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ABSTRACT

Context. Piecewise linear approximation of curves has a large number of applications in computer algorithms, as the reconstruc-
tion of objects of complex shapes on monitors, CNC machines and 3D printers. In many cases, it is required to have the smallest
number of segments for a given accuracy.

Objective. The objective of this paper is to improve the method of asymptotically optimal piecewise linear interpolation of plane
parametric curves. This improvement is based to research influence of the method parameters and algorithms to distributions of ap-
proximation errors.

Method. An asymptotically optimal method of curves interpolation is satisfied to the condition of minimum number of approxi-
mation units. Algorithms for obtaining the values of the sequence of approximation nodes are suggested. This algorithm is based on
numerical integration of the nodes regulator function with linear and spline interpolation of its values. The method of estimating the
results of the curve approximation based on statistical processing of line segments sequence of relative errors is substantiated. Model-
ing of real curves approximation is carried out and influence of the sampling degree of integral function — the nodes regulator on
distribution parameters of errors is studied. The influence is depending on a method of integral function interpolation.

Results. Research allows to define necessary the number of discretization nodes of the integral function in practical applications.
There have been established that with enough sampling points the variance of the error’s distribution stabilizes and further increasing
this number does not significantly increase the accuracy of the curve approximation. In the case of spline interpolation of the integral
function, the values of the distribution parameters stabilized much faster, which allows to reduce the number of initial sampling
nodes by 5-6 times having similar accuracy.

Conclusions. Modelling of convex planar parametric curves reconstruction by an asymptotically optimal linear interpolation al-
gorithm showed acceptable results without exceeding the maximum errors limit in cases of a sufficient discretization of the integral
function. The prospect of further research is to reduce the computational complexity when calculating the values of the integral dis-

tribution function by numerical methods, and to use discrete analogues of derivatives in the expression of this function.
KEYWORDS: interpolation, polyline segment, linear rational B-spline, equidistant, integration, parametric curve, approxima-

tion error, variance.

ABBREVIATIONS
3D is a three-dimensional form;
LRBS is a linear rational B-spline;
CNC is a computer numerical control.

NOMENCLATURE

€ is an admissible interpolation error bound, which
corresponds to the Hausdorff distance between the curve
and the polyline;

[a] is an integer part of a;

d; is a Hausdorff distance between the curve and the j-
th segment of the polyline;

h is a sampling step;

i, j are indexes;

l;is a segment of the interpolant polyline;

m is a number of polyline segments;

N is a number of points for initial sampling of the
integral function — the nodes regulator;

p is a vector-valued function of parameter (independ-
ent variable) t;

P is a point on the curve;

t is a parameter (independent variable) varies over the
interval [0, T];

S is a reparameterization parameter that determines the

asymptotically optimal sampling of the curve;
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w; are weights of the linear rational B-spline;
X, Y are Cartesian coordinates;

dm

ax
Yj= ) Z is a relative interpolation error for j-th

segment of the polyline;
A is an interpolation error of the integral function;
Ai ix1 1s a value between 0 and 1, which determines

the value of the curve parameter L, y within the LRB-
2

spline interpolation interval;

o is a standard deviation for the sample;

0 is a sample mean;

I' is a plane curve;

A is a range of error values for the polyline segments
sequence;

d(1) is a nodes distribution function;

(1) is an integral of the distribution function which
define asymptotically optimal sampling of interpolation
nodes.

INTRODUCTION
A wide range of applications requires a transition from
“curvilinear” representation of objects to their description
in the form of polygons or segments of poylines. These
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are rendering, tessellation, finding the intersections of
curves and surfaces. Most CNC machines and 3D printers
also support only a limited set of interpolation commands,
the most common of which are linear, circular, and heli-
cal.

Therefore, the reconstruction of continuous geometric
objects, such as curves and surfaces, using computers,
CNC machines or printers requires sampling: representa-
tion as a finite set of points (nodes). This set is then con-
verted to pixels or connected by simpler lines (usually
straight lines). Of course, there is a problem of optimizing
the nodes number and their location along the curve or
surface being reconstructed.

Thus, the development of effective algorithms for re-
constructing curves by polylines, considering the accu-
racy of approximation and optimization of segments num-
ber is an actual scientific problem.

The object of study is polylines that reconstruct the
given convex plane curves and are formed from the nodes
that are on these curves.

The subject of study is the asymptotically optimal
piecewise linear interpolation of convex plane curves that
ensuring a required approximation error bound.

The aim of the work is to improve the method of as-
ymptotically optimal piecewise — linear interpolation of
convex plane parametric curves based on research of in-
fluence of parameters and algorithms of this method on
approximation errors distributions for real curves.

1 PROBLEM STATEMENT
Let a reconstructing curve is represented in the vec-
tor — valued parametric form as a single arc:

p=p() (x=x(1), y=y(1), (1)

or a piecewise parametric form, for example the spline
form:

k
S(t)= a;B;(1). )
j=1

In this case, the problem of linear interpolation of the
curve can be considered as obtaining a sequence of values
of the parameter #, which determine the polyline nodes,
and provides the required accuracy of reproduction.

