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ABSTRACT

Context. Providing the problem of fast calculation of the modular exponentiation requires the development of effective algo-
rithmic methods using the latest information technologies. Fast computations of the modular exponentiation are extremely necessary
for efficient computations in theoretical-numerical transforms, for provide high crypto capability of information data and in many
other applications.

Objective — the runtime analysis of software functions for computation of modular exponentiation of the developed programs
based on parallel organization of computation with using multithreading.

Method. Modular exponentiation is implemented using a 2k-ary sliding window algorithm, where K is chosen according to the
size of the exponent. Parallelization of computation consists in using the calculation of the remainders of numbers raised to the power
of 2' modulo, and their further parallel multiplications modulo.

Results. Comparison of the runtimes of three variants of functions for computing the modular exponentiation is performed. In the
algorithm of parallel organization of computation with using multithreading provide faster computation of modular exponentiation
for exponent values larger than 1K binary digits compared to the function of modular exponentiation of the MPIR library. The MPIR
library with an integer data type with the number of binary digits from 256 to 2048 bits is used to develop an algorithm for comput-
ing the modular exponentiation with using multithreading.

Conclusions. In the work has been considered and analysed the developed software implementation of the computation of modu-
lar exponentiation on universal computer systems. One of the ways to implement the speedup of computing modular exponentiation
is developing algorithms that can use multithreading technology on multi-cores microprocessors. The multithreading software im-
plementation of modular exponentiation with increasing from 1024 the number of binary digit of exponent shows an improvement of

computation time with comparison with the function of modular exponentiation of the MPIR library.
KEYWORDS: modular exponentiation, parallel computation, multithreading, big numbers.

ABBREVIATIONS
GMP is a GNU Multiple Precision Arithmetic library;
ME is a modular exponentiation;
MT is a multithreading;
MPIR is a Multiple Precision Integers and Rationals
library.

NOMENCLATURE
a is a base integer value;
b is an integer value of the exponent;
by is a binary bit of b;
b.i is a binary digit;
C is an integer value;
exp is exponent;
k is a number of bits of b;
n is an integer value of the module;
mpz_t is a type of big numbers MPIR library;
quit_thread is a number of threads; _
Ri is a result of the multiplication of exponent 2' of the
number a under modulo n;
S_cv is a variable of synchronizations;
S_mutex is an object for interacting;
X is a discrete logarithm;
y is an integer value of modular exponentiation.
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INTRODUCTION

The task of developing an effective computational al-
gorithm for ME for big numbers is relevant enough to
solve the problems of modern asymmetric cryptography,
for efficient computation of number-theoretic transforms,
digital signatures and other applications [1].

The object of study is the process of analysis the de-
veloped software implementation of the computation of
ME. The iteration impedes of the organization of parallel
computations and does not provide high-speed computa-
tion of a ME in available computational resources of mul-
ticores computer systems. Therefore, one directions for
speedup the computing of ME is to improve the software
implementation using MT technology.

The subject of study is the parallel organization of
computation of ME based on the use the bits of the binary
exponent with MT execution of the computation.

The purpose of the work is to increase the speed of
computation of ME based on MT technology of computer
systems in comparison with the function of modular ex-
ponentiation of the MPIR library.

1 PROBLEM STATEMENT

The computation of directional function of ME is in
the form

y=a’mod n . )
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Many efficient algorithms for computing a discrete
logarithm X use the determination of ME

a* =y(mod n) . )

After all a discrete logarithm is considered to be unidirec-
tional function to ME, since it is difficult to compute it for
a conditionally acceptable time.

There is an algorithm [2] for computing of ME, which
uses the product of two integers modulo and the calcula-
tion of the square of an integer modulo. However, this
algorithm to perform the computation of the integer
power of a number modulo uses sequentially recursive
operations of the product of two integers modulo and the
square of an integer modulo.

One of the ways to implement the speedup of compu-
tation of ME is the parallelization of computation using
MT technology in universal computer systems.

2 REVIEW OF THE LITERATURE

Many efficient algorithms use the determination of
ME [3], which is characterized by considerable computa-
tional complexity and is compared with performing fac-
torization of a number [4]. An analysis of the algorithms
and their implementation for computing of ME shows the
widespread use of iterative procedures among crypto-
graphic software libraries designed for big numbers [5],
which results in low efficiency in the use of available
computational resources in multicores computer systems.
In the book [2] an algorithm for computing a ME is de-
scribed, that to use the binary form of representation of an
integer number of exponent. Starting with the most sig-
nificant bit of integer exponent, sequentially for each sub-
sequent bit based on the computed values from the previ-
ous iteration is determined the result of the computation
of the ME. However, iteration process impedes the or-
ganization of MT computations and does not provide
high-speed determination of a ME.

