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ABSTRACT

Context. The question of constructing a method of two-sided approximations for finding a positive solution of the Dirichlet prob-
lem for a semilinear elliptic equation based on the use of the Green’s functions method is considered. The object of research is the
first boundary value problem (the Dirichlet problem) for a second-order semilinear elliptic equation.

Objective. The purpose of the research is to develop a method of two-sided approximations for solving the Dirichlet problem for
second-order semilinear elliptic equations based on the use of the Green’s functions method and to study its work in solving test
problems.

Method. Using the Green’s functions method, the initial first boundary value problem for a semilinear elliptic equation is re-
placed by the equivalent Hammerstein integral equation. The integral equation is represented in the form of a nonlinear operator
equation with a heterotone operator and is considered in the space of continuous functions, which is semi-ordered using the cone of
nonnegative functions. As a solution (generalized) of the boundary value problem, it was taken the solution of the equivalent integral
equation. For a heterotone operator, a strongly invariant cone segment is found, the ends of which are the initial approximations for
two iteration sequences. The first of these iterative sequences is monotonically increasing and approximates the desired solution to
the boundary value problem from below, and the second is monotonically decreasing and approximates it from above. Conditions for
the existence of a unique positive solution of the considered Dirichlet problem and two-sided convergence of successive approxima-
tions to it are given. General guidelines for constructing a strongly invariant cone segment are also given. The method developed has
a simple computational implementation and a posteriori error estimate that is convenient for use in practice.

Results. The method developed was programmed and studied when solving test problems. The results of the computational ex-
periment are illustrated with graphical and tabular informations.

Conclusions. The experiments carried out have confirmed the efficiency and effectiveness of the developed method and make it
possible to recommend it for practical use in solving problems of mathematical modeling of nonlinear processes. Prospects for fur-
ther research may consist the development of two-sided methods for solving problems for systems of partial differential equations,
partial differential equations of higher orders and nonstationary multidimensional problems, using semi-discrete methods (for exam-
ple, the Rothe’s method of lines).

KEYWORDS: dirichlet problem for a semilinear elliptic equation, positive solution, strongly invariant conic segment, hetero-
tone operator, method of two-sided approximations, Green’s function.

B NOMENCLATURE KC, is a cone of non-negative functions in C(Q) ;
C(Q) is the Banach space of functions continuous in K(Ug) is a set of functions from K, such that
the domain Q ; aly < U< Bugy, where o, B>0;

G(x,s) is the Green’s function of the boundary value T is a heterotone operator;

problem;
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T is a companion operator for the heterotone operator
T

u® is the exact solution of the boundary value prob-
lem;

|u|| is the norm in the space C(Q) ;

<o w

the heterotone operator T ;

> is a cone segment, strongly invariant for

{v(k)} is a sequence of lower approximations;

V" is a boundary of the sequence of lower approxima-
tions;

{W(k)} is a sequence of upper approximations;

w" is a boundary of the sequence of upper approxi-
mations;

A 1is the Laplace operator;

k>0 is a parameter in the Helmholtz operator

A—x2u ;
0 is zero element of the Banach space;
< is a sign of semi-ordering in C(Q) , which is intro-

duced by the cone I, .

INTRODUCTION

The problem of mathematical modeling of many sta-
tionary processes considered in chemical kinetics, biol-
ogy, combustion theory, etc. [1-4], leads to the necessity
for finding a positive solution of the Dirichlet problem for
a semilinear elliptic equation. Due to this, the problem of
developing new and improving existing methods of nu-
merical analysis of this class of problems is relevant.

The object of the study is the Dirichlet problem for a
second-order semilinear elliptic equation.

The subject of the research is the method of two-
sided approximations for solving the boundary value
problems for the second-order semilinear elliptic equa-
tions.

Currently there are many methods for the numerical
analysis of the boundary value problems for semilinear
elliptic equations. Among them, one can single out, in
particular, the methods of finite differences, finite ele-
ments, boundary integral equations, artificial neural network
technique [1, 5—11] or successive approximations with
two-sided convergence [12—14]. The methods of the last
group allow to construct two sequences of functions that
approximate the desired solution of the problem from
below and from above, respectively. Due to this, when
implementing these methods, one has a convenient a pos-
teriori estimate of the approximation error, and, conse-
quently, a convenient criterion for the termination of it-
erations. This makes the methods of two-sided approxi-
mations more attractive in comparison with other methods
that are used to solve boundary value problems for se-
milinear elliptic equations.

The purpose of the research is to develop a method
of two-sided approximations for solving the Dirichlet
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problem for second-order semilinear elliptic equations
based on the use of the Green’s functions method and to
study its work in solving test problems.

1 PROBLEM STATEMENT
The problem of finding a positive solution of a se-
milinear elliptic equation with the homogeneous Dirichlet
condition is considered in the paper:

Lu=f(x,u), xeQ, )
u(x)>0, xeQ, 2
Upn =0, (€)

where Lu=-Au or Lu E—Au+1<2u, Q is the Jordan

measurable domain from R?> or R® with piecewise
smooth boundary 0Q (Q=QuUdQ), A is the Laplace

2 2
operator, X= (X, Xp), A:a—2+—2, if Qch, and
X OX3
? * .

3
X=(X, %X, %), A=—+—+—,if QcR".
ot X3 ox3

Let us assume that the function f(x, u) is continuous

and positive for xeQ, u>0.
The operator A is the Laplace operator and the opera-

tor A—«? is the Helmholtz operator. The problem (1)-
(3) often appears as a mathematical model of the nonlin-
ear stationary processes considered in thermal physics,
electromagnetism, biology, chemical kinetics, etc. [1, 2,
4]. In this case, the positivity condition (2) naturally arises
from the meaning of the function U in a particular field.

2 REVIEW OF THE LITERATURE

The construction of two-sided approximation methods
for solving the boundary value problems for partial differ-
ential equations is based on the use of the theory of
nonlinear operators in semi-ordered spaces.

The theory of linear semi-ordered spaces was con-
structed by L. V. Kantorovich in the second half of the
30s of the XX century [15, 16]. Further development of
the methods of this theory is associated with the works of
M. A. Krasnoselsky [17], H. Amann [18], V. 1. Opoitsev
[19], N. S. Kurpel, B. A. Shuvar [20, 21], A. 1. Kolosov
[22].

In [17, 18, 23, 24], the existence of the positive solu-
tions of the equations with monotone operators was inves-
tigated, and in [19, 25], the solvability of the equations
with operators that have the generalized property of
monotonicity (the so-called heterotone or mixed mono-
tone operators) was explored. When proving the corre-
sponding theorems of existence, the sequences of func-
tions, which on both sides converged to the solution of the
investigated problem, were constructed. As examples of
applications of this theory, the questions of the existence
of positive solutions of the boundary value problems for
nonlinear ordinary differential equations, boundary value
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problems for nonlinear partial differential equations and
integral equations were considered. In these works, the
theoretical foundations for the development of two-sided
iterative schemes were laid, but the iterations themselves
were considered by the authors as an auxiliary means of
proving the existence theorems for fixed points of opera-
tors, and there were no computational results.

In [20, 21], the equations and inequalities in which the
operators do not have the monotonicity property are con-
sidered, and for them two-sided monotonic iterative proc-
esses are constructed. In [22], it was obtained a generali-
zation of the theory of the heterotone operators, which
were applied, in particular, to finding the approximate
solutions of the boundary value problems with a free
boundary for nonlinear ordinary differential equations.

The works [12—14] are devoted to the development of
two-sided iterative schemes for solving the boundary
value problems for partial differential equations as means
of applied mathematics with bringing them to computa-
tional implementation. But only problem (1)—(3) with

Lu=-Au and f(x,u) which has a power-law or expo-

nential monotonic nonlinearity was investigated.
The boundary value problems for the equation (1) in

case LU=—AU+ KU were not considered.