Asymptotically optimal in the Hausdorff metric [1] is
the polyline interpolation of a plane curve, based on the
following choice of nodes:

1) The number of polyline segments can be deter-
mined according to the formula:

T
m= ﬁ({@(z)dz 1, 3)

where the distribution function has following form:
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1) The j-th value of the parameter — ¢, which define
the interpolation node for the curve without the inflection

points (for ®(1) %0, ¢ e [O,T ] ), is obtained from the equa-

(1) = “)

tion:

t; .T
jcb(r)dz:ijq)(t)dz, G=01..,m). (5
0 0

Since the right-hand side of the equation (5) is a
monotonic increasing discrete sequence, in the limiting
case this sequence can be considered as a variable s, and
expression (5) as an equation of reparameterization.

Let define

t
W(t) = [ ®() du, (6)
0

the dependence between the parameters will take the form
t=¥"(s), @

where W' is the inverse function of V.

It is possible to obtain the single value of ¢ only when
Y is a monotone increasing function. In addition, most
often the integral of the right-hand side of (6) has no finite
expression. This leads to sample the values of the integral
function based on the numerical integration of the right-
hand side (6).

2 REVIEW OF THE LITERATURE

Numerous studies are related to the development of
algorithms for piecewise linear reconstruction of curves.
These studies include the papers focused on interpolation
of curves when the polyline nodes are on the original
curve, and studies on the approximation of curves, which
will mean the location of these nodes and the polyline
itself within the “tolerance”, which is determined by the
accuracy of reproduction.

Non-uniform interpolation that adapts to the shape of
the curve was considered in [2]. Usually the following
procedure is performed: the original ordered set of curve
points obtained by the initial uniform sampling is taken;
the original set is divided into intervals; for each interval,
the internal nodes are checked according to the criteria of
local flatness; depending on the result of the check inter-
val is divided into two parts and followed by recursive
check, or the end points of the interval are stored in a sep-
arate list of nodes that meet the flatness criterion.

The sampling of curve points based on reparameteri-
zation depending on the curvature and mixed parameteri-
zation of the arc length and curvature with equal weights
was considered in [3]. A similar approach to the sampling
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is considered in [4], where the mixed criteria was taken as
the length of the arc and the bending energy of the curve
(which depends on the square of the curvature). These
methods [3, 4] require numerical integration and solving
the system of nonlinear equations.

A review and analysis of real time linear interpolators
for parametric curves applied to use in of CNC systems is
given in [5]. The use of a conical cutting tool for CNC
machining of free — form surfaces is also required piece-
wise linear representation of curves — [6]. The reconstruc-
tion of the curve by polygon segments in relation to the
printing of models on 3D printers was considered in [7].

The issue of reconstruction of a plane curve by a dis-
crete set of points with noise was considered in [8]. The
approach to solving the problem is based on the least
squares method and minimization of the function, which
contains a given set of points and angular coefficients of
the polyline segments, using the linear programming
methods.

In [9], the method of particle swarm optimization was
used to construct a piecewise linear approximation of
parametric curves.

The question of the best piecewise — linear approxima-
tion to the plane curve without inflection points y = f (x)
with polyline nodes that do not lie on the curve, and ex-
amples of such approximation were considered in [10].
Optimal piecewise linear approximation of a function
using GPU — based calculations applied to image segmen-
tation problems was substantiated in [11]. In this work,
error estimates when approximating a curve y = f (x) by
interpolation and approximation algorithms are proposed,
the question of the optimal curve partitioning for a given
number of nodes is considered.

A numerical method to analyze and model planar
shapes via polygonal curve evolutions is studied in [12,
13]. Consider a smooth curve each point of which moves
in the normal direction with speed equal to a function of
the curvature and curvature derivatives at the point. Cho-
sen the speed function properly, the evolving curve con-
verges to a desired shape.

Some theoretical results concerning estimate of the
Hausdorff distance between the curve and the polyline
based on the Sobolev space were considered in [14].

Algorithms for adaptive polyline interpolation of an
ordered discrete set of points, allow to dilute the original
set and obtain a polyline with fewer nodes. An overview
of these methods is given in [15].

General algorithms for asymptotic optimal interpola-
tion and approximation of curves by technological lines
(including polylines) were considered in [1]. The charac-
teristic of this approach is that it gives a polyline with the
least number of nodes. Analyzing these studies, it is pos-
sible to identify unresolved issues, namely: substantiation
of the number of points of preliminary sampling curve,
choice of numerical integration method when calculating
values of nodes regulator function, methods of its interpo-
lation, etc.
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3 MATERIALS AND METHODS
The approach to obtaining the nodes of the asymptoti-
cally optimal partition of the curve is to interpolate the
values of the integral distribution function. The following
algorithm can be proposed for this purpose.

. . T
Let’s define a step of a uniform sampling 4 = N and

then receive a set of curve points
i ;
Pi:p(ﬁ]’(lzoala""N)a (8)

corresponding to a discrete sequence of curve parameter

values Aﬁv ti:O,i,E,...,T .
N N

To obtain the wvalues of the nodes sequence

m

A! :{t;’m} (j=0,1,...,m) for the asymptotically opti-

mal partition of the curve by one of the known numerical
integration methods we obtain a sequence of values of s; =

¥ (1), t; e Aly, (i=0,1,...,N) function (6) at the nodes of

the initial uniform grid A’N. And, further, interpolate the-

se values between the nodes, we find the value of the in-
verse function #; = ¥_; (s;) with a uniform already, accord-
ing to the right part (5), the distribution of s; values from 0
to sy = g (IN)

The number of polyline segments, according to (3),
will take the form

mz{%}l. 9)

The uniform

A;, {sj, j=0, 1,...,m} is calculated by the expression

s-values  for grid  spacing

s _JIS5N (10)
m

Let define the values of the curve parameter t;

which form the asymptotically