
results of 50 runs of the algorithm. The second column
(o), according to the same scheme, indicates the standard
deviation, and the third (%) indicates the success level
(values from 0.0 to 1.0) of the algorithm on this problem,
which characterizes the robustness of the algorithm. The
results of this table are also summarized for all functions
and given in the last line. For greater clarity, in Fig. 4 a
comparison of algorithms by their performance is demon-
strated. Thus, GBOHGA is in 62.5% of cases faster than
competing algorithms.

When solving optimization problems with 25 vari-
ables, the GBOHGA algorithm is still the best in terms of
performance, and it can only compete with DA, which
solves 3% more problems from the test suite, but con-
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sumes 5 times more computing resources (see Table 4 for
more details). In terms of performance speed, GBOHGA
shows even better results than in the previous experiment,
namely in 69.7% of cases GBOHGA is faster than com-
peting methods.

Obviously, with the increase in the number of vari-
ables, GBOHGA shows not worse, but even better results
compared to other methods.

It should be noted that when designing the algorithm,
separately, ten different crossover operators were com-
pared, of which the best results were found by a discrete
crossover. Also, five mutation operators and two selection
operators were tested and it was shown that the best com-
bination is the rank selection with the non-uniform muta-
tion.

Further, in combination with the genetic algorithm,
seven different methods of local optimization were used.
According to the obtained results, the advantage is attrib-
uted to quasi-Newton methods (L-BFGS-B turned out to
be the best option).

Therefore, the above-mentioned operators were cho-
sen as the key components of the proposed hybrid algo-
rithm, other parameters of the genetic algorithm were
chosen arbitrarily, just as all competing algorithms were
performed without prior optimization of parameters, ie the
values were chosen either arbitrarily or most used.
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Table 3 — Mean () and standard deviation (o) of the number of function evaluations and success rate (%) on the results of 50
runs for each function from the test set for each method

