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ABSTRACT

Context. For modeling various data transmission systems, queuing systems G/G/1 are in demand, this is especially important
because there is no final solution for them in the general case. The problem of the derivation in closed form of the solution for the
average waiting time in the queue for ordinary system with erlangian input distributions of the second order and for the same system
with shifted to the right distributions is considered.

Objective. Obtaining a solution for the main system characteristic — the average waiting time for queue requirements for three
types of queuing systems of type G/G/1 with usual and shifted erlangian input distributions.

Method. To solve this problem, we used the classical method of spectral decomposition of the solution of Lindley integral
equation, which allows one to obtain a solution for average the waiting time for systems under consideration in a closed form. For the
practical application of the results obtained, the well-known method of moments of the theory of probability was used.

Results. For the first time, spectral expansions of the solution of the Lindley integral equation for systems with ordinary and
shifted Erlang distributions are obtained, with the help of which the calculation formulas for the average waiting time in the queue for
the above systems in closed form are derived.

Conclusions. The difference between the usual and normalized distribution is that the normalized distribution has a mathematical
expectation independent of the order of the distribution %, therefore, the normalized and normal Erlang distributions differ in
numerical characteristics. The introduction of the time shift parameter in the laws of input flow distribution and service time for the
systems under consideration turns them into systems with a delay with a shorter waiting time. This is because the time shift operation
reduces the coefficient of variation in the intervals between the receipts of the requirements and their service time, and as is known
from queuing theory, the average wait time of requirements is related to these coefficients of variation by a quadratic dependence.
The system with usual erlangian input distributions of the second order is applicable only at a certain point value of the coefficients
of variation of the intervals between the receipts of the requirements and their service time. The same system with shifted
distributions allows us to operate with interval values of coefficients of variations, which expands the scope of these systems. This
approach allows us to calculate the average delay for these systems in mathematical packages for a wide range of traffic parameters.

KEYWORDS: Ordinary and normalized Erlangian distribution laws, Lindley integral equation, spectral decomposition method,

Laplace transform.

ABBREVIATIONS
LIE is a Lindley integral equation;
QS is a queuing system;
PDF is a probability distribution function.

NOMENCLATURE
/5. (¢) is a density function of the distribution of time

between arrivals;

F; (s) is a Laplace transform of the function f; (¢) ;

Ju(?) is a density function of the distribution of
service time;

F: (s) is a Laplace transform of the function f, (¢) ;

¢, the coefficient of variation of time between
arrivals;

Cu the coefficient of variation of service time;

E, is an erlangian distribution of the second order;

E, is a shifted erlangian distribution of the second

order;
G is an arbitrary distribution law;

W is an average delay in the queue;
W*(s) is a Laplace transform of delay density

function;
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A is a parameter of the erlangian distribution law of
the input flow;

p is a parameter of the erlangian distribution law of
service time;

p is a system load factor;

T, 1s an average time between arrivals;

?kz is a second initial moment of time between

arrivals;
T, 18 an average service time;

o
@_ (s) is a Laplace transform of the PDF of waiting

is a second initial moment of service time;

time;

vy (s) is a first component of spectral
decomposition;

y_(s) is a second component of spectral
decomposition;

%(?) is a characteristic function of a random variable.

INTRODUCTION
This article is devoted to the analysis of the E,/E,/1
QS with ordinary Erlang distributions, for which no
results were found in the public domain on the average
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delay of requests in the queue, which is the main
characteristic for any QS. According to this characteristic,
for example, packet delays in packet-switched networks
are estimated when they are modeled using QS.

We also investigated the above system with time-
shifted input Erlang distributions in order to obtain a
solution for the average delay. A shift of the distribution
law to the right from the zero point transforms the usual
system E,/E,/1 into a system of the G/G/1 type. In
queuing theory, studies of G/G/1 systems are especially
relevant due to the fact that there is no solution in the
final form for the general case. Therefore, such systems
are considered under different distribution laws.

In the study of G/G/1 systems, an important role is
played by the method of spectral decomposition of the
solution of the Lindley integral equation, and most of the
results in the theory of queuing were obtained using this
method. In the previous works of the authors, it is clearly
shown that in systems formed by shifted distribution laws,
with the same load factor as compared with conventional
systems, the average delay becomes less.

This is achieved because the coefficients of variation
of the arrival ¢, and service times ¢, for shifted

distribution laws become smaller when entering the shift
parameter £, >0.