This work continues the studies begun in [12—-14, 26]
and is aimed at their generalization and extension to the
equation with the Helmholtz operator.

3 MATERIALS AND METHODS
To study the solvability of the problem (1)—~3) and
numerically finding its solution, let us construct a method
of two-sided approximations using the methods of the
theory of nonlinear operators in semi-ordered spaces [17,
19, 27].
If G(x,s) is the Green’s function of the problem (1)—

(3), then the problem (1)—(3) is equivalent to the Ham-
merstein’s integral equation

u(x) = [ G(x,)f (5,u(s))ds . @
Q

Let us consider equation (4) in the Banach space
C(Q) of functions continuous in Q . The norm in C(Q)

is introduced by the rule ||u||=m%<|u(x)|. In C(Q) one
Xe.

selects the cone K, = {ueC(Q):u(x)>0, xeQ} of non-
negative functions. The cone K, in C(Q) is normal (and

even sharp). Using the cone K, in the space C(Q), let us
introduce the semi-ordering by the rule:

for u,veC(Q) u<v,ifv-uek,,
that is,

u<v,if u(x)<v(x) forall xeQ.
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If there exists a classical solution of the problem (1)-
(3), that is a function u” eCz(Q)mC(f_z) that satisfies

the equation (1) and conditions (2), (3), then this function
also satisfies the equation (4). If there is no classical solu-
tion, then the integral equation (4) can be taken as the
basis for the definition of a generalized solution of the
problem (1)—(3).

Definition. A solution (generalized) of the boundary
value problem (1)~(3) is a function u* e K., which is a
solution of the integral equation (4).

With equation (4) one associates a nonlinear integral
operator T acting in C(Q) according to the rule

TU)(x) = [ G(x,9) f (s,u(s))ds . )
Q

Let us find out what properties the operator T of the
form (5) has.
The Green’s function G(x,s)

x,s€Q, x#s, and there are the estimates

is continuous for

lnL y R?,

Xs

0<G(x,8)<kg

OSG(x,s)Sk—O y R3,

XS

where Iy =|x—s| is the distance between points x and

S.
From these estimates and from the conditions imposed
on the function f(x, u), it follows that the operator T of

the form (5) acts in the space C(Q) and leaves the cone
KC, invariant, thatis, T is a positive operator.

Also, the operator T of the form (5) is Ug -positive
operator, where the function uy(x) belongs to I, \{6},
is defined by the equality

Up(x) = J. G(x,s)ds
Q

(6)

and is the solution of the problem
Lu=1, xeQ,

”|aQ:0'

The property of Ug -positivity follows from the fact
[17]: if Qg is some subdomain of the domain Q , more-
over, W) >0, then there is such y=7y(€,)>0, that
the following inequality holds

ij(x,s)dsS J G(x,s)ds .
Q Q
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If ue, \{0}, then for some oy >0 there is a set
0y < Q such that n(Qy) >0 and f(x, u(x))>a, for all
x € Q. Then for all xeQ

TU)(X) = [ G(x.5) f (s,u(s))ds >

Q
> [ G(x,5)f(s,u(s))ds >
QO
>0y I G(x,s)ds > (xoyj G(x,s)ds = oyUg(X) .
Q, Q

On the other hand, for all x e Q

TW)(X) = [ G(x,5) f (s,u(s))ds <
Q
<max f(x,u(x))- J G(x,s)ds =
xeQ) 0
= maé( f(x,u(x))-Ug(x).

Thus, there will be double inequality for all x € Q
aly(x) < [ G(x,5) f (s,u(s))ds < Buy(x) , ™
Q

where a=o0gy >0, B=max f(x,u(x))>0, which is the
xeQ)

definition of the Uy, -positivity of the operator T .

A constructive study of the equation (4) (and, conse-
quently, of the problem (1)—(3)) with the opportunity of
constructing two-sided approximations to its positive so-
lution is possible if the function f(x,u) has the

monotonicity property.
Let the function f(x,u) allows a diagonal representa-
tion f(x,u)= f(x,u,u) , where the nonnegative function

f (x,v,w), continuous in the set of variables x, v, w,

monotonically increases with respect to v and monotoni-
cally decreases with respect to w for all x € Q. Then the
operator T of the form (5) will be heterotone one with
the companion operator

T, W(x) = [ G(x, 8) f (s, V(s), W(s))ds .
Q

®)

Obviously, the operators T and T are completely
continuous.
If the function f(x,u) monotonically increases with

respect to U for all xeQ, then one can choose
f(x,v,W): f(x,v) and the companion operator is de-
fined by the equality

T (v, W)(x) = [ G(x, 8) f (s, V(s))ds . ©)
Q

© Gybkina N. V., Lamtyugova S. M., Sidorov M. V., 2021
DOI 10.15588/1607-3274-2021-3-3

For a function f(x,u) monotonically decreasing with
respect to U, one can put f(x,v, w) = f(x,w), and then
the companion operator will have the form

T, W)(x) = [ G(x, ) f (5, W(s))ds .
Q

(10)

If for any positive numbers v, W, for any t e (0, 1)

f(x,rv,le>rf(x,v,w),er, (11
T
then the heterotone operator T of the form (5) for which

the operator T of the form (8) is companion one will be
pseudo-concave and, moreover, Ug -pseudo-concave with

the function Uy(x) of the form (6).
Actually, for any v, we K, \{0}, the inequality (7)
implies that

ol (x) < _[ G(x,s) f(s, V(s), W(s))ds < Bug(x),
Q

(12)

where >0, B>0, that is T(v,w)e K(uy) for any
v, we K, \{6}. Here, K(uy) is a set of functions from
KC, such that auy < u < pug, where a, $>0.

Suppose now that v, weK(uy), thus there are
o= (V)>0,  By=pW>0,  apy=0a,(W)>0,
By =Br(W)>0 such that oyl <V Py,
alg KW Byuy. For te(0,1) consider the difference

T (rv, le—rf(v, W) :
T

T (rv, le (x) =T (v, W)(x) =
T
= [G(x, s){ f Es, (s), lw(s))—rf (s, V(s), W(s))}ds .
Q T

Then it follows from the inequality (11) and the condi-

tion of continuity of the function f(x,v,w) that

T (rv, le —tT(v,w)>0, while

T

T (rv, le T (v, w)# 0, which means the pseudo-
T

concavity of the operator T .

Further, from the inequalities (11), (12) it follows that
forall xeQ

T (w, le (x) =T (v, W)(x) =
T

= [G(x, s)[ f (s, (s), lw(s)) —1f (s, V(s), W(s))} ds >
Q T

2 ayUp(X) ,
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where 0 >0.
Then, applying inequality (12) again, one gets that for
all xeQ

[Gx.9f [s,rv(s),lw(s)j ds >

Q T

> [ G(x,5) f (5,v(s), W(s))ds + o (x) =
Q

> r[l +ﬂj [ G(x.8) (5.v(5). W(s))ds .
Bt)g
So for all xeQ there is the inequality
j G(x,s) f (s, rv(s),lw(s)j ds>
o T

> t(1+m) [ G(x,5) f (s, V(s), W(s))ds ,
Q

where n=n(v,w, 1) = % >0, which means u -pseudo-
T

concavity of the operator T .

Thus, the following statement holds.