Function BH DA DE GBOHGA PSO
name 1 o % n o Y% n c % 1! c % 1! c Y%
Ackleyl 14692 | 560 | 0.0 | 10701 | 131 | 1.0 | 20829 | 3097 | 0.96 | 4022 | 1050 | 0.76 | 53297 | 3732 | 0.0
Alpinel 119324 | 7602 | 0.88 | 11347 | 538 | 1.0 | 17643 | 1118 | 1.0 | 4602 | 627 | 1.0 | 72846 | 14714 | 0.16
Chung 8712 154 | 1.0 | 10356 | 43 | 1.0 | 15525 554 | 1.0 | 2444 | 224 | 1.0 42601 | 2534 | 1.0
Reynolds
Exponential 3572 44 | 10 | 10032 | 5] 1.0 968 97 | 1.0 | 2688 | 1931 | 1.0 | 43793 | 2147 | 1.0
Griewank 10105 | 305 | 0.0 | 10376 | 96 | 0.04 | 20303 | 5524 | 0.2 | 3184 | 884 | 0.36 | 54546 | 10131 | 0.0
HappyCat 27875 | 5363 | 0.0 | 10857 | 311 | 0.0 | 69822 | 8046 | 0.0 | 4054 | 1407 | 0.0 | 108498 | 6777 | 0.0
Periodic 5659 52| 0.0 | 10038 | 6] 0.0 | 14710 | 3839 | 0.04 | 2628 | 485 | 0.34 | 47473 | 2551 | 0.0
PowellSum 20654 | 470 | 1.0 | 10255 | 39 | 1.0 | 17677 | 536 | 1.0 | 2258 | 198 | 1.0 | 40994 | 3348 | 1.0
Rastrigin 15567 | 1078 | 0.48 | 10366 | 82 | 1.0 | 12508 | 2928 | 0.8 | 3587 | 692 | 1.0 | 54366 | 3089 | 0.0
Rosenbrock 31886 | 13068 | 0.34 | 10480 | 101 | 1.0 | 42053 | 9270 | 0.94 | 2838 | 424 | 1.0 | 92979 | 5267 | 0.02
Salomon 19196 | 5393 | 1.0 | 10453 | 124 | 0.02 | 15849 | 1596 | 0.0 | 3140 | 797 | 032 | 41447 | 2331 | 0.0
Sargan 5864 111 | 1.0 | 10057 | 7| 1.0 | 16165 | 667 | 1.0 | 2394 | 274 | 1.0 | 53666 | 3147 | 1.0
SchafferF6 18194 | 3525 | 0.0 | 10860 | 255 | 0.06 | 26292 | 5890 | 0.0 | 3764 | 797 | 0.24 | 62897 | 14239 | 0.0
2?:;11111:; 12213 | 5943 | 076 | 10348 | 29 | 1.0 | 16150 | 625 | 1.0 | 2468 | 231 | 1.0 42139 | 2148 | 1.0
Schwefel 36485 | 1342 | 0.0 | 10811 | 233 | 0.0 | 15537 | 538 | 1.0 | 2841 | 287 | 0.0 | 204860 | 9943 | 1.0
Schwefel12 7494 52 | 1.0 | 10088 | 14 | 1.0 | 25597 | 837 | 1.0 | 2375 | 261 | 1.0 | 54120 | 3811 | 1.0
Schwefel220 125013 | 1957 | 1.0 | 11077 | 409 | 1.0 | 15243 | 548 | 1.0 | 3481 | 414 | 1.0 | 73152 | 5418 | 0.98
Schwefel221 93100 | 6074 | 1.0 | 11548 | 409 | 1.0 | 18376 | 698 | 1.0 | 4100 | 982 | 0.98 | 69960 | 4544 | 1.0
Schwefel222 115859 | 11836 | 0.46 | 12324 | 568 | 1.0 | 15709 | 511 | 1.0 | 4943 | 635 | 1.0 | 74771 | 8138 | 0.94
Schwefel223 16868 | 686 | 1.0 | 10450 | 41 | 1.0 | 16888 | 577 | 1.0 | 2393 | 148 | 1.0 | 32622 | 1430 | 1.0
Sphere 921 67 | 1.0 | 10013 | 0] 1.0 | 36873 | 1075 | 1.0 | 3524 | 472 | 1.0 | 21472 | 307 | 1.0
Step 707 000 | 10091 | 16| 1.0 2775 | 320 | 1.0 | 3835 | 786 | 0.46 | 27776 | 650 | 1.0
Step2 707 000 | 10093 | 17 ] 1.0 2830 | 406 | 1.0 | 3556 | 756 | 0.6 | 27970 | 760 | 1.0
Step3 707 000 | 10101 | 20| 1.0 2764 | 282 | 1.0 | 3958 | 705 | 0.56 | 27786 | 613 | 1.0
StrechedVv 12512 | 3271 | 0.0 | 11485 | 513 | 0.0 | 70214 | 8716 | 0.0 | 4868 | 2056 | 0.02 | 70630 | 21089 | 0.0
SineWave
SumSquares 8757 103 | 1.0 | 10069 | 4 | 1.0 | 15352 | 558 | 1.0 | 2427 | 225 | 1.0 | 48238 | 2280 | 1.0
Trigonometricl 1334 | 381 | 0.96 | 10211 | 97 | 0.74 | 19919 | 4577 | 0.94 | 2379 | 312 | 0.8 | 21115 | 317 | 1.0
Trigonometric2 | 61209 | 2235 | 0.0 | 12641 | 477 | 1.0 5823 | 686 | 1.0 | 6383 | 1432 | 0.58 | 99812 | 22224 | 0.28
WWavy 6590 | 1751 | 0.0 | 10340 | 76 | 1.0 | 13221 907 | 1.0 | 3454 | 592 | 1.0 | 52355 | 8667 | 0.0
Weierstrass 67323 | 2585 | 0.0 | 13265 | 471 | 0.0 | 75201 0| 0.0 | 8846 | 2923 | 0.0 | 54581 | 13629 | 0.0
Whitley 44508 | 3693 | 0.0 | 11484 | 448 | 032 | 14540 | 3778 | 0.14 | 3895 | 706 | 02 | 71142 | 12189 | 0.02
XinSheYangN3 1152 | 237 | 0.0 | 10289 | 53 | 0.54 282 42 | 0.16 | 2330 | 61 | 0.02 | 30334 | 12807 | 0.32
XinSheYangN4 | 7806 | 1467 | 0.0 | 10080 | 27 | 0.0 | 14059 | 1027 | 0.0 | 2414 | 310 | 0.04 | 41851 | 6388 | 0.02
g:;gig;y“ 27956 | 36013 | 0.45 | 10697 | 836 | 0.69 | 20839 | 18627 | 0.7 | 3517 | 1631 | 0.64 | 58063 | 34567 | 0.54
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Figure 4 — The percentage of problems on which the optimizer is faster than others: a — with 5; b — with 25 variables
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Figure 5 — Performance profiles in problems with 25 variables