The object of study is the main characteristic — the
average waiting time of requirements in the queue of the
queueing systems type G/G/1.

The subject of study is the average waiting time of
requirements in the queue of the QS E,/E,/1 and in the
same system, but with shifted input distributions.

The purpose of the work is obtaining a solution for
the average delay of requirements in the queue in closed
form for these systems.

1 PROBLEM STATEMENT

The paper poses the problem of finding a solution for
the waiting time of requests in the queue in the ordinary
system E,/E,/1 formed by Erlang distributions, as a
special case of the gamma distribution and in the system
formed by shifted Erlang distributions. This task also
involves identifying the differences between the usual and
normalized Erlang distributions. To solve the problem, we
used the apparatus of spectral decomposition of the
Lindley integral equation.

Let us briefly recall the main content of the method of
spectral decomposition of the LIE solution based on the
classics of the queuing theory [1]. The solution of the LIE
by the spectral decomposition method consists in finding

the representation for the expression £ (—s)-F: (s)-1

in the form of a fractional rational function, i.e. as a
product of two factors, which would give a rational
function of s.

When using the method of spectral decomposition of
an LIE solution to determine the average waiting time, we
will follow the approach and symbolism of the author of
the classical queuing theory [1]. To solve the problem, it
is necessary to find the law of waiting time distribution in
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the system through the spectral decomposition of the
form: F, (—S)F: (s)=1=w_ (s)/y_(s), where y, (s)
and y_ (s) are some fractional rational functions of s that

can be factorized. Functions y, (s) and w_(s) must

satisfy special conditions according to [1], which can be
found in the previous works of the authors [2—6].

Thus, to solve the problem, it is necessary to construct
spectral expansions of the form

B, (—s)F: (s)=1=wy_ (s)/y_(s) for the systems under

consideration, considering the conditions specified above
in each case.

2 REVIEW OF THE LITERATURE

The method of spectral decomposition of the solution
of the Lindley integral equation used in this work was
first presented in detail in the classics of queuing theory
[1], and was subsequently applied in many works,
including [8, 9, 13]. A different approach to solving
Lindley’s equation has been used in Russian language
literature. That work used factorization instead of the term
“spectral decomposition” and instead of the functions

v, (s) and y_ (s) it used factorization components

o, (z,t) and o_(z¢t) of the function 1—z-(¢), where

%(t) is the characteristic function of a random variable &

with an arbitrary distribution function C(f), and z is any
number from the interval (—1, 1). This approach for
obtaining results for systems under consideration is less
convenient than the approach described and illustrated
with numerous examples in [1].

The method of spectral decomposition of the LIE
solution was also used to study systems with different
input distributions in [2—6]. At the same time, the
scientific literature, including web resources, the author
failed to find the results on the waiting time for the QS
with Erlang distributions, as a special case of the gamma
distribution. Among foreign publications, it is worth
highlighting [10, 11], in which it is proposed to consider
the queue of requests to Internet resources as queues with
a time lag.

The results of works [2—6] together with [1] allowed
developing the theory of the method of spectral
decomposition of the LIE solution into the usual second-
order Erlang distribution shifted to the right from the zero
point.

Approximation methods with respect to distribution
laws are described in detail in [9, 13, 14], and similar
studies in queuing theory have recently been carried out
in [15-24].

3 MATERIALS AND METHODS

As you know, the two-parameter gamma distribution
is given by the density function of the form
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B—ata—le—t/B
I'(a)
0, <0,

, t20,

f(= (D

o0
where I'(o) is a gamma function equal I'(z) = | e dt
0
for any real number z>0, o>0, f>0. Next, we need the
numerical characteristics of the gamma distribution: the
mean value of the interval T =of and the coefficient of

variation ¢ =1/+/o . To apply the spectral decomposition
method, we find the Laplace transform of the gamma
distribution

F(s)= B sty BT *fo sl (s U gy _

I(a) o (a) o
(s+1/B)t = x|
| __B BB YT e
TR 7F(a)([3s+lj e de= )
dt = B x
Bs+1

L(L] R
(o) Ps+1 (Bs+1)*

Analyzing the Laplace transform of the gamma
distribution, we conclude that this distribution law in
queuing theory can be used only in special cases with
integer values o >2.

To apply the method of spectral decomposition of the
Lindley integral equation in the last expression, we
change the variable A =1/ for the distribution density
function of the input flow intervals, pn=1/f for the
distribution density function of the service time and
restrict ourselves to the case a=2. Thus, in the case of
integers o >2, the gamma distribution turns into the
usual Erlang distribution of order .