Lemma. The operator T of the form (5), where
G(x,s) is the Green’s function of the problem (1)—(3),

considered in the space C(Q), semi-ordered by the cone
IC, of nonnegative functions, has the following proper-
ties:

a) it is a positive operator;

b) it is Ug-positive operator, where the function
Ug(x) is defined by the equation (6);

¢) it is a heterotone operator for which the operator T
of the form (8) is a companion one if the function f(x,u)

allows a diagonal representation f(x,u)= f(x,u,u),

where the function f(x,v, w), continuous in the set of

variables x, V, W, monotonically increases with respect
to v and monotonically decreases with respect to w for
all xeQ);

d) if inequality (11) holds, then it is a pseudo-concave
and even U, -pseudo-concave operator, where the func-

tion Uy(x) has the form (6).

Further one will assume that the operator T of the
form (5) is heterotone one with the companion operator of
the form (8). Let us construct a method of two-sided ap-
proximations for finding a positive solution of the integral
equation (4) (and, therefore, of the boundary value prob-
lem (1)—(3)).

In the cone K, one distinguishes a strongly invariant

0 ,0

cone segment <V ,W > by the conditions

'f(vo,wo) > VO, 'f(WO,VO) < WO, which for the operator

T, that is determined by the equality (8), take the form:

forall xeQ
© Gybkina N. V., Lamtyugova S. M., Sidorov M. V., 2021
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[60x ) s, v0(5), W (s)ds 2V (), (13)
Q
[Gx. 9)f (s, w(s), vO(s)ds <w’(x) . (14)
Q
According to the scheme
VD 0 (0 |
one will form an iterative process
Vo =[x ) f s v, W, (5
Q
Wk =[G o) s, W), v spds, (6
Q
k=0,1,2, ...,
VO =v(x), WO @) =w(x). (17)

Due to the strong invariance of the cone segment
<v?,w’ > and the heterotonicity of the operator T , for
which the operator T isa companion one, let us conclude

that the sequence {V(k)(x)} does not decrease along the
cone K, , and the sequence {W(k)(x)} does not increase
along the cone K, . In addition, from the normality of the
cone K, and the complete continuity of the operator T it

follows that there are boundaries v*(x) and w*(x) of
these sequences. So, the chain of inequalities is confirmed

Vv v« v < <vt g

<w <o <w® < cw® <@ =0

There are two possible cases: V' <w" and v* =w". In

the second case U :=v" =w" is the only fixed point of

0

the operator T on the cone segment <V0,W >, and

therefore U™ is the unique solution of the considered

boundary value problem on < vowd >,

Functions v*(x) and W"(x) is the solution of the sys-

tem of equations V= f(v, w), W =f(w, V), which in this
case has the form:

V(x) = [ G(x,8) f (5,v(s), W(s))ds , (18)
Q

w(x) = [ G(x,5) f (s, W(s),v(s))ds .
Q

19
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The equality V' =w" will be satisfied if the system

(18), (19) does not have on < VO,WO

VEW.
Thus, the following theorem holds.
0

> such solutions that

Theorem 1. Let <V, w’> be a strongly invariant
cone segment for a heterotone operator T of the form (5)
with the companion operator T of the form (8) and the

system of equations (18), (19) has no solutions on

<0 w0

(15)=(17) converges in the norm of the space C(Q) to the

unique on <v?,w > continuous positive solution u* of

the boundary value problem (1)—(3), and a chain of ine-
qualities holds

> such that v#w. Then the iterative process

(20)

As one sees, it follows from the chain of inequalities

(20) that each of the cone segments < V(k), w® > s
k=0,1,2, .., is a strongly invariant cone segment for the
heterotone operator T of the form (5) with the compan-

ion operator T of the form (®).

The chain of inequalities (20) characterizes the itera-
tive process (15)—(17) as two-sided one.

The conditions for the existence of a unique positive
solution of the boundary value problem (1)—(3) and the
two-sided convergence of successive approximations
(15)—(17) to it can be refined by clarifying the conditions
under which the system of equations (18), (19) does not
have solutions such that v#w on some of the strongly

invariant cone segments < v(k), wk) >, k=0,1,2,...
One of the conditions that will ensure the implementa-

tion of the equality v =w" is the condition of the exis-
tence of such y € (0;1) that

“’f (V, W) —'I:(W,v)“ <yv-w]

for all v,we< VO,WO >,

Suppose there exists such number L >0 that the func-

tion f(x,v, w) for all numbers v, W such that
O<v,w<M,, where M, :mazwo(x), and for all
xeQ)

x € Q satisfies the inequality
f(x,w,v)— f(x,v,w)‘ <Ljw-v|.

e2y)

Then
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[ cwv) =T v W = max(F ()0 =T v, w01 =
= max [ G )L f (s, w(s),v(s))— f (5,v(s), W(s))]ds <
Xe Q

< LM max[w(x) - Vv(x)] = LM |w-v],
xeQ)

where M =max Uy(x) .
xeQ

Therefore,

”‘I:(W,v) ~T(v, W)“ <LM|w-v]|. (22)
It is clear that inequality (22) implies an estimate
“W(k+1) vl < (LM R [w© _V(O)“ ' (23)

Thus, the equality v* =w" will hold if y=LM <1,

and then the following theorem is valid.

Theorem 2. Let <v?, w’> be a strongly invariant

cone segment for the heterotone operator T of the form

(5) with the companion operator T of the form (8) and
the condition (21) holds, moreover, y=LM <1, where

M =maxuy(x) . Then the iterative process (15)-(17)
xeQ)

converges bilaterally in the norm of the space C(Q) to a

unique on < v? w® > continuous positive solution u* of

the boundary value problem (1)—(3), and the estimate (23)
takes place.

Another condition that the system of equations (18),
(19) does not have solutions such that v w on a strongly

invariant cone segment <VO,W0 > is the condition that

the heterotone operator T of the form (5) with the com-
panion operator T of the form (8) is Ug -pseudo-concave.
Then, taking into account assertion d) of the lemma, one
arrives at the following result.

Theorem 3. Let <V, w’ >c K(ug) be a strongly in-
variant conic segment for the heterotone operator T of

the form (5) with the companion operator T of the form
(8) and the condition (11) holds. Then the iterative proc-
ess (15)—~(17) converges bilaterally in the norm of the

0

space C(Q) to a unique on <V0,W > continuous posi-

tive solution U™ of the boundary value problem (1)—(3).
Let us now consider the partial cases when the func-
tion f(x,u) only monotonically increases or only mono-

tonically decreases with respect to U .
If the function f(x,u) monotonically increases with

respect to U and f(x,v, w) = f(x,V) is chosen, then the

companion operator T is given by the equality (9), and
the conditions (13), (14), which distinguish a strongly

31
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invariant cone segment <V0,W0> (in this case, the

strong invariance coincides with the common invariance
of the operator T ), look like: for all x € Q

[Gx.)f (s (s)ds 2V (x) ,
Q

[Gx.s)f(s.w(s)ds<w’(x).
Q

24)

(25)

As one can see, each of the inequalities (24), (25) in-
dependently of the other ones distinguishes its end of the

cone segment <v®,w® >

For the function f(x,u) monotonic in U, the system
of equations (18), (19) has the form

V(x) = [ G(x,5) f (5,v(s))ds ,
Q

W(x) = [ G(x,s) f (s, W(s))ds
Q
and the condition that this system does not have on

< VO,W0 > solutions such that v #w turns into the condi-

tion for the existence of a unique solution of the equation

4.
The condition (21) turns into the usual Lipschitz con-
dition for the function f(x,u): there exists a number

L >0 such that the function f(x,u) for all numbers v,

w such that 0 <v, w< Mg, where M, = max w’(x), and
xeQ

for all x e Q satisfies the inequality

[f(x,v)— f(x,w)|<Llv—w

) (206)

and condition (11) of u, -pseudo-concavity takes the fol-

lowing form: for any positive number U and for any
te(0,1)

f(x,tu)>1f(x,u), xeQ. 27)

Thus, if there exists a strongly invariant cone segment

<VOwl s, distinguished by the conditions (24), (25),

and at least one of the conditions (26) or (27) is satisfied,
then successive approximations that are formed according
to the scheme

VD)= 69 fs.v O )ds . k=0,1,2 .. (g
Q

Wk ) =[G f (s W @)ds, k=012, ., (59
Q

vOx) =v?(x), wOx)=w’(x), (30)
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converge bilaterally to a unique on < VO,W0 > continuous

positive solution u” of the boundary value problem (1)-

3).
As can be seen from (28)—(30), for a function f(x,u)

monotonic with respect to U, the lower {V(k)(x)} and

upper {W(k)(x)} approximations form two independent

sequences, and in the computational organization of the
iterative process, their formation can be carried out using
the technologies of computations parallelization.