6 DISCUSSION

Therefore, based on the results of numerical experi-
ments of solving known global optimization problems,
the proposed GBOHGA algorithm demonstrated the fol-
lowing advantages:

— due to the reduction in the number of evaluations of
the objective function, the performance speed of the algo-
rithm is higher compared to any other considered evolu-
tionary algorithm (almost 70% of problems with 25 vari-
ables were solved faster using GBOHGA than using other
solvers);

— by the criterion of reliability, GBOHGA is better
than the basin-hopping algorithm and particle swarm op-
timization in problems with 5 variables;

— by the criterion of the robustness of solving prob-
lems with 25 variables, the algorithm is better than three
of the four other solvers among the considered.

The work [29] shows the importance of the develop-
ment and wide applicability of mobile neural networks.
Such networks, as a rule, have parameters, the choice of
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which is necessary to achieve the minimum value of the
loss function. Genetic algorithms (including ours) have
the potential to improve the quality of such neural net-
works.

CONCLUSIONS

The paper proposes a new hybrid genetic algorithm
GBOHGA, an optimization scheme that combines ele-
ments of BOHGA and HGDN methods and which inte-
grates the strengths of local search with powerful global
search capabilities. The advantage of the proposed
method can be considered the simplicity of its implemen-
tation, as the key operators of the genetic algorithm and
local search methods remain unchanged. Due to the pre-
vention of a significant part of the unnecessary use of the
local search operator, significant savings were achieved in
the number of evaluations of the objective function and
execution time of the algorithm, which made the method
competitive with other widely used methods of global
optimization.
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Table 4 — Mean value and standard deviation of the number of function evaluations and success rate after 10 runs for each function
with 25 variables from the test set for each method