For example, when replacing A =1/, k=a, we get

the usual Erlang distribution of order &
}thk—le—M
fk(t):W.For k=2 we get f; (1) =\21e ™ .

This distribution differs from the normalized Erlang
distribution considered in [2], where f; (f) = 4A2re M .

The difference between them is that the mathematical
expectation of the normalized distribution does not
depend on the order of the distribution £, therefore, they
differ in numerical characteristics [14].

Due to such a difference between the distributions, the
QS formed by two flows, in which the time intervals are
given by the density functions of the usual second-order
Erlang distribution, as a special case of the gamma
distribution, we denote E,/E,/1 as well as the QS formed
by the normalized Erlang distributions. The main
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differences between the normal (derived from the gamma
distribution) and normalized E, Erlang distributions are
shown in Tables 1 and 2.

Table 1 — Numerical characteristics of distributions

Distribution T, ri c%
Erlangian usual E, 2/\ 6/2\2 1/2
Erlangian normalized E, 1/A 3/(20%) 1/2

Table 2 — Distribution parameter obtained by the method of

moments
o Density
Distribution £.30) Parameter A
I
Erlangian usual E, Ate™ A=2/7,
Erlangian normalized E, 4027 2M r=1/7,

Thus, these distribution laws differ in both parameter
and numerical characteristics, except for the coefficient of
variation. As we will see below, systems formed by
ordinary and normalized Erlang distributions will have
different spectral expansions. In this regard, it will be
interesting to see the results obtained.

We will assume that the system E,/E,/1 is formed by
two flows with the functions of the probability
distribution densities:

o) =2 e ™, 3)

fu()=plre™. 4)

Then we will have:

TNES PUNES

Hence, the spectral
B, (—s)F: (s)=1=w_ (s)/w_(s) of the LIE solution

for the system under consideration will take the form:

\v+(S)_( 2 jz[ujz_l_xzuz—(x—sf(ws)z_
v (s) \a=s) \p+s)  -9Pes?
_ —s(s® —6252 —s—¢p)

-9 sy

expansion

®)

where the coefficients of the cubic polynomial collected
using symbolic Mathcad operations
co =2hu(n—1), ¢ =—(7 —4rp+p®), ¢ =-2(u-1).

The cubic polynomial s> —c2s2 —cs—cy of the
numerator has two negative roots and one positive one,
since in the case of a stable system A<p ie. (p—1)>0.

For convenience, let us denote them by —s;, —s, and s3.
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Then the zeros of the numerator of the expansion
s=0,—-s),—55,83. Double poles of spectral
s=A, 5 =—H Fig. 1).
considering special conditions [1], we construct functions
v, (s) and y_(s):

decomposition (see Now,

(=)’
(s—s3) '

s(s+s1)(s2+s2); v_(s) =
(n+s)

Checking the fulfillment of the conditions [1] for these
functions is not difficult, this fact is also confirmed by
Figure 1.

vy (s)=

Im{s]

-1 =5 =% 'y 5y

Re{s)

Figure 1 — Zeros and poles of the function v (s)/y_(s) for the
E,/E,/1 system

When constructing these functions, it is more

convenient to mark the zeros and poles of the ratio

v, (s)/y_(s) on the complex s — plane to eliminate

errors in constructing the functions vy, (s) and y_(s).

In Fig. 1, the poles are marked with crosses, and zeros are
marked with circles.

Further, using the method of spectral decomposition,
we find the constant K:

K= tim ) i (SHI)(SZ&) =07,
(n+s) M

s—>0 S s—0

where s; and s, are the absolute values of negative
roots —s;, —s, . The constant X is known to represent the

probability that a demand entering the system finds it free.
Now let us build an intermediate function

®, (5)= K _ 2s1s2(s+u)2 .
Vi(s)  pis(s+s)(s+s,)

Hence, for the system E,/E,/1, we obtain the function:

W*(S):s.q)+ (s)=%. 6)

Comparison with a similar function for the E,/E,/1
system formed by the normalized Erlang distributions
from [2] also confirms their difference:

*(s __ 515 (2p+s)2
4p2(s+s1)(s+s2)
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To find the average waiting time, we find the
derivative of the function W (s) with a minus sign at the
point s=0, for which we use the Mathcad package:

_dW(s)
d(s)

si+s 1 1 1 1
I

Sis2 K851 S M

Finally, the average waiting time for the E,/E,/1
system

— 1 1 1
W=—t—= (7)
Sp sy M
where s; and s, how the roots of the cubic equation are

expressed through the parameters of distributions (3) and
(4).