For a function f(x,u), which decreases monotoni-

cally with respect to U, if f(x,v, w) = f(x,w) is chosen,

the companion operator T is given by the equality (10),
and the conditions (13), (14), which distinguish a strongly

invariant cone segment < VO,W0 >, take the form: for all
xeQ
[Gx.8)f(s.w(8))ds=v(x), 31
Q
[Gx.9)f(s,v0(s)ds <w’(x). (32)
Q

The system of the equations (18), (19) for the antitone
with respect to U function f(x,u) has the form

V(x) = [ G(x,5) f (5, W(s))ds,
Q

W(x) = [ G(x,) f (s,v(s))ds .
Q

The condition (21), as in the monotone case, turns into
the usual Lipschitz condition for the function f(x,u):
there exists a number L >0 such that the function

f(x,u) for all numbers v, w such that 0 <v, w< My,

where Mg = max WO(x), and for all xeQ satisfies the
xeQ)

inequality

|f(x,w)— f(x,v)|<Ljv—w], (33)
and the condition (11) of U, -pseudo-concavity takes the

following form: for any positive number U and for any
t€(0,1)

f(x,lu)>rf(x,u), xeQ. 34)
T

Thus, if there exists a strongly invariant cone segment

<v%,w® >, distinguished by the conditions (31), (32),

and at least one of the conditions (33) or (34) is satisfied,
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then successive approximations that are formed according
to the scheme

VD (x) = [G(x, ) f (s, W (s))ds, k=0,1,2, ...
Q
Wk () = [G(x,9) (s, v(s))ds, k=0,1,2,...,
Q

VO x) =v'(x), wOx)=w(x),

0,0

converge bilaterally to a unique on <Vv",W" > continuous

positive solution u” of the boundary value problem (1)—
3).

At the K -th iteration, as an approximate solution of
the boundary value problem (1)—(3), the following func-
tion is taken

w0 (x) + v (x)

K (x) =
u =
@ 2

(35)

Then one will have a convenient a posteriori error es-
timate for the approximate solution (35):

u* —u(k)” < lmag((w(k)(x) —V(k)(x)) ,
2 xeQ

which is an undoubted advantage of the constructed two-
way iterative process.
So, if the accuracy €>0 is given, then the iterative
process should be carried out until the inequality
magc(w(k) x)- v (x)) <2

xeQ

(36)

is satisfied and with an accuracy of ¢ it can be assumed
that

u*(x) ~u®(x).

In addition, from the conditions of Theorem 3 an a
priori estimate of the error can be written:

k
u* —u(k)” <X max(w’(x)-v0(x)).
2 xeQ

Then from the inequality

k
u* —u<">“ <X max(w?(x)=v'(x) <&
2 xeQ

one finds that to achieve the accuracy of ¢ it is necessary
to make

© Gybkina N. V., Lamtyugova S. M., Sidorov M. V., 2021
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max(W’ (x) -V’ (x))
In xeQ

ko(e) = = +1
In—-
LM

iterations, where square brackets denote an integer part of
the number.

The strongly invariant cone segment <V0, w? >,

which is distinguished by the conditions (13), (14), is an a

priori estimate for the unknown exact solution u*. We

further it will be given the general recommendations for

0, w® > . Since T(v, w) € K(ug) for

finding a segment <V
any Vv, we K, \ {6}, the ends of a strongly invariant cone

0 .0

segment <V ,W’ > can be sought in the form

vo(x) =aly(x), Wo(x) =Bug(x), where 0 <o <f3. Then
the inequalities (14), (15) take the form: for all xeQ

[ G(x, 8) (s, g (s). Bug(s))ds = aug (x) ,
Q

[ G(x, 8) (s, Bug(s), cutig(s))ds < Buy(x) .
Q

These inequalities can be reduced to a form

< h , O, N > ,h 5 O, 5
o < mig (x5 0, B), B max h (X5 o, B) (37)

where
hy(x; 0, B) = (j2 % £ (s, alg(5), Bl ($))ds

G(x,s)
h(x; a, B) =
> (X; o, B) gj2 0D

f (s, BUg(s), awy(s))ds .

The value of mag((w0 (x)- v x))=(pB-a)M should
xeQ

be as small as possible for faster convergence of itera-
tions, and therefore, in the practical implementation of the
iterative process (15)—(17) one should take the largest o
and the smallest (3, satisfying inequalities (37).

4 EXPERIMENTS
The computational experiment was performed for the
problems (1)—(3) with the right part of the form

fx,u)=auP+pu?, (38)

where p,q>0, A, u>0.

33
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For a function f(x,u) of the form (38) it was chosen

f(x,v, w)=AvP + uw ™9 and the corresponding operators
(5), (8) have the form

T(U)(x) = j G(x,s)[Au(s)? +pu(s)~%]ds
Q

TV,W)(x) = [ G(x,9)[Av(s)P +pw(s) ]ds,
Q

where G(x,s) is the Green’s function for the operator

Lu=—Au or Lu=-Au+x’U in the area Q .
The pseudo-concavity condition (11), written for the
function f(x,u) of the form (38), leads to the inequality

At(t p-l —vP + ur(rq71 -Hw >0,

which will be performed for all te€(0,1), v,w>0, if
0<p<l,0<qg<l.
The ends of a strongly invariant cone segment

0 ,0

<v?, w® > will be sought in the form v°(x)=auy(x),

w? (x)=Pug(x), where O<o <P, and the function

Ug(x) has the form (6). Further, let us find

h(x; o, B) =

JG(X -S) A Lo (8)1P + uBug (5)] }ds =

o Yo (®)

PP (x) + EO),
Bq

hy (x; o, B) =

G5 6 18U0 (1P + ot (s)] s =

Q UO(X)

=ABPP(x) +-L0(x),
OLCI

where
¥ = SR e
0= . ) s

Let us denote
m; = min ¥'(x), M; =max ¥(x),
xeQ) xeQ)

m, =min O(x), M, =max O(x) .
xeQ xeQ)
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Then inequalities (36) for finding o, 3, take the form

a<amolf +umyp™d, B>aAMBP +uM,a . (39)
The iterative process (15)—(17) in this case will take
the form

+ M
v () = J.G(x,s){k[v(k)(s)]p +W}ds, (40)

Q

wk D (x) = | G(x,s){k[w(k)(s)]p (k)—}ds A1
Q v (s)1°
k=0,1,2, ..,

VO (x) = aug(x), W (x) = Bug(x) . (42)
Thus, if 0< p<1, 0<qg<1, then the problem (1)-(3)

with Lu=-Au or Lu=-Au+x?u and a function

f (x,u) , which has the form (38), for any A, u>0 has a

unique positive solution u*(x), to which the iterative
process (40)—(42) converges bilaterally.

In order to construct an approximate solution of the
problem (1)—(3) it is necessary to find o, p (0<a<P)
as a solution of the system of inequalities (39) (the highest
value o and the lowest value B will be the solution of
the corresponding system) and taking some & >0 (calcu-
lation accuracy), implement the iterative process (40)—
(42) to perform the inequality (36). The approximate solu-
tion of the problem will be further determined by the for-
mula (35).

The numerical implementation of the process (40)—
(42) was performed using the PYTHON language. For

computational experiments it was chosen e=10"" , the
integrals in (40), (41) were calculated with the accuracy

1076 by an adaptive procedure based on Gaussian quad-
rature with previous piecewise linear interpolation with

the same accuracy of functions v(k)(x) , W(k)(x) .

5 RESULTS
The results of solving the problem (1)—(3) in a unit

circle Q= {XZ(Xl,Xz):Xlz + X22 <1} and a unit sphere
Q={x=(X,%,%3): xlz + x% + x32 <1} with Lu=-Au
and Lu=—-Au+x2u for the function f(x,u) of the form
(38) for p=q =% and A =pu =1 are given in Tables 14

and in Fig. 1-10.

Let us consider the results of a computational experi-
ment for the problem (1)—(3) with the Laplace operator:
Lu=-Au. In the case of a unit circle, the Green’s func-
tion of the Laplace operator has the form
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I’zp2 —2rpcos(p—vy)+1

1
G(ra o, P, \V) =—1In
4n

Xp=rcos@, X, =rsin@, S, =pcosy, S, =psiny,
0<r<1,0<¢<2m,

r’— 2rpcos(o—y)+ p2 ’

and in the case of a unit sphere it has the form

G(r,0,9,p, 9, y)=
1 1 ) 1
an \/I’Z—ercosy+p2 \/r2p2—2rpcosy+l

cosy =cosBcos9+sinBsinJcos(p—vy),

E

X =rsin@cos@, X, =rsin@sing, X; =rcos0,
S =psindcosy, S, =psinIsiny, S3=pcosH,
0<r<1,0<0<m,0<0p<2n.

For the problem (1)—(3) with the right-hand side of the
form (38) and the Laplace operator considered in a unit
circle, it is found that o =0.83292, B =1.97354, and the

accuracy £=10"* was achieved on the 12-th iteration,
and ] =0.5636.

Figure 1 shows graphs of the upper W(k)(x) (solid

line) and lower v(k)(x) approximations (dashed line),
k=0,1,..,12, in cross section X, =0.

Table 1 shows the values of the approximate solution
um)(x) of the problem (1)—(3) with the Laplace operator

considered in a unit circle at the

", 0)=(0,1i;0), i=0,1, ..., 10.

Each iteration was performed for an average of
185 sec., the total operating time of the program was
37 minutes.

points

w®(21,0), 1P (2 ,0)

A

-1.0 -0.5

Figure 1 — Graphs of the upper W(k)(x) and lower V(k)(x)

approximations (in cross section X, =0) to

the solution of problem (1)—(3) with the Laplace
operator considered in a unit circle

© Gybkina N. V., Lamtyugova S. M., Sidorov M. V., 2021
DOI 10.15588/1607-3274-2021-3-3

Table 1 — Values of the approximate solution u12 (x)
of the problem (1)—(3) with the Laplace operator considered in a

unit circle at the points (x(, 0) = (0,1i; 0), i=0, 1, ..., 10

(x®,0) | (0,0) | (0.;0) | (0.2;0) | (0.30) | (0.4;0)

u?(x,0)| 0.5636 | 0.5584 | 0.5427 | 0.5166 | 0.4798
(x",0) | (0.5;0) | (0.6;0) | (0.7;0) | (0.8;0) | (0.9;0)

u@(x,0)| 0.4322 | 03734 | 0.3028 | 0.2195 | 0.1211
(x",0) & 0)

u? 2,00 0

Figures 2 and 3 show the surface and the level lines of

the approximate solution u(lz)(x) , respectively.

: / ;’7;’"' LAY QAN A~
I’l’ll"'zg’.bw\\}‘,%

7/
0.2 /”"' %\ .
0.0L" (,””, LNORY,0.5
Y ()():Q ’
0 Y
5 1.0

Figure 2 — Graph of the surface of the approximate
solution u(lz)(x) of the problem (1)—(3) with the

Laplace operator considered in a unit circle

For the problem (1)—(3) with the right-hand side of the
form (38) and the Laplace operator considered in a unit
sphere it is found that o =0.56568 , B =1.73173, and the

accuracy £=10"* was achieved on the 12-th iteration,
and [u?) = 0.4134.

1.0

-1.0 3
-1.0 -0.5 0.0 0.5 1.0

Figure 3 — Level lines of the approximate solution
u(lz)(x) of the problem (1)—(3) with the Laplace

operator considered in a unit circle

35
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Figure 4 shows graphs of the upper W(k)(x) (solid

line) and lower v(k)(x) approximations (dashed line),

k=0,1,..,12, in cross section X, =0, X3 =0.

w®(@1,0,0), v¥(@1,0,0)

~1.0 -0.5 0.5 Figure 5 — Level surfaces of the approximate solution
u(lz)(x) of the problem (1)—(3) with the Laplace

Figure 4 — Graphs of the upper w() (x) and lower v x)
operator considered in a unit sphere

approximations (in cross section X, =0, X3 =0)

to the solution of problem (1)—(3) with the Laplace 2

2 . ..
operator considered in a unit sphere m = Hom> Mnm is M-th positive root

of the equation J,(n)=0,

Table 2 shows the values of the approximate solution
12) ) PP W(l) (r,0) =3, (ryAym)cosno,
ut“’(x) of the problem (1)—(3) with the Laplace operator ( %)
considered in a wunit sphere at the points m (1,9) = Jy (ryAnm )sinno,
™. 0)=(0,1i;0), i =0,1,..,10. Wi (P 1) = I (PfAnm ) cos ny

Each iteration was performed for an average of W(2) J % Ysinn
207 sec., the total operating time of the program was (P-¥) = Jn(Pym) v
41,4 minutes. Won|[* = =1+ 80 )LIp ()12

Figure 5 shows, respectively, the level surfaces of the ” nm” 2 no L n i nm
approximate solution u(? (x). 8o = {1’ n=0,

Let us now consider the results of a computational ex- 0, n=12,..,
periment for the problem (1)—(3) with the Helmholtz op- X =rcosQ, Xy =rsing, S =pcosy, S, =psiny,
erator: LU=—AU+k>U. In the case of a unit circle, the 0<r<l1,0<¢<2m,
Green’s function of the Helmholtz operator at x=1 has
the form and in the case of a unit sphere it has the form

B 0.0 v)= G(r, 0, 9. p. 9, ) =
2 2 Wi (r,ow (p,y) + WA (r,o)wZ (o, 1 1
Z m (7> @)Wnm (P \'2 - nm(1 @)W (- W) _ i i = wlh (16,00 (p,9, W,
n=0m=1 [Wam||~ Genm +1) by o ot "ank” Gorge +1)
(12) 2 & & W (r,0,ow ), (0,9, v)
Table 2 — Values of the approximate solution U* ~’(X) z z z mk mk \M>
of the problem (1)—(3) with the Laplace operator n=0m=1k=1 ”ank " Ap +D

considered in a unit sphere at the points
oV, 0)=(0,1i;0), i1 =0,1, .., 10
(x",0, 0) (0,0,0) | (0,1;0,0) | (0.2;0;0) | (0.3;0;0)
u™(x,0,0)| 0.4134 0.4098 0.3987 0.3803

Ank = an , Upk is k -th positive root

of the equation J {(n)=0,
n+=

W(l)k(r 0,0)= —J 1(Mnkr)an(cos6)cosm(p,

(x",0) | (0.4,0;0) | (0.5:0:0) | (0.6:0:0) | (0.7:0;0) f +
u™x?,0) 0.3542 0.3204 0.2783 0.2275 ) 6. Pm 0
X0 | 0800 | 0900 | 00 Wik (T 0,0) = T 1(unkr) (cosB)sinme,

u@(x,0) | 0.1666 0.0936 0
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1

Wi (0,9,W)=—=J | (upP)Pr" (cos 9) cosmy
N
1 .

W2 (0,9,)=—=3 | ()P (cos §)sinmy
Jo nil

P\"(z) are associated Legendre functions,

2 2
) _w® |7 =
ank “ - ank “ -

2
_ AR (1+3po)(n+m)!|
T 2n+D(n—m)! J%(Mnk) :

1,
Sij = 0

X; =rsin@cos@, X, =rsinOsing, X3 =rcos0,

i=]j,
i#],

S =psinJcosy, S, =psinIsiny, S3 =pcosY,
0<r<1,0<06<n,0<0p<2m.

For the problem (1)—(3) with the right-hand side of the
form (38) and the Helmholtz operator at k =1 considered
in a unit circle it is found that o =0.69148 ,  =1.93356,

and the accuracy €= 10™* was achieved on the 12-th it-

eration, and “u(lz)u =0.4853.

Figure 6 shows graphs of the upper W(k)(x) (solid

line) and lower v(k)(x) approximations (dashed line),

k=0,1,..,12, in cross section X, =0.

u,'”")(.r), 1'(/‘"(,1')

-1.0 -0.5 0.5

Figure 6 — Graphs of the upper w (x) and lower v (x)

approximations (in cross section X, = 0) to the solution of

problem (1)—(3) with the Helmholtz operator considered in a
unit circle

Table 3 shows the values of the approximate solution
u1?(x) of the problem (1)~(3) with the Helmholtz op-
erator considered in a wunit circle at the points

(Xl(l), 0):(0,“’ 0)’ i :O’ 1, cees 10.

© Gybkina N. V., Lamtyugova S. M., Sidorov M. V., 2021
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Table 3 — Values of the approximate solution u2 (x)
of the problem (1)—(3) with the Helmholtz operator
considered in a unit circle at the points

(", 0)=(0,1i50), i=0,1,..., 10

(x,0) (0,0) | (0.,0) | (0.2;0) | (0.3;0) | (0,4;0)
u™(x,0)| 0.4853 | 0.4811 | 0.4687 | 0.4478 | 0.4182
(x,0) (0.5;0) | (0.6;0) | (0.7;0) | (0.8,0) | (0.9;0)
u™®(x®,0)| 0.3793 | 0.3305 | 0.2709 | 0.1988 | 0.1114
(x",0) (1 0)
u“z)(xf”,O) 0

Each iteration was performed for an average of
195 sec., the total operating time of the program was
39 minutes.

Figures 7 and 8 show the surface and the level lines of

the approximate solution u(lz)(x) , respectively.

For the problem (1)—(3) with the right-hand side of the
form (38) and the Helmholtz operator at k =1 considered
in a unit sphere it is found that o=0,49891,

B=1,74257, and the accuracy &= 10 was achieved on

the 12-th iteration, and ”U(IZ)H =0,3761.

Figure 9 shows graphs of the upper W(k)(x) (solid

line) and lower v(k)(x) approximations (dashed line),
k=0,1,..,12, in cross section X, =0, X3 =0.

Table 4 shows the values of the approximate solution
u1?(x) of the problem (1)~(3) with the Helmholtz op-
erator considered in a unit sphere at the points
oM, 0)=(0,1i;0), i=0,1,...,10.

N

1.0

Figure 7 — Graph of the surface of the approximate

solution u(lz)(x) of the problem (1)—(3) with the
Helmbholtz operator considered in a unit circle
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1.0

0.0

-1.0
-1.0 -0.5 0.0 0.5 1.0

Figure 8 — Level lines of the approximate solution
u(m(x) of the problem (1)—(3) with the Helmholtz
operator considered in a unit circle

w®(z ,0,0), v® (2 ,0,0)

4y

-1.0 -0.5 0.5

Figure 9 — Graphs of the upper w (x) and lower v (x)
approximations (in cross section X, =0, X3 =0)

to the solution of problem (1)—(3) with the Helmholtz
operator considered in a unit sphere

Table 4 — Values of the approximate solution u? x)
of the problem (1)—(3) with the Helmholtz operator
considered in a unit sphere at the points

oV, 0)=(0,1i; 0), i1 =0,1, .., 10

(x,0,0) | (0,0,0) | (0.1;0,0) | (0.2;0;0) | (0.3;0;0)
u?(x",0,0)| 0.3761 0.3729 0.3635 0.3477
(x,0) (0.4;0;0) | (0.5,0;0) | (0.6;0;,0) | (0.7;0;0)
u?(x®,0) | 03253 0.2957 0.2586 0.2130
x,0) (0.8;0;0) | (0.9;0;0) | (1;0;0)
u?x,0) | 01575 0.0895 0

Each iteration was performed for an average of
223 sec., the total operating time of the program was
44,6 minutes.

Figure 10 shows, respectively, the level surfaces of the

approximate solution u(? (x).
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0.0 “"-\_;m . |/
Hal 05 ‘"'*-_,l,
| O
Figure 10 — Level surfaces of the approximate solution
u1?)(x) of the problem (1)~(3) with the Helmholtz

operator considered in a unit sphere

6 DISCUSSION

The analysis of the results shows that the method of
two-sided approximations is an effective numerical
method for solving the boundary value problems of the
form (1)—(3) with the Laplace and Helmholtz operators.
Its advantages include convenient a posteriori error esti-
mation, iteration completion criterion and easy to imple-
ment algorithm. Analyzing the results of the computa-
tional experiment, one can see that for the test problem in
the approximate solution, the correct sign after the comma
is set in about two or three iterations. Considering the

. €
relation kil S

€k

k=0,1,..,10, where

ek ~ L ax@w® x) = v (x)) . k is the number of itera-
2 xeQ

tion, it can be seen that the iterative sequence has a geo-
metric rate of convergence. At the same time, when
switching to a three-dimensional problem, the program
runtime increased, but the convergence rate remained
almost unchanged. It can also be noted that in the transi-
tion to the case of three-dimensional space, the length of
the initial strongly invariant cone segment decreased,
which indicates a better (compared to the two-
dimensional case) choice of initial approximations. The
solution norm in the three-dimensional problem also
turned out to be less than for the two-dimensional one.
Figures 1, 4, 6, and 9 clearly demonstrate the two-
sided nature of the convergence of the constructed itera-

tive sequences {v(k)(x)} and {W(k)(x)} according to the
chain of inequalities (20): at each k -th iteration the un-

known exact solution u*(x) of the problem is above the
approximation v(k)(x) and below the approximation

w (x) .
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CONCLUSIONS

The problem of constructing two-sided approxima-
tions to the positive solution of the first boundary value
problem for a semilinear elliptic equation of the second
order with the Laplace operator and the Helmholtz opera-
tor is solved.

The scientific novelty of the obtained results is that
the method of two-sided approximations for solving
nonlinear operator equations with a heterotone operator in
terms of its application to the boundary value problems
for a semilinear elliptic equation of the second order has
been further developed, and for equations with the Helm-
holtz operator this method is used for the first time. The
developed method has a number of advantages, such as a
convenient a posteriori estimation of the error of the ap-
proximate solution and a simple computational algorithm.
This distinguishes it from other numerical methods for
solving nonlinear boundary value problems for second-
order semilinear elliptic equations and makes it attractive
for application in engineering practice.

The practical significance of the results obtained lies
in the fact that the method proposed has shown itself well
in solving test problems, allows fast software implementa-
tion, which will permit carrying out highly invariant com-
putational experiments when solving practical problems
of mathematical modeling of nonlinear processes.

The limitations in using the method can be associated
with the conditions imposed on the behavior of the func-
tion f(x,u), which are stated in Theorems 1, 2, and 3,

and also with the fact that for the area Q the Green’s
function of the corresponding differential operator must
be known.

The prospects for further research are the extension of
the method of two-sided approximations developed in this
work to the boundary value problems for equations of
elliptic type with other boundary conditions and to initial
boundary value problems for parabolic and hyperbolic
equations, using semi-discrete methods (for example, the
Rothe’s method of lines).
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METO/ IBOBIYHUX HABJWKEHb HA OCHOBI BUKOPUCTAHHS ®YHKIIII T'PIHA IOBYJIOBU JJOJJATHOI'O
PO3B’SI3KY 3AJAYI JIPIXJIE /151 HAIIBJIHIAHOI'O EJIOITUYHOI'O PIBHSIHHSI
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KTpoHikH, XapkiB, YKpaiHa.

JlamTtiorosa C. M. — kaHJ. ()i3.-MaT. HayK, JIOLUEHT, JJOLUEHT Kad. BUILOI MaTeMaTHKH, XapKiBCbKUH HalliOHAIbHUH YHIBEPCUTET MiChKO-
ro rocnogapcrsa imeHi O. M. Bekerosa, Xapkis, Ykpaina.

CunopoB M. B. — 1-p ¢i3.-mar. Hayk, q01eHT, npodecop Kad. MPUKIATHOI MATEMATHKU, XapKIBChKHI HAI[IOHATbHINA YHIBEPCUTET pa-
JOeNIeKTPOHIKH, XapKiB, YKpaiHa.

AHOTALISA

AKTYyaJIbHiCTh. PO3rIIsIHYTO MUTAaHHS TOOYA0BH METOY ABOOIYHUX HAOIMKEHb 3HAXOKSHHS TOJJATHOTO PO3B 13Ky 3aaadi Jlipixue mis
HAMIBJIIHIHHOTO ENTUYHOTO PIBHSHHS Ha OCHOBI BUKOpUCTaHHS MeTona ¢yHKii ['pina. O0’ekTOM AOCTIKEHHS € mepiia KpaioBa 3a/1a4a
(3apaua [lipixiie) Uit HaNiBJIiHIKHOTO €MINTUYHOIO PIBHAHHS JAPYTOro MOPSIKY.

Merta. MeToro po6oTH € po3poOKa Ha OCHOBI BUKOPHCTaHHS MeToy (yHKIiH I'piHa MeToqy nB0oOIYHHX HAONIKEHb PO3B’SI3aHHS 3a/1adi
Jipixse ast HAMIBTIHIHHUX ENINTUYHUX PIBHSIHB APYTOr0 MOPSAKY 1 JOCTIIKEHHS HOro poOOTH MPH PO3B’si3aHHI TECTOBUX 3a7ad.

Mertoa. 3a nonomororo Metoay ¢yHkuii ['piHa BuxiqHa nepia KpaioBa 3aaava Al HalmiBIIHIHHOTO eTINTHYHOTO PIBHSAHHS 3aMiHIOETh-
Csl eKBIBAJICHTHUM IHTErPaJIbHUM PiBHAHHAM ['ammepiuTeiina. IHTerpanbHe piBHIHHS MOJAETHCSA Yy BUITIS/I HEJIHIHHOTO ONEpaToOpHOro pis-
HSHHSI 3 TETEPOTOHHUM OIEPaTOPOM 1 PO3IIISIAETHCS Y MIPOCTOPI HeNepepBHUX (YHKIH, KU HAMiBYIOPSIKOBAHO 32 JONOMOTOI0 KOHyCa
HeBix eMHUX QyHKIIN. 3a po3B’s130K (y3aranpHeHHUiT) KpaioBoi 3aa4i MpUHMaEMO pO3B 30K €KBIBAJICHTHOIO IHTErPaIbHOTO piBHSAHHSA. [lyist
TeTePOTOHHOIO OIepaTopa 3HAXOJUTHCS CHIIBHO IHBapiaHTHHH KOHYCHHM BIJIPi30K, KIiHII SIKOTO € NMOYaTKOBMMH HAOJIMKCHHSIMH JUIS ABOX
iTepaniiiHux nocninoBaoctei. Ilepma 3 uX iTeparifHUX MOCIIJOBHOCTEH € MOHOTOHHO 3POCTAal0uOI0 1 HAOIIKae ITyKaHUH PO3B’ 30K Kpa-
1OBOI 3a7ayi 3HU3Y, a Apyra € MOHOTOHHO CHAIHOIO i HabmwKae Horo 3Bepxy. HaBeneHo yMOBH iCHYBaHHS €JMHOTO JOJATHOTO PO3B’SI3KY
posrisayBaHoi 3anadi [ipixie Ta 1Bo6iuHOT 301KHOCTI 0 HBOTO IMOCHIJOBHUX HaONmkeHb. Tako) HaBEICHO 3arajibHi peKOMEHAlil 3 mo-
Oyll0BH CHJIBHO iHBAapiaHTHOIO KOHYCHOTO Bijpi3ka. Po3po0ieHuil MeTon Mae pocTy 0OYMCIIOBANIbHY peai3alliio i 3py4Hy Ul BUKOPHC-
TaHHS Ha IIPAKTUILl allOCTEPiOPHY OLIHKY TOXHOKH.

Pe3yabraTu. Po3pobienuii MeTo MporpaMHO peai3oBaHO Ta AOCIIKEHO MPH PO3B’s3aHHI TECTOBHX 3a1ad. Pe3ynbTaté 00uMCIOBa-
JILHOT'O EKCIIEPUMEHTY MPOLTIOCTPOBAHO rpadivuHOI0 Ta TAOIMYHOI 1H(OPMALisIMU.

BucnoBku. [IpoBeeHi eKCIIepUMEHTH HiITBEPAMIIN NPALE3AaTHICTh Ta €EKTHUBHICT PO3POOIIEHOT0 METO/1a 1 IO3BOJISTIOTH PEKOMEH/TY-
BaTH WOTO /Ul BUKOPUCTAHHS Ha MPaKTHUI NMPU PO3B’S3aHHS 33]a4 MAaTEeMAaTHYHOTO MOJEIIOBaHHS HeMiHifHMX mporeciB. [lepcriekTiBu
MOJANBIINX JTOCTIKEHb MOXKYTh MOJISITATH y PO3POOIICHHI JBOOIYHUX METO/IIB PO3B’SI3aHHsI 33124 /ISl CUCTEM PIBHSHb 3 YACTHHHUMH ITOXi-
JTHUMH, PIBHSHb 3 YACTHHHUMH MOXIJIHUMHU BUILIUX MOPSAKIB Ta HECTALlIOHAPHUX 0araTOBUMIPHUX 3a]a4, BAKOPUCTOBYIOUH HAMIBINCKPETHI
METOIM (HAIpPUKIa, MeTOA npamux Pore).

KJIFOYOBI CJIOBA: 3anaua [lipixje 1uis HamiBIiHIIHOTO EMINTHYHOTO PIBHAHHS, H0JATHUIT PO3B 30K, CUIIBHO 1HBapiaHTHUI KOHYC-
HUI BiIPi30K, F€TEPOTOHHUI OTIEepaTop, METO/1 ABOOIYHIX HaOMMmKeHb, QyHKLis [ piHa.

YK 517.988 : 519.632
METO/I IBYCTOPOHHMX NMPUBJIMKEHU HA OCHOBE UCIIOJIb30BAHUSA ®YHKIIMU I'PUHA IIOCTPOEHUS
MOJIOKUTEJILHOI'O PEIIEHUSA 3AIAYU JUPUXJIE JJI HOJYJIUHEAHOIO SJIJIMITUYECKOTO YPABHEHUS

I'mokuna H. B. — xaHx. TexH. HayK, JOUEHT, JOIEHT Kad. MpHKIaHONH MaTeMaTHKH, XapbKOBCKUI HAIlMOHAIBHBIN YHUBEPCHUTET pa-
TINO2JIEKTPOHUKHU, XapbhKOB, YKpanHa.

JlamTioroBa C. H. — kaHz. ¢u3.-mar. HayK, JIOIEHT, AOLCHT Kad). BbICIICH MaTeMaTHKH, XapbKOBCKHI HAIMOHAIIbHBIH YHUBEPCHUTET TO-
poackoro xo3stiictBa umenu A.H. bexeroa, XapbkoB, YkpauHa.

Cupopos M. B. — 1-p ¢u3.-MaT. HayK, TOLEHT, npodeccop kad. IPUKIaAHON MaTeMaTHKU, XapbKOBCKHI HAIMOHATIBHbIN YHUBEPCUTET
PaarodIeKTPOHHUKH, XapbKOB, Y KpanHa.

AHHOTALUA

AKTYyaJIbHOCTB. PaccMOTpeH BOIIPOC MOCTPOEHUSI METOJIa JIBYCTOPOHHUX MPHOIIMKEHUI HAX0XKICHHS TTOJIOXKUTENILHOTO pelleH s 3a/1a-
yn Jlupuxiie Ui IMOTyIMHEHHOrO 3IUIMITHYECKOr0 YpaBHEHHS Ha OCHOBE HCIONIb30BaHUA MeTona (yHknuit ['puHa. OOBEKTOM HCCleoBa-
HUS SBISIETCS TIepBas KpaeBas 3a/1a4a (3agava Jlupuxiie) juist moayJIMHEHHOTO SJIIMITHYECKOT0 YPaBHEHHUS BTOPOT'O TOPSIIIKA.

Ileub. Llenb paboThl COCTOUT B pa3pabOTKe Ha OCHOBE MCIIONb30BaHHs MeToja GyHKui ['puHa MeTo[a IBYCTOPOHHHUX NMPUOIMKEHUH
peuenys 3aga4n Jlupuxie Uit MOTyTHHEHHBIX JUIMNTHYECKUX YPAaBHEHHH BTOPOro MOPsAKAa U UCCIENOBAHUS €ro paboThI MIPU PElIeHUH
TECTOBBIX 3a71a4.

Merton. C nomoueio Metoaa GyHkuuit ['puHa ncxoaHas nepBas KpaeBas 3aqada JJisl MOJTYJIMHEHHOrO SJUIMITHYECKOTO YpaBHEHHS 3a-
MEHSIETCs] SKBUBAJICHTHBIM MHTErpalibHbIM ypaBHeHHeM ['ammepiuteiina. MHTerpanbHoe ypaBHEHHE HPEICTABIASTCS B BUJE HEIMHEHHOrO
OIIEPATOPHOTO YPaBHEHHS C FeTEPOTOHHBIM OLEPATOPOM M PaCCMATPUBACTCS B MPOCTPAHCTBE HENPEPHIBHBIX (YHKIIMIL, IOITYyHOpsIoueH-
HOM KOHYCOM HeoTpHuaTesbHbIX QyHKuil. B kauecTBe pemenus (0000LIEHHOr0) KpaeBoii 3a1a4i IPUHUMACTCS PELICHUE YKBUBAIEHTHOTO
MHTETPaJIbHOTO ypaBHEHUs. [lJIsl reTepOTOHHOTO ONepaTopa HaXOANTCS CHIBHO MHBAapHAHTHBIH KOHYCHBIH OTPE30K, KOHI(bI KOTOPOTO SIBJIS-
I0TCS Ha4aJIbHBIMM TPUOIKEHUSIMU JUISL IBYX MTEPALlMOHHBIX HocienoBaTenbHocTel. [lepBast U3 3THX UTE€PALMOHHBIX I1OCIEN0BATENIbHO-
CTell SBIIETCS MOHOTOHHO BO3pacTaiomeil i mpuOImkaeT HCKOMOE PellleHre KPaeBol 3ajaui CHHU3Y, a BTOpas ABISICTCS MOHOTOHHO yOBI-
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BAaOIIeH ¥ NMpUOIIDKAeT ero cBepxy. IIpuBeseHBI yCIOBHSA CYIICCTBOBAHMS CAUHCTBEHHOTO IOJOKHUTEIBHOTO PELICHUS paccMaTpHBacMOU
3amau Jlupuxie u IByCTOPOHHEH CXOJMMOCTH K HEMy IMOCIeNOBaTeldbHbIX NpuOmmkeHuil. Takke npuBeaeHsl 00IMe PEKOMEHAAINH 10
MOCTPOCHUIO CHJIBHO MHBAPUAHTHOTO KOHYCHOTO OTpe3Ka. Pa3paboTaHHBIN METOA MMEET NMPOCTYIO BBIYMCIUTENBHYIO Pealn3aluio 1 ya00-
HYIO JUISl HCTIONIb30BAHUS Ha PAKTHKE allOCTEPHOPHYIO OLIEHKY IOIPELIHOCTH.

Pe3yabTaThl. Pa3paboTaHHBIM METOJ MPOrpaMMHO pealM30BaH M HCCIENOBAaH IPH PELICHUH TECTOBBIX 3a1ad. Pe3ynbTaThl BEIYHCIH-
TEJIHOTO 9KCIIEPUMEHTA IPOMILTIOCTPHPOBAHBI rpadUuecKoil U TaONIUYHON HHPOPMALMIMH.

BeiBoabl. [IpoBeneHHbIE SKCIEPHUMEHTHI MOATBEPIMIN paboTOCIOCOOHOCTh U APPEKTUBHOCTh pa3padOTaHHOTO METO/A U TO3BOJISIOT
PEKOMEH/IOBATh €ro JJIsl HCIOJIb30BaHHMs HAa NPAKTHKE MPU PEICHUM 3a7ady MaTeMaTH4eCKOro MOJIENUPOBAHUS HEIUHEHHBIX IPOLECCOB.
INepcrieKTHBBI HaNbHEHIINX HCCIEIOBAHUI MOTYT 3aKIIIOYaThCS B Pa3pabOTKe IBYCTOPOHHUX METOIOB PELICHHUS 33/1ad JUIL CHCTEM ypaBHE-
HUH B YaCTHBIX MPOU3BOHBIX, YPABHEHUH B YACTHBIX MPOU3BOIHBIX BBICIIMX MOPSIKOB M HECTAIMOHAPHBIX MHOTOMEPHBIX 3a/1au, UCIOJIb-
3y Oy IUCKPETHBIE METO/BI (HAIIPHUMEpP, METOA MPSIMBIX Pote).
KJ/IFOYEBBIE CJIOBA: 3aga4a Jlupuxie sl NOTyIMHEHHOTO 3JUTMITHYECKOTO YPaBHEHHUS, MIOJIOKUTENBHOE PEIIEHUE, CUIbHO HHBA-
PHAHTHBINA KOHYCHBIH OTPE30K, T€TEPOTOHHBIH OMepaTop, METO/ AIBYCTOPOHHUX NpUOImKeHni, Gpynkuus ['puna.
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