Function BH DA DE GBOHGA PSO

name 1! [ % n [J Y% 1! [J % 1! [ % n [J Y%
Ackleyl 69614 696 | 0.0 | 57876 | 690 | 1.0 | 375609 32 | 00 | 12222 | 3230 | 1.0 | 89650 | 4805 | 0.0
Alpinel 679007 | 9705 | 0.9 | 106564 | 13930 | 1.0 | 375921 0| 1.0 | 42749 | 11233 | 1.0 | 96936 | 5266 | 0.0
Chung 71201 | 74140 | 0.9 | 53552 193 | 1.0 | 327326 | 17048 | 1.0 3446 74 | 1.0 | 112826 | 7586 | 0.0
Reynolds
Exponential 19350 162 | 1.0 | 50222 39 | 1.0 19226 | 2552 | 1.0 4270 | 1350 | 1.0 | 78228 | 4271 | 0.0
Griewank 95882 260 | 1.0 | 50921 208 | 1.0 | 71432 | 72252 | 0.3 2934 | 464 | 1.0 | 84713 | 4532 | 0.0
HappyCat 117521 | 2317 | 0.0 | 54454 | 1293 | 0.0 | 377231 852 | 0.0 7539 | 2368 | 0.0 | 105716 | 4896 | 0.0
Periodic 27205 47 | 00 | 50248 46 | 0.0 | 375531 000 2925 | 291 | 0.0 | 83399 | 6435 | 0.0
PowellSum 126551 | 2321 | 1.0 | 52819 | 342 | 1.0 | 375401 0 1.0 2572 153 | 1.0 | 50547 | 5022 | 1.0
Rastrigin 206042 | 6159 | 0.0 | 55903 | 872 | 1.0 | 375658 25 | 0.0 7739 | 2091 | 1.0 | 98980 | 5377 | 0.0
Rosenbrock 299921 | 43662 | 0.1 54974 | 505 | 1.0 | 288349 | 141600 | 0.9 7858 | 1246 | 1.0 | 114993 | 9423 | 0.0
Salomon 34913 | 12131 | 0.8 | 54005 | 2108 | 0.0 | 340540 | 39914 | 0.0 5742 | 1442 | 02 | 45660 | 3652 | 0.0
Sargan 50216 | 60667 | 0.9 | 50315 59 | 1.0 | 375401 0 1.0 3862 | 973 | 1.0 | 112947 | 5184 | 0.0
SchafferF6 338304 | 36814 | 0.0 | 106756 | 10820 | 0.1 | 384706 | 4170 | 0.0 | 52606 | 11817 | 0.8 | 96166 | 7029 | 0.0
Schumer 17080 | 2347 | 0.0 | 54072 | 205 | 1.0 | 372626 | 5500 | 1.0 3277 128 | 1.0 | 108191 | 9569 | 0.0
Steiglitz
Schwefel 188737 | 9032 | 0.0 | 53854 | 1343 | 0.0 | 328746 | 10168 | 1.0 5557 | 1477 | 0.0 | 82255 | 5516 | 0.0
Schwefel12 68272 | 10944 | 09 | 52554 | 339 | 1.0 | 377137 227 | 1.0 5503 | 721 | 1.0 | 103254 | 4828 | 0.0
Schwefel220 695733 | 6717 | 1.0 | 56755 | 2396 | 1.0 | 329758 | 14548 | 1.0 | 10814 | 1445 | 1.0 | 99846 | 9536 | 0.0
Schwefel221 498875 | 17899 | 1.0 | 75031 | 4684 | 1.0 | 375785 89 | 1.0 | 26047 | 7896 | 0.3 | 88771 | 7744 | 0.0
Schwefel222 341734 | 107144 | 0.0 | 73008 | 4702 | 1.0 | 366096 | 8306 | 1.0 | 23501 | 8166 | 1.0 | 116924 | 18060 | 0.0
Schwefel223 34150 | 39015 | 03 | 55713 | 296 | 1.0 | 375401 010 3638 160 | 1.0 | 96984 | 9145 | 0.0
Sphere 5043 236 | 1.0 | 50053 0| 10 | 375427 010 7031 | 2890 | 1.0 | 25165 | 1330 | 0.9
Step 2727 000 | 51316 109 | 1.0 | 58713 5417 | 1.0 9532 | 2276 | 1.0 | 37924 | 1620 | 0.0
Step2 2727 000 | 51233 101 | 1.0 | 60326 | 7288 | 1.0 9625 | 2363 | 0.9 | 40472 | 3364 | 0.0
Step3 2727 0] 00 | 51462 113 | 1.0 | 57626 | 6490 | 1.0 8432 | 2868 | 0.8 | 45182 | 5523 | 0.0
StrechedV 266810 | 83587 | 0.0 | 149045 | 41857 | 0.0 | 381953 1510 | 0.0 | 28011 | 41761 | 0.0 | 95680 | 5320 | 0.0
SineWave
SumSquares 134815 | 12197 | 02 | 50775 95 | 1.0 | 329988 | 14109 | 1.0 4710 | 1188 | 1.0 | 96382 | 5384 | 0.0
Trigonometricl | 52392 | 35191 | 0.6 | 52520 | 753 | 0.0 | 101946 | 96678 | 0.1 4426 | 1028 | 0.0 | 50013 | 24921 | 0.4
Trigonometric2 | 345622 | 12423 | 0.0 | 153122 | 17328 | 1.0 | 227821 | 45852 | 10 | 58542 | 11799 | 0.5 | 154987 | 15666 | 0.0
WWavy 81105 | 4064 | 0.0 | 54506 | 487 | 1.0 | 375991 123 | 00 | 10902 | 1623 | 1.0 | 80479 | 6991 | 0.0
Weierstrass 309193 | 12501 | 0.0 | 101761 | 5373 | 0.0 | 375921 0| 0.0 | 41843 | 26637 | 0.0 | 65630 | 17056 | 0.0
Whitley 267065 | 168786 | 0.0 | 79505 | 3630 | 02 | 333035 | 46053 | 0.0 | 19983 | 1315 | 0.0 | 145926 | 7956 | 0.0
XinSheYangN3 | 6185 941 | 0.0 | 54670 165 | 0.0 2814 486 | 0.0 4129 79 | 00 | 23832 | 551 | 0.0
XinSheYangN4 | 6515 1496 | 0.0 | 55450 | 432 | 0.0 | 373601 5692 | 0.0 2956 126 | 0.0 | 30242 117 | 0.0
Total average: | 165552 | 190266 | 035 | 65909 | 28012 | 0.68 | 292213 | 133191 | 0.58 | 13483 | 17486 | 0.65 | 83603 | 33631 | 0.07

According to the results of testing on a set of 33 func-
tions with different landscapes, the proposed algorithm
showed high results in terms of performance, and it is
important to emphasize that the greatest benefits from its
use can be obtained in problems of large dimensionality
of search space.