Next, consider QS, for which the distribution laws of
the input flow and service time are given by the density
functions shifted to the right:

F () =22 (1= 1)), ®)

fu(6)=p (1191710, ©)

We denote such a system E, /E; /1.

To find the average waiting time in the queue for this
system, we prove the following statement.
Statement. The spectral

F;(—S)F:(S)—l=\|I+(S)/\|/_(S) of the LIE solution

decompositions

for systems E, /E; /1 and E,/E,/1 completely coincide
and have the form (5), i.e. the spectral decomposition is
invariant to the operation of the time shift of the density
function.

Proof. The Laplace transform of functions (8) and (9),
respectively, have the form:

2 2
* A tos . * 1 —1s
F (=s)=| —— 05 Fo(s)= e .
n (75) (X sj ¢ k() [;H—sj

Then for a E;/E,;/1
decomposition will be:

2
WY+ (S) :( A jz LS B T P S
w_(s) A—s n+s

:[xﬁsjz(uisjz_l’

Here, exponents with opposite signs of exponential
functions are reset to zero, and thus the shift operation in
the spectral decomposition is leveled. Thus, the spectral
decompositions of the solution of the LIE for the two
systems under consideration coincide.

Assertion is proved.

system, the spectral
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Corollary. The formula for the average waiting time
for a system with shifted distributions will have exactly
the same form as for system with ordinary distributions,
but with changed parameters A u p due to a time shift
operation [2—6]. Consequently, the average waiting time
for systems with lag actually depends on the magnitude of
the shift parameter 7, > 0.

To determine the unknown distribution parameters,
we use the Laplace transform of function (8). The average
value of the interval between arrivals is given by the first
derivative of the Laplace transform with a minus sign at
the point s=0:

_dF; (s)
ds

02 N thoe_tos

| :022/7\,4‘2‘0.
(r+s) (+s)? |

s=0~

From here we get an expression for T, :

T, =2/h+1. (10)
From the expression
2 *
d"F, (s) :£+4t_0+t3 we find
ds? <20 2 A

2_6 . 2
T =—+4—+1 -
Iy kz 2z 0

Determine the square of the coefficient of variation

()’ 2

2
C}L = — = .
() (2+rp)?

From here the value for ¢, :

e =~N2/(2+Mp) (11)

Note that for the distribution E;: T, =2/, .¢, =1/+/2.

Comparing the results of the numerical characteristics
T,, ¢, for the distributions E, and E; you can see the
difference between them, obtained as a result of the shift
of the distribution laws by value ¢, > 0. The coefficient of
variation ¢, for the distribution E; decreases with a shift
(1+Aty/2) in times compared to the coefficient ¢, for the

distribution E,.

For the service time according to the law E,, we

obtain similar expressions for determining p and 't

?MZZ/IJ.'FtO .

(12)
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cu =2/2+n1) - (13)

By setting the values obtained above as input
parameters T, T, , ¢y, ¢, for calculating the E, /E; /1
system, as well as the shift parameter ¢, according to

expressions (10) — (13), you can calculate the average
waiting time using the calculation formula (7). In this
case, the ranges of variation of the variation coefficients
o e(O,l/\/E) and G e(O,l/\/E), are determined by

relations (11) and (13), respectively, depending on the
magnitude of the shift parameter 7, > 0.

Considering that the average waiting time in the
G/G/1 system is related to the coefficients of variation of
the time between the arrivals of customers and the service
time by a quadratic dependence, in a system with delay
the waiting time will be shorter than in a conventional
system, which is illustrated in the next section.