The closest is the work [6], which was discussed the
parallel algorithms to perform of ME and theoretical
methods to obtain the optimal partition points that allows
for a load balancing technique to optimize parallelization
algorithms for the ME operation. The algorithms pro-
posed in this work use the OpenMPI parallelization li-
brary as a basic tool.

Mathematical software libraries are used to implement
the computation of ME. For example, the Pari/GP soft-
ware library [10] contains a large set of programs for effi-
cient computations of mathematical functions. The
Pari/GP library also includes computation of the
Mod(a, n)"b function for long numbers and other special
numbers while using a small amount of memory during
the computation process. The library uses a separate type
of t INTMOD to handle modulo numbers. Its peculiarity
is the representation of numbers in a special form of
Montgomery reduction, which simplifies the computation
of division. You can use the Pari/GP library on Linux or
MinGW environments. Compared to the Pari/GP library,
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the well-known MPIR library [7] is easier in use and can
be compiled in Windows easily. A highly optimized
modification of the well-known GMP or GNU Multiple
Precision Arithmetic Library the MPIR library contains
the function mpz_powm() to realize computation of ME.
The MPIR library uses an optimized version of the ME
algorithm, called the “Sliding-window method” [8],
which reduce the average number of multiplication opera-
tions. However, the next iteration of the algorithm in the
mpz_powm() function depends on the exponent bits that
were previously analyzed in the sequential analysis of the
window, which makes it impossible to divide the compu-
tations into independent flows.

3 MATERIALS AND METHODS
The parallelization of computation of ME in the form
(1), based on the use of the exponent b as a binary number
Dic1)Pk2)- - -b2b1Dg , uses the application of the fundamen-
tal property of modularity [9]:

(a*c)mod n=((amod n)(cmod n))mod n. )

Accordingly, the computation of the ME (1) takes the
form

B (11 B2y b2 D1 By

y=a mod n=(b,_,a*2"" mod n *

Lk blf;Mz1 mod n * bOaAZO mod n) mod n. ®)

In accordance with formula (3), a scheme for comput-
ing of the ME is shown on Figure 1.
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Figure 1 — The scheme for computing the ME
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The scheme for computing the ME consists of the denota-
tions:

a is the input of the base number; n is the input of the
module;

(@*2") mod n are blocks of computation of the integer
exponent of exponent 2' of the number a by the module,
i=0,1,2,..., (k-1);

b is the input of an exponent with binary digits b.(k—
1), b.(k-2),...,b.2, b.1, b.0;

(X) mod n is the block of multiplier under modulo n;

y is the output of the ME.

Consistently determined residuals of the number a
raised to the power of 2' under modulo n in blocks
(a”2") mod n, for i=0, 1,...,k-1 are multiplied. In the case
of presence of the exponent of the number of binary the
value of zero in i-th binary digit (b.i) block (a*2") mod n
is not execute the operation, otherwise is computed the
multiplication of exponent 2' of the number a under
modulo n, which corresponds to the denotation at the out-
put of the blocks (1/Ri). The determined product, in the
final stage, forms in block (X)mod n the value y of the
result of the computation of the ME.

For the organization of MT execution of the computa-
tion of the ME, in accordance with Figure 1, it is possible
to consider the possibility of creating two threads. The
thread | computes the numbers a raised to the power of 2'
under modulo n. The thread Il computes the product of
the results (@"2') mod n under modulo n, starting with the
readiness of the first two values (a*2")mod n. Theoretical
it is possible to reduce the computation time to 50% of the
ME in comparison with single thread computation.

Therefore, due to the parallel execution of the compu-
tation of the ME, in accordance with Figure 1, consider
the possibility of creating a thread of execution of multi-
plication under modulo operations and a thread by com-
putation of the product of the residual values defined in
the parallel previous thread. The only difficulty of orga-
nizing the computation with such threads is the need to
synchronize the performance of threads to ensure the cor-
rect computation of the final value y of the ME.