The practical value of the work lies in the possibility
of using the developed algorithm to solve global optimi-
zation problems that arise in engineering design, solving
organizational and management problems, especially
when the mathematical model of the problem has a high
dimensionality.

The direction of further research is the analysis of
the duration of local search, necessary to find a global
solution to the optimization problem with acceptable ac-
curacy, as well as the choice of truncation criterion in the
proposed scheme.
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AHOTAIIA

AxTyanbHicTh. [IpoBiHOI NPOGIEMOIO B CBITI LITYYHOTO iHTENEKTY € ONTUMI3allis CKIaIHUX CHCTEM, L0 HEPiJKO MOIAETHCS
y BTV HeNiHiHOT (QyHKIIT, iKYy HeoOXiqHo MiHiMi3yBaTH. Taki (GyHKUIT MOXKYTh BUSBUTHCS MYyJbTUMOJAIBHUMY, HEAU(DEPEHLIi-
HoBaHUMH, i HaBiTh, 3a7aHUMHU y Gopmi YopHOI ckpuHbKH. [I00yn0Ba eeKTUBHUX METOMIB PO3B’sA3aHH 3a4a4 TII00aIbHOI ONTHMI-
3amii i CbOro/iHI BUKJIMKAB 3HAYHUIT IHTEpeC cepesl HayKOBIIiB.

MeTta. Po3poOka HOBOTO TiOpHIHOTO TEHETHYHOTO aNTOPUTMY PO3B’sI3aHHS 3a7adi 6e3yMOBHOI rI00AFHOI ONTHUMI3aMii, IIBHI-
II0TO 3a ICHYIO4i aHAJIOTH.

Metoan. OHUM 3 BaXIIMBUX BUKJIHKIB, 3 IKUMH CTHKAIOTHCS TiOPUIHI METOIH IIil 9ac po3B’s3yBaHHA 3aj1ad HeliHiiHOI rioba-
JBHOI ONTHMI3alii, € pamioHaJbHE BUKOPHUCTAHHS JIOKAJILHOTO ITOLIYKY, OCKUIBKM HOTO peali3amis CyNpOBOJDKYETHCS JOCTATHBO
KOLITOBHUMHU OOYMCIIIOBAIFHMMH BUTpaTaMu. B paHii po0oTi 3amporoHOBaHWI HOBMH TiOpUIHHMN TI'€HETUYHHMH alropUTM
GBOHGA, sixuii BiATBOPIOE KEPOBAHUIT JIOKAIBHUI TOIIYK, | HOEJHYE BI YCHIMIHI MOAN(IKAIil TeHETHYHUX AJITOPUTMIB, Hepiia 3
skux BOHGA BcTaHOBIIO€ SIKiCHHI OajaHC MiX JIOKQIbHUM Ta riiobanbHuM mourykoM, apyra — HGDN — 3anobirae noBTopHOMY
JOCII/DKEHHIO paHillle BXke po3BifaHol obsacTi momrykoBoro npocropy. OkpiM 1poro, 0yio 3ampornoHoBaHo MoaudikoBany bump-
(YHKIIIO Ta aJalTUBHY CXEMY BH3HA4YEHHs i mapaMmeTpy — pamiycy obmacti «aedusamii» mineoBoi QyHKIIT B OKOJI BXe 3HAIIEHOTO
JIOKaJIbHOTO MiHIMyMY — 3a]UT IPUCKOPEHHS POOOTH alTOPUTMY.

PesyasTatn. Pobory GBOHGA 3 iHmMMH BiTOMUMH CTOXaCTHYHUMH IIOIIYKOBUMHM €BPHCTHKaMH Ha Habopi i3 33 TecToBHX
¢GyHKIiH B 5 Ta 25 BUMipHOMY IIpocTopax. Pe3ynbraTti 004HCIIOBAIBHAX €KCIICPIMEHTIB CBITYATh PO KOHKYPEHTHY CIIPOMOKHICTD
GBOHGA, 0c006:11B0 B 337a4ax 3 MyJbTUMOJAIbHUMH (DYHKIIISIMH 1 BEIUKOKO KUTBKICTIO 3MiHHHUX.