4 EXPERIMENTS
Below in Table 3 shows the calculation data for the

E, /E; /1 system for cases of low, medium and high
load p=0.1;0.5;0.9. For comparison, the right column

shows data for a conventional E,/E,/1 system. The load
factor in this case is determined by the ratio of the
average intervals p =7, /7, .
The calculations used the normalized service time
T,=1.
n

Table 3 — Results of experiments for QS E; /E5 /1 and

E,/E)/1
Input parameters Average delay
For QS For QS
: c
P x " fo E; /E; /1 Ey/Ey/1
0.643 0.071 0.9 0.000
0.672 0.354 0.5 0.002
0.1 0.700 0.636 0.1 0.013 0.017
0.706 0.700 | 0.01 0.016
0.389 0.071 0.9 0.001
0.530 0.354 0.5 0.081
05 0.672 0.636 0.1 0.309 0-390
0.704 0.700 | 0.01 0.382
0.134 0.071 0.9 0.034
0.389 0.354 0.5 1.057
09 0.643 0.636 0.1 3.519 4.359
0.701 0.700 | 0.01 4.271

Despite the large differences between the usual and
normalized Erlang distributions shown in Tables 1 and 2,
as well as the difference between the Laplace transforms
of the waiting time density function, the data in Table 3
completely coincide with the corresponding data for the
QS with normalized Erlang distributions E,/E,/1 [2].
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This  phenomenon, now  after  conducting
computational experiments, can be explained by the
following facts: first, the ordinary and normalized Erlang
distributions have the same coefficients of variation, and

secondly, the input parameter p = i—“ _2h X

T, 2p op
ordinary Erlang distribution completely coincides with for
the normalized Erlang distribution.

for the

5 RESULTS
In this work, spectral expansions of the solution to the
Lindley integral equation for the ordinary system and the
system with delay are obtained, with the help of which a
calculation formula for the average waiting time in the
queue for the system E,/E,/1 in closed form is derived.
This calculation formula is also valid for a system

with a time delay E; /E; /1, considering changes in the

numerical characteristics of its shifted distributions. The
average waiting time in a system with delay, as expected,
is many times less than in a conventional system, and as
the value of the shift parameter decreases, it approaches
the average waiting time in a conventional system.

The calculation data in Table 3 are in good agreement
with the results of the method of two-moment
approximation of the processes of arrival and departure of
claims [7].

6 DISCUSSION

The results of Table 3 confirm the complete adequacy
of the constructed mathematical models for the average
delay of requests in the queue for a conventional E,/E,/1
system and a system with delay. Table data 3 fully
confirm the above assumptions about the average waiting
time in a system with delay.

In addition, with a decrease in the shift parameter ¢,
the average queue delay in a system with delay tends to
the value of this time in a conventional system, which
additionally confirms the adequacy of the constructed
mathematical models for both systems under
consideration.

The range of variation of the parameters of the system
is wider than that of the conventional E,/E,/1 system,
therefore, these systems can be successfully applied in the
modern theory of teletraffic. The results of the performed
experiments confirm the expansion of the ranges of
variation of the parameters for the system with delay for

¢, and ¢, from O to 1/42.

Thus, the introduction of distributions shifted to the
right from the zero point expands the range of variation of
the coefficients of variation of the arrival intervals and
service time, thereby expanding the scope of these QSs.

Using the proposed approach, in addition to the
average waiting time, it is possible to determine the
variance and moments of higher orders of the waiting
time.
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CONCLUSIONS

In this work, the problem of deriving a formula for the
average delay of requests in the queue for the considered
systems is solved.

The scientific novelty of the results is that for the first
time the spectral decomposition of the solution of the
Lindley integral equation for the considered systems was
obtained which are used to derive expression for the
average waiting time in the queue for this system in
closed form.

These expressions complement and expands the well-
known incomplete formula for the average waiting time in
the G/G/1 systems with arbitrary laws of input flow
distribution and service time.

The practical significance of the work lies in the fact
that the obtained results can be successfully applied in the
modern theory of teletraffic, where the delays of
incoming traffic packets play a primary role. For this, it is
necessary to know the numerical characteristics of the
incoming traffic intervals and the service time at the level
of the first two moments, which does not cause
difficulties when using modern traffic analyzers [10].

Prospects for further research are seen in the
continuation of the study of systems of type G/G/1 with
other common input distributions and in expanding and
supplementing the formulas for average waiting time.
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TapacoB B. H. — 1-p TexH. Hayk, npodecop, 3aBimyBau Kadeapy mporpaMHOro 3a0e3medeHHs Ta YIPABIiHHSI B TEXHIYHHX
cuctemax [10BOJI3BKOTO IepKaBHOTO YHIBEPCUTETY TeJICKOMYHiKaliil Ta inpopmatiku, PO.