4 EXPERIMENTS
The MPIR library, which is written in C and the as-
sembler, is used to implement the algorithm for comput-
ing the ME, and provides an ability to compile its func-
tions in Visual Studio C++. Accordingly, in the MPIR

library, the mpz_t data type represents long numbers that
are selected for the exponent exp, number base, modulo
mod with number of binary digit from 256 to 2048 bits for
testing. For implementation of the developed algorithm
the MPIR library functions mpz init_set(mul, base),
mpz_sizeinbase(exp, 2), mpz_tstbit(exp, i), mpz_mul(r, r,
mul) with long binary digit data are used.

Three versions of the algorithms are implemented as
ME functions with aim to compare the performance exe-
cution of ME.

The function mod_exp(mpz_t r, mpz_t base, mpz_t
exp, mpz_t mod) performs the basic iterative algorithm
“Right-to-left binary exponentiation” [11]. The computa-
tion of the ME is carried out in one main thread. The re-
sult of the function is written to the variable r, and the
computation time is fixed and averaged to output the av-
erage «single thread exponentiation» time in microsec-
onds, which are showed in the Table 1.

The function of the MPIR library
mpz_powm(expected_result, base, exp, mod) performs a
ME, implementing a floating-window algorithm with
Montgomery multiplication/reduction [12]. The result of
the function is written to the expected_result variable and
the computation time is recorded and averaged with the
output of “mpz_powm average time” in microseconds,
which are showed in the Table 1.

To organize MT computing according to the scheme
in Figure 1, the thread functions thread function(bool*
quit_thread, mpz_t*mod) and parallel mod exp(mpz_t
base, mpz_t exp, mpz_t mod) are used. Accordingly, these
threads are created to perform the computation of the ME.
The result of the function is written to the variable
s_thread_result, and the computation time is fixed and
averaged to output the average “parallel exponentiation”
time in microseconds, which are showed in the Table 1.

The thread implemented in the function
thread_function(bool*quit_thread, mpz_t*mod) computes
the product under modulo over the values in the queue
s_thread_queue to determine the ME. That is, from the
queue will read the values (a*2')mod n which are com-
puted by the function parallel mod exp(mpz_t base,
mpz_t exp, mpz_t mod). Another thread function paral-
lel_mod_exp(mpz_t base, mpz_t exp, mpz_t mod) com-
putes the value of squaring by the module (a'a') mod n,
and writing the computed value under modulo to data

Table 1 — The average execution time of the functions of computing the ME based on the use of lib_mpir_gc

Bits of pseudorandom numbers / trials 256/2000 512/1000 1024/500 2048/100
Release /x64 — Core i7-3700X (AVX)
single thread exponentiation (us) 1276 7918 53543 383309
mpz_powm average time (Us) 824 5577 39312 279225
parallel exponentiation (us) 1293 5970 35182 244199
Release /x64 — Core 19-7900X (AVX2/AVX512)

single thread exponentiation (us) 1190 7577 52091 375792
mpz_powm average time (L) 767 5331 37907 271139
parallel exponentiation (us) 1235 6114 34961 240772
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queue S_thread_queue. In the loop of the function paral-
lel_ mod _exp(mpz_t base, mpz_t exp, mpz_t mod), binary
digits of exponent exp are analyzed mpz_tstbit(exp, i) to
determine whether to execute or not operation. That is,
the result will or will not be written to the data queue
s_thread_queue After analyzing the b.(k—1) binary digit
in a final stage is computed the end value of the ME,
which is written to the variable s_thread_result.

To protect the queue from simultaneous access of the
threads is presented in Figure 2, where the S_mutex mutex
with the basic lock() and unlock() methods is used. The
S_mutex object is passed to our functions, which should
use it for interacting. Before accessing the shared data
queue s_thread_queue, the mutex is locked by the method
lock(s_mutex) and is unlocked after the work with the
shared data is completed.

Active s_queue
for threadil

Active s_queue s _mutex. wait
for thread2 _

Figure 2 — The scheme of activation of threads when performing
synchronization with a pair of mutex-conditional variables

The condition variable s_cv helps to synchronize the
work of the threads. The variable s_cv is used for waiting
of the thread of an event to occur in another thread
(Figure 2). Running the s _cv.notify one() method in the
thread generates a readiness signal of the factor for an-
other thread in the waiting state of s_cv.wait(lock). Ac-
cording-ly, even if a thread is unblocked by the S_cv con-
ditional variable, it will not be able to continue immedi-
ately if another thread is already inside our critical sec-
tion. In this case, the unblocked (on a conditional vari-
able) thread changes its status from “blocked on a condi-
tional varia-ble” (in which it was previously) to the status
of “blocked on a mutex” and remains in it until the active
flow is in a critical sections will not make the mutex free.
The use of a combination a conditional variable and a
mutex lock indicates the complexity of the synchroniza-
tion the performance of threads for computing the ME.

5 RESULTS
To determine the average computation time of the ME
in testing, the multiple functions called mod_exp(),
mpz_powm(), parallel mod exp() were used. To compute
the ME with a given number of trials the values of expo-
nent exp, number base and mod were given by pseudo-
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random numbers with number of binary digit of 256, 512,
1024, 2048 bits. To reduce the total computation time on
increasing the number of binary digits of long numbers
the number of trials of latch-up of the computation time is
decrease correspondent.

Numerical experiments were carried out on a com-
puter system with a multi-core microprocessor with
shared memory in a 64-bit Windows. Testing was per-
formed on computer systems with an Intel Core 17-3770K
that has 4 physical cores with 3.5GHz clock and an Intel
Core 19-7900X processor that has 10 physical cores with
3.3GHz clock. According to hyper-threading technology,
each physical core consists of two virtual ones.

The results are presented in Table 1, which contains
the values of average execution time (us microseconds) of
computing the ME for pseudorandom data with a number
of binary digits (256, 512, 1024, 2048bits) for correspon-
dent the specified number of trials (2000, 1000, 500, 100).

6 DISCUSSION

The parallel algorithm in function parallel mod exp()
for computing the ME improves (in Table 1, the best re-
sults are highlighted in bold) the computation time rela-
tive to the mpz_powm() function from the MPIR library
with increasing the number of binary digits of data, start-
ing from 1024 bits. The speedup of the computation time
of the parallel algorithm with respect to the base time
depends on the number of binary digits and their values in
exponents. The value one in binary digits in exponent
determine the operations of the multiplication by modulo
in thread |. To computation the ME with a given number
of trials, the values of the exponent exp, base number and
mod were given pseudo-random numbers. Therefore, the
obtained results of the average execution time do not de-
pend on the number of ones in the binary value of the
exponent.

The implementation of mpz_powm() uses a more op-
timal multiplication by modulo algorithm, the so-called
Montgomery multiplication/reduction [12]. The modified
Montgomery algorithms [13] can be used instead of op-
erations in the thread | and thread Il to speedup for com-
puting the ME in the parallel algorithm.

The computation time of function parallel mod exp()
with two threads improves the results (in Table 1) relative
to the mod exp() with single thread with increasing the
number of binary digit of data starting from 512 bits. Thus,
we can conclude that the using two threads sig-nificant
improvement the execution time (Table 1) of ME of long
numbers compared to single thread implementation.

Since parallelization is performed in two threads, the
number of cores in computer systems does not accelerate
the computation of ME. The execution time of ME on
computer systems with Intel Core 17-3700X and Intel
Core 19-7900X processors does not change significantly
according to table 1. The use of the function paral-
lel mod_exp() is possible for the organization of parallel
calculations of ME even larger big numbers.
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AHOTANISA
AKTYyaJbHicTb. [TocTaHOBKa MPOOIEMH MBHUAKOTO OOYHMCICHHS MOIYJIbHOI CKCIIOHEHTH BUMArae po3poOKH e()eKTHBHUX aarOpHTMid-
HUX METOJIB 3 BUKOPHUCTAHHAM HOBITHIX iH(opmauiitHux TexHosnorii. [IIBuaki oOUMCIeHHS MOYJIBHOI €KCIIOHEHTH € HaJ3BUYaiHO HEO0O-
XiJHUMH JUIs €(PEeKTUBHUX OOUYHCIIEHb Y TEOPETUKO-YHUCIOBHUX NEPETBOPEHHSIX, 1JIsl 3a0€311€UeHHs BUCOKOT CTIHKOCTI KpunroiHdopMauiiHux
JAHUX Ta y 0arathoX iHIIHMX JOAATKaX.
MeTta — aHaii3 MIBUAKOCTI BUKOHAHHS (YHKIII B MporpaMHOMY 3a0e3redeHHi sl 00UMCIICHHsT MOIYJIbHOI €KCIIOHEHTH PO3POOJICHUX
IporpaM Ha OCHOBI HapaesibHOi OpraHizarii 00UHCIIeHb 3 BUKOPUCTAHHAM 0araTornoTOYHOCTI.
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Meroz. OGUHCICHHS MOIY/IBHOI SKCIOHSHTH PEali3yeThes 3a JOIOMOTOI0 aIrOPUTMY 20 KOB3aI090ro BikHa, 1¢ K BUOHpAaeThes Bil-
MOBIJHO [0 PO3Mipy MOKa3HHKa cTeneHs. [lapanenizamis 004KCIeHb IOIATaE Y BUKOPUCTAHHI OOUHMCICHHS 3aIUIIKIB YHCE, MiTHECEHUX 0
crenens 2' 3a MoJIyJieM, Ta iX MOJAIBLIOTO MapaiebHOTO MHOKEHHS 32 MOJLyJIEM.

Pe3yabTaTu. 31ificCHEHO NOPIBHAHHS Yacy BUKOHAHHS TPHOX BapiaHTIB (GyHKIIH 111 0OUMCIICHHS MOIYJIbHOI eKCIIOHEHTH. B anropurmi
napaenabHoi opraisarii 064HCICHs 3 BUKOPUCTAHHAM 0araTONOTOYHOCTI 3a0e3MedyeThesl OLbI MIBHUAKE OOUUCICHHS 00YHCICHHS MOLIY-
JIbHOT €KCIIOHEHTH TSl 3HAYEHb TMOKa3HHWKa crerneHs, mo nepeuirye 1K npiiikoBux mudp, mopiBHIHO 3 QyHKIIEI 0OYUCICHHS MOIYJIHHOT
excrioneHTH B 6i6mioreni MPIR. Bibnioreka MPIR 3 mijiouncensHUM TUIIOM JTaHHUX 3 YKCJIOM JBiiKOBUX 1H(p Big 256 no 2048 6it BUKOpH-
CTOBYETHCS IS PO3POOKH aIrOPUTMY OOUYHCIICHHS O0YNCICHHS MOIYIbHOT EKCIIOHEHTH 3 BUKOPHCTAHHAM 0araTtomoTo4HOCTI.

BucnoBkH. Y po0OTi pO3IIIAHYTO Ta IPOaHANI30BaHO PO3POOICHY IPOrpaMHy peatizallilo 0OYHUCICHHS MOMYIbHOI €KCIIOHCHTH Ha YHi-
BepCaIbHUX KOMI'IOTEpHUX cucTteMax. OIHMM i3 CrOCO0iB peaizailii MPUCKOPEHHS 00YKCIeHb O0UYNCICHHS MOYJIBHOI EKCIIOHEHTH € PO3-
pobka anropuTMiB, SIKi MOXYTh BHKOPHUCTOBYBAaTH 0araTONOTOKOBY TEXHOJIOTiIO Ha OaraTosiepHMX Mikpornpolecopax. bararomorokoBa
IporpaMHa peaizallis 004HCICHHS MOIyIbHOI eKCIIOHEHTH 3i 3011bIneHHAM Bif 1024 uncna ABIHKOBHX PO3pSAAiB IOKa3HHUKA CTEICHS IIOKa-
3y€ MOJIMIICHHs 9acy OOUYMCIICHHsI y MOPIBHSAHHI 3 (QYHKI[I€I0 00UYMCICHHS MOYJIbHOI eKcrioHeHTH Oibmiotekn MPIR.

KJIFOYOBI CJIOBA: MonynbHa €KCIIOHEHTA, HapajieibHi 00UMCIICHHS, 0araToNOTOKOBICTh, BEJHKI YHCIA.
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MOJINTAXHUKA, JIbBOB, YKpauHa.
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AHHOTAILIUS

AKTyaJbHOCTb. Pelienne 3ana4un ObICTPOrO BBIYMCICHUSI MOJYJIBHOW IKCIIOHEHTHI BO3BEACHHS TpeOyeT pa3paboTku 3P(eKTHBHBIX
AITOPUTMHYECKUX METOJIOB C UCMOIb30BAHUEM HOBEHIINX MH(POPMAIIMOHHBIX TEXHOIOTHIA. BhICTpBIC BBIYUCICHHS MOYILHON 3KCIIOHEHTHI
BO3BE/ICHHS YPE3BBIUAIHO HEOOXOAMMBI /I 3(PPEKTUBHBIX BBIYMCICHUH B TEOPETHKO-YMCICHHBIX MPEoOpa3oBaHUsX, IS OOeCHeUeHNUs
BBICOKOH KPHIITOCTOMKOCTH HH(POPMAILIMOHHBIX TAHHBIX ¥ BO MHOTUX JIPYTHX IPHIOKCHHSX.

Heab — ananu3 ucnonHeHuss GYyHKIUA B MPOrPaMMHOM OOECICUCHUH [UIsl BBIYUCICHHS MOMAYJIHHOTO BO3BEICHUS B CTEMEHb pa3pado-
TaHHBIX [IPOrPaMM Ha OCHOBE MapaljieJIbHON OpPraHNu3alMy BEIYUCIICHHU C UCIOJIb30BAHUEM MHOTOMOTOYHOCTH.

MeTtoa. MoaynbsHOe BO3BEICHHE B CTEIICHD PEAIN3YETCS C UCIIOIB30BAaHUEM aJrOPHTMa 2K-apH01“0 CKOJIB3AIIETr0 OKHa, re K BEIOpaeT-
Cs1 B COOTBETCTBHHU C Pa3MEpOM IOKa3aTels cTeneHy. PacnapaienBanue BEIYUCIEHHN 3aKIII0YAETCS B UCTIOIb30BaHUHU BBIYHUCIIEHHUS OCTAT-
KOB UKCETI, BO3BEIEHHBIX B CTEMeHb 2' 10 MOAYIIO, M UX JAaNbHEHIINX MapaienbHbIX YMHOKEHHH TI0 MOIYIIIO.

Pesyabratsl. [IpoBeeHO cpaBHEHHE BPEMEHH BBIIIOIHEHUS TPEX BapUAaHTOB (DYHKIMH Ui BBIYUCICHHS MOJYJBHON 3KCIOHEHTHL. B
ITOPUTME TapaJuIeIbHON OpraHM3aly BBIYUCICHUI C MCHOIB30BAHUEM MHOTOIIOTOYHOCTH oOecrieunBaeTcst Oosiee ObICTpOe BEIYHCIICHHE
MOJLyJIbHOM 9KCIIOHEHTHI JUIsl 3HAYCHHH 1oka3aTens 6onbine 1K IBOMYHBIX pa3psiIoB 10 CpaBHEHUIO ¢ (PyHKIMEH MOIYILHOTO BO3BEICHUS B
creriedb 6nbnuotekn MPIR. bubnuoreka MPIR ¢ 1ieno4rciieHHbIM THITOM JAaHHBIX ¢ KOJHYECTBOM JIBOMYHBIX pa3psaoB oT 256 mo 2048 6ur
HCIOJIB3YETCs ISl pa3pabOTKU aJrOpuTMa BBIYHCIICHHS MOIYJILHOTO BO3BEICHUS B CTEIICHB C UCIIOJIb30BaHUEM MHOTOIIOTOYHOCTH.

BoiBoabl. B pabote paccMoTpeHa U MpoaHaIM3UpOBaHa pa3paboTaHHAs MPOrpaMMHAs pealn3anisi BEIYUCICHUS MOIYJIbHON KCIOHEH-
ThI HA YHUBEPCATBHBIX KOMITBIOTEPHBIX cucTeMax. OIHUM U3 CIIOCOOOB peann3aliy YCKOPEHUs! BEIYMCICHUI MOYJIbHON SKCIIOHEHTHI SIBIISI-
eTcsl pa3paboTKa ajJropuTMOB, KOTOPBIE MOTYT MCIIOJIB30BaTh TEXHOJIOTHIO MHOTOIIOTOYHOCTH Ha MHOTOSIIEPHBIX MHKpOIpoleccopax. MHO-
TONOTOYHAs MPOrpaMMHasl pean3alys MOYJIbHON 3KCIOHEHTHI ¢ yBennueHneM ¢ 1024 gucia qBOMYHBIX Pa3psioB SKCIIOHEHTHI IIOKa3bIBa-
eT yJIy4llIeHHe BPEMEHH BBIYUCIICHHH 110 CPABHEHHIO ¢ (PyHKIME MOLYIbHOTO BO3BECHHS B cTeneHb onbnunoreku MPIR.

KJIOYEBBIE CJIOBA: MoaynbHast 3KCIIOHEHTA, MTapaslieIbHbIC BEIYUCIICHHSI, MHOTOIIOTOYHOCTb, OOJIBIIIME YHCTA.
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