BucnoBku. Hoswuii riopuaunii anroputm GBOHGA, po3po0Oiennii Ha ocHOBI iHTerpaii i1eif kepoBaHOTO JIOKAJIBHOI'O MOIIYKY i
anroputMiB. BOHGA ta HGDN, no3Boisic 3Ha4HO €KOHOMHUTH 00YHCITIOBAJIbHI pEeCypcH Ta IPUCKOPIOBAaTH PO3B’sI3aHHsI 3a1a4i IJ10-
anpHOI onTHMizarii. Floro BapTo 3acTOCOBYBAaTH I PO3B’A3aHHS 334 [MOGATHHOI ONMTHMI3AIL, 10 BHHUKAIOTH B IHKCHEPHOMY
MIPOEKTYBaHHI, BUPIIICHHS OpraHi3aliifHO-yIPpaBIiHCEKUX Mpo0iIeM, 0COOIMBO KOJIM MaTeMaTHYHa MOJEIb 33/1a4i € CKIaIHOO 1 Ma€e
BHCOKY PO3MIpHICTb.

KJIIOYOBI CJIOBA: HenmiHiliHAa onTHMi3aris, II00aIbHAN MIiHIMYyM, CTOXAaCTHYHI ITONIIYKOBI €BPUCTHKH, TIOPHIHUH MiAXil,
TeHETUYHHH aNropuTM, oriepatop Aeduisiii, KepoBaHHH JIOKAIBHAI MOMIYK.

VJIK 004.023

YHOPABJSAEMBIA TMBPUIHBLIA TEHETHYECKANA AJITOPUTM PEIIEHUS 3AJTAY TJIOBAJIBHOM
ONITUMM3ALIMNHN

Aspamenko C. €. — maructp kadeapsl CHCTEMHOrO aHaiW3a M yNpaBieHHs HanuoHAaIbHOTO TEXHHYECKOTO YHHBEpCHTETa
«JlHEeTIpOBCKast MOJUTEXHUKAY, iHKeHep 1o MamuHHOMY 00yuenuio, COMPARUS.UA, [laenp, Ykpaunna.

Kempak T.A. — kaHA. TeXH. HayK, 3aBeAYIOMUH Kaepoi CHCTEMHOTO aHAIM3a U yIpaBlieHns: HarmoHaIbHOTO TEXHUYECKOTO
yHHUBepcuTera «JlHenpoBckas noauTexHuka», JJnenp, Yxpausa.

Kopsimkuna JI. C. — kaun. ¢us.-mMat. HayK, JOIEHT Kadeapbl CHCTEMHOr0 aHaln3a U ynpasieHus HalmoHanbHOro TeXHUUECKO-
ro yHuBepcurera «JlHenpoBckas oJIMTeXHuKay, JlHenp, YkpauHa.

AHHOTAIUA

AxTyanbHocTb. OHON M3 BEIyIINX MPOOJIEM B MHUPE HCKYCCTBEHHOTO MHTEJIICKTA SIBIISICTCS ONTUMM3AIMNS CIOKHBIX CHCTEM,
HEpeJIKO MpeCTaBIsieMas B BUJE HEIMHEHHOH (yHKINH, KOTOPYIO HE0OX0IMMO MUHUMH3UPOBaTh. [Ipu 5TOM (yHKIMN MOTYT OKa-
3aThCsl MHOTO9KCTPEMAIbHBIMY, HETJIAAKAMH, U JTaKe, 3aJlaHHBIMU B (hopMe depHoro simuka. I[locrpoenue 3¢h)(eKTHBHEIX METOIOB
pELIeHHs TAKUX 3334 ¥ CETOIHS BBI3bIBACT 3HAYMTEIIBHBII HHTEPEC B HAYYHOM COOOIIECTBE.

ILeanb. PazpaboTka HOBOro rHOPUIHOTO F€HETHYECKOTO AJITOPUTMA PEIICHUs 3aJa4yd INI00aNbHOM ONTUMHU3ALNK, KOTOPHIH 110
CKOPOCTH MPEBOCXOAUI OBl CYLIECTBYOMINE aHATOTH.