MOJEJI 3ATPUMKHU HA BA3I CHCTEM 3 3BUMAMHUAMM TA 3 3CYHYTUMU I'ITEPEKCHOHEHTHUM TA
TI'IMEPEPJTAHT'IBCBKUM BXITHUMH PO3IIOAIJIAMU

AxTyanbHicTh. {11 MOzeIOBaHHS Pi3HUX CHCTEM Iepefadi JaHuX 3aTpedyBaHi cucTeMH MacoBoro obciyrosyBanus G/G/1, ne
0COOJIMBO aKTyaJIbHO B 3B’SI3KY 3 THM, IO JUISL HUX HE iCHy€ IlIeHHS B KiHI[EBOMY BHIJISJl B 3aralbHOMY BHIAAKy. Po3ristHyTO
3a7avyy BUBEICHHS PIILICHHS JJIs CEpPEeAHBOI 3aTPUMKHU B Uep3i y 3aMKHYTiil (GopMi Ui IBOX CHUCTEM 3i 3BUYAHHUMHU i 3 3CyHYTHMH
CpJIAHTIBCHKUMI BXITHUMH PO3MOIIIAMH.

Meta po6orn. OTpuMaHHs pillIeHHS ISl OCHOBHOT XapaKTepUCTHKU CHCTEMH — CEpeIHbOI 3aTPMMKH BUMOT B 4ep3i IS JBOX
cucTeM MacoBoro oociyrosyBanHs Tuity G/G/1 3i 3BUMalHUMH 1 3 3CYHYTHMH SpPJIAHTIBCBKUMH BXiTHUMH PO3IOIiIaMH.

Mertoa. /{15 BUpIlICHHS OCTAaBJICHOTO 3aBaHHs OyB BUKOPHCTAHUH KIACUYHUI METOJ CIIEKTPaIbHOTO PO3KIAJaHHs PO3B’SA3KY
inTerpanpHoro piBHAHHA Jlinmmi. Llelt MeTox mo3BONIsIE OTpUMATH PIMICHHS Ul CEPEAHBOI 3aTPUMKHU Ui PO3TISHYTHX CHCTEM Y
3aMKHYTiH ¢opmi. g MpakTUYHOTO 3aCTOCYBaHHS OTPUMAHUX DPE3YNbTAaTiB BUKOPUCTAHHK BiIOMHH METOIN MOMEHTIB Teopii
HMOBipHOCTEH.

Pe3yasTaTn. Briepire orpuMaHo crieKTpaibHI PO3KIaJaHHS PO3B’SI3KY IHTErpaibHOTO piBHSHHS JIIHAMI UL ABOX CHCTEM, 3a
JIOTIOMOTOI0 SIKMX BUBEJICHI PO3paxyHKOBI (OPMYJIH ISl CEpeHBOI 3aTPUMKH B Yep3i B 3aMKHYTiH Gopmi.

BucnoBkn. Pi3Huus Mixk 3BUYaifHUM 1| HOpDMOBAHHM PO3IIOIUIOM HOJSTAa€E B TOMY, 110 Y HOPMOBAHOTO PO3IOALTY MaTeMaTHYHE
CIOJIBaHHs HE 3aJICKHUTh Bil MOPsAKY posnoxiny K, omke, HOpMOBaHe i 3BHuaiiHe po3noxiny Epmanra Bipi3HSIOTBCS YHCIOBUMH
XapakTepuCTHKaMu. BBeneHHs mapamerpa 3CyBy B 4Yaci B 3aKOHHM PO3IOJALTYy BXiJHOTO MOTOKY i dYacy OOCIyrOBYBaHHS [UIs
PO3IIISIHYTHX CHUCTEM, HEPETBOPIOE iX B CHCTEMH 3aIli3HEHHSM 3 MEHIIMM 4YacoM ouikyBaHHs. Lle MOB’S3aHO 3 TUM, LIO OIeparis
3CyBY B Yaci 3MEHIIy€ BEIMUYMHY KOEQilli€eHTIB Bapialiif iHTEpBaliB MiXX HAAXOIKCHHAMH BHMOT 1 IX 9acy oOCIyrOoByBaHHS, a 5K
BIZIOMO 3 Teopii MacoBOro OOCIyroByBaHHs, CEpe[HI Yac OUYiKyBaHHS BHUMOT IIOB’S3aHO 3 IMMH KoedimieHTaMH Bapiamiit
KBaJIPpaTHYHOIO 3aIEXKHICTIO. SIKIO cucTeMa 3 epiaHTiBCBKMMH BXITHHMH PO3IOAUIAMH IPYTrOro HOPSAKY IPAIo€ TUIBKH IPH
OJJHOMY TOYKOBOMY 3HaueHHI koe(ilieHTiB Bapiawiil iHTepBaJliB MiX HaJXOPKEHHSIMH BHUMOT i 1X 4acy 0oOCIyroByBaHHs, TO ISl XK
cHCTeMa 3 3CYHYTHMH DPO3IOJiIaMU JO3BOJISE ONEPyBaTH 3 IHTEPBAJIGHUMH 3HAuCHHSIMH KoeillieHTiB Bapialliif, 1m0 po3mmproe
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chepy 3acrtocyBaHHS LUX cucTeM. Takuil MiAXiAx MO3BOJSE PO3paxyBaTH CEPEIHBOI 3aTPHUMKH IS 3a3HAYCHHX CHCTEM B
MaTeMaTHYHUX MaKeTax JJisl IHPOKOTO Jiala30Hy 3MiHH MapaMeTpiB Tpadiky.

Kpim cepeqHporo yacy O4iKyBaHHS, TaKHH IiAXiJ 1a€ MOXIHMBICTh TAaKOXX BH3HAYATH MOMEHTH BHIIMX MHOPSIKIB 4acy
ouikyBaHHs. 3 OrJIsay Ha ToW (akT, IO Bapiallis 3aTPUMKH HakeTiB (JUKUTTEp) B TENCKOMYHIKallil BU3HAYAEThCS SIK JHCIEPCis
3aTPUMKH Bifl HI0r0 CepeaHbOro 3HAYEHHS, TO JHKUTTEP MOXKHa Oy/je BU3HAYUTH 4epe3 AUCIIEPCi0 3aTPUMKH.

KJIIFOYOBI CJIOBA: 3BuuaifHuii i HOpMOBaHHMH 3aKkoHH posmoniry Epmanra, inTerpansHe piBHsHHS JliHAm, MeTon
CIIEKTPAIBHOTO PO3KJIaaHHs, nepeTBopenHs Jlamaca.

YK 621.391.1:621.395

CPABHEHMUE JIBYX ®OPM 3AKOHA PACIHHPEJEJIEHUSA SPJIAHI'A B TEOPUU MACCOBOTI'O
OBCJY’KUBAHUSL

Tapaco B. H. — 1-p TexH. Hayk, mpodeccop, 3aBenyroumii kadeapold mporpaMMHOrO OOECIEYCHHS W YIpPABICHHS B
TEXHUYECKHX cucreMax IToBODKCKOTro rocyJapCTBEHHOIO YHHBEPCUTETA TEIEKOMMYHHKaUK 1 nHGopMaTHku, PO.

AHHOTAIUSA

AKTyanbHOCTb. 71 MOIENMPOBaHMS pa3NIMYHBIX CHCTEM IIepefladydl JaHHBIX BOCTPEOOBAHBI CHCTEMBI MAacCOBOTO
obciyxuanus G/G/1, 3To 0co00 aKTyanbHO B CBSI3H C TeM, YTO JUISl HUX HE CYIIECTBYET pPElIeHHs B KOHEYHOM BHIE B 0OIIEeM
ciydae. PaccMoTpeHa 3azaua BbIBOZIA PEILCHHS JUIA CPEAHEro BPEMEHU OXKMIAHMS B O4YepeIH B 3aMKHYTOH (opMme miis 0OBIYHBIX
CHCTEM C 3PJIaHTOBCKHMMHU BXOIHBIMHM DPACNpeleleHHsIMH BTOPOTO MOpsAAKAa M JIsi 3TUX K€ CHCTEM CO CIABHHYTHIMU BIIPaBO
pacnpeneneHusIMH.

Leas padotsl. [lomyueHne pemeHns A OCHOBHOM XapaKTEPUCTHKH CHCTEMBI — CPEIHETO BPEMEHHU OKUAAaHHS TPpeOOBaHUH B
odepenn Uil IBYX CHCTeM MaccoBoro obcmyxmBanus Tuma G/G/1 ¢ OOBIMHBIMH M CO CIBHUHYTBIMH DPJIAHTOBCKUMH BXOIHBIMH
pacrpeneneHusIMH.

Metoa. [lns pemeHus MOCTAaBICHHOW 3aJadd WCHOJNB30BaH METOJ CIHEKTPAIBHOTO PA3JIOKEHUs PELICHHsS HHTErpaibHOTo
ypaBHeHHUs JIMHIUH, KOTOPBIH TTO3BOJISET HOJMYYHUTh PEIISHUE JUIsl CPEAHET0 BPEMEHN OXKHIAHUS JUIS pacCMaTPHBAEMBIX CHCTEM B
3aMKHYTOH (hopme. [Iist IPaKTHUECKOTO MPUMEHEHHS MOJIyYEHHBIX Pe3yJIbTaTOB MCIOIb30BaH M3BECTHBIH METOJ MOMEHTOB TEOPHH
BEPOSITHOCTEH.

Pe3yabTathl. Briepeele MomydeHB! CIIEKTPATbHBIC PA3lI0KEHUS PEIICHUS WHTETPAIBHOTO ypaBHEHHUs JIMHIUIM UL CHCTEM C
OOBIYHBIMU M CIOBHHYTBHIMH DPAacIpefeNeHusIMH OpJaHra, ¢ IOMOIIBI0 KOTOPHIX BBIBEJECHBI PacueTHBIE (OPMYIBI IJISI CPEIHETO
BPEMEHH OKHJAHHS B OUepeH Il BBIIICYKa3aHHBIX CUCTEM B 3aMKHYTOH opme.

BroiBoasl. Pasamiia Mexxy OOBIYHBIM M HOPMHPOBAHHBIM PACIpelelIeHHEM 3aKII0YaeTcss B TOM, YTO y HOPMHPOBAHHOTO
pacrpeienieHusi MaTeMaTHIeCKOe OXKHMIAHHe He 3aBUCHT OT IIOpsIKa PacIpeeeHus, CIeI0BaTeIbHO, HOPMUPOBAHHOE U OOBITHOE
pacnpeneneHuss OpllaHra OTIMYAIOTCS YHCIOBBIMH XapaKTEepUCTHKaMH. BBeneHue mapamerpa cABUTAa BO BPEMEHH B 3aKOHBI
pacmpeneneHuss BXOJHOTO IIOTOKa M BPEMEHH OOCTYKMBAaHHS JUII PAacCMaTpUBAaEMBIX CHCTEM, IIpeoOpasyeT HX B CHCTEMBI
3ama3/bIBAHUEM C MEHBIIUM BPEMEHEM OXMAaHMsA. DTO CBSI3aHO C TEM, YTO OMNEpals CABUTA BO BPEMEHU YMEHBIIAET BEIUUUHY
K03 QULHEHTOB BapHalnii MHTEPBAJIOB MEXIY MOCTYIUICHHAMH TPEOOBAHMI M MX BPEMEHHU OOCIY)KMBAaHHMS, a KaK M3BECTHO M3
TEOPHHM MacCOBOTO OOCTY)XHBaHHSA, CPEOHEE BPeMS OXHIAHUS TpeOOBaHWI CBSI3aHO C 3TUMH KOd(PQHUIMEHTaMH Bapualui
KBaZpaTHIHON 3aBHCHMOCTHIO. EcM crucTema ¢ 3plaHrOBCKMMH BXOJHBIMH PACIpPENEICHUSIMH BTOPOTO MOPSAKAa paboTaeT TOIBKO
NP OJHOM TOUYCYHOM 3HAYEHHH KOA3()GHUIMEHTOB BapHallii MHTEPBAIOB MEXKIY IMOCTYIUICHHSMH TPeOOBaHUH M WX BPEMEHHU
00CITy’)KUBaHUs, TO 3Ta K€ CHCTEMa CO CIBHHYTBHIMH pacIpeelIeHIIMH I03BOJISCT OIEPHPOBATh C MHTEPBAIBHBIMU 3HAUYCHUSIMU
K03(GHIIMEHTOB BapHalyii, 4YTO paclIupseT 00JacTh NMPUMEHEHUS STHX CHCTeM. Takod MOIXOA TO3BOJSIET PAacCUUTATh CpelHee
BpeMsI OXKHJIaHUS U YKa3aHHBIX CHCTEM B MAaTEMAaTHYECKUX MaKeTax Ul IIMPOKOTo AHara3oHa W3MEHEHHs apaMeTpoB Tpaduka.

KJIIOYEBBIE CJIOBA: 00bluHBII M HOPMHPOBAHHBIA JPIAHTOBCKHH 3aKOHBI paclpeieieHHs, HHTErpalbHOe YpaBHEHHE
JIMHAIN, METO CIIEKTPAIbHOTO Pa3ioKeHus, IpeobpasoBanue Jlamnaca.
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