Metoa. OHUM U3 BaXHBIX BBI30BOB, C KOTOPBIMU CTAJIKUBAIOTCS THOPUAHBIE METOJBI MPU PELIEHUM 3a/au HEIUHEHHON Tilo-
0anbHOM ONTHMU3ALNH, SBISIETCA PAMOHAIBHOE NCIIOIh30BAHIE JTOKATBHOTO TIONCKA, OCKOJIBKY €0 PEeaIN3alis COMPOBOXKIACTCS
BBICOKMMH BBIYHCIHTEIFHBIME 3aTpaTaMd. B maHHOW paboTe MpeuioyKeH HOBBIM THOpUAHBIN reHeTndeckuit anroputMm GBOHGA,
KOTOPBIH BOCHPOU3BOAUT YIIPABIISIEMBIN JIOKAIBHBIA MOMCK, M OOBEIUHSCT ABE YCIEIIHbIe MOAN(HUKAIIMY TCHETHIECKUX alrOpUT-
MoB, niepBat — BOHGA — ycTaHaBiMBaeT Ka4eCTBEHHBIH OalaHC MEXTY JIOKAIBHBIM U TI00aIbHBIM MoMcKoM, BTopas — HGDN —
HpeIOoTBpAlIaeT HOBTOPHOE MCCIIEIOBAHIE PaHee y)Ke pa3BelaHHbIX obacTeil IOUCKOBOro npocrpaHcTBa. Kpome sroro, must ycko-
peHus paboThl aNrOpUTMa MpeIokeHa MoAU(GHUIMPOBaHHas bump-QyHKIUS W aJanTHBHAs CXeMa OIpeleeHHs ee rapaMerpa, a
HMEHHO, pPajinyca 00JacTH «Ae(IsIu» LeneBoi GyHKINN B OKPECTHOCTH YK€ HalIEHHOTO JIOKAJIbHOTO MUHUMYMa.

PesyabTatsl. [IpoBeneno cpaBuenue paborst GBOHGA ¢ npyrumu U3BECTHBIMU CTOXaCTHYECKUMH TOMCKOBBIMH 3BPHCTHKAMU
Ha Habope u3 33 TecTOBBIX QYHKIMHA B 5 1 25 MEPHOM MPOCTpaHCTBaX. Pe3ynbTaThl BEIYMCIUTENBEHBIX SKCIIEPUMEHTOB CBUICTEIIBCT-
BYIOT O KOHKYpeHTHO#l cmocodHoctn GBOHGA, 0co0eHHO MpH pelieHnd 3a7ad ¢ MyJIbTUMOJANBHBIME (DYHKIHSMA U OOJNBLIAM
KOJIMYECTBOM HEPEMEHHBIX.

BriBoasi. Hossrit rubpunnsiii anroputm GBOHGA, pa3paboTaHHEIA Ha OCHOBE MHTETPAIMX HIEH YIPaBIIEMOro JIOKAIEHOTO
noucka u anroputMoB BOHGA u HGDN, no3Bossier 3HaYUTEIbHO S3KOHOMUTh BBIYMCIMTEIIBHBIE PECYPChl M YCKOPSTH pellCHHE
3ama4u r1o0aIbHOM ontuMu3anuy. Ero neiaecoo0pa3Ho NpiuMeHsTh ISl pelieH s 3a4a4 IJI00aIbHOH ONTHMH3AIMY, BOSHUKAIOIINX B
HWHXXEHEPHOM NPOEKTHPOBAHUM, PEIIEHUS] OPraHU3alOHHO-YIIPABIEHUECKUX MPoOJIeM, 0COOEHHO KOrja MaTeMaTHYecKas MOJENTb
3a1a4u SIBJISIETCS CI0XKHOM U UMEET BBICOKYIO Pa3MEPHOCTb.

KJIFOYEBBIE CJIOBA: HenuHeiiHas ONTUMHU3aNus, TII00ATbHBI MUHUMYM, CTOXaCTHYECKHE TTIOMCKOBBIE ABPUCTHUKHU, THOPH-
HBIU TIOIXO/1, TEHETUYECKUH AITOPUTM, OTIEpaTop ACIIALINH, YIIPABIIEMBIi TOKaIbHBIN TTOHCK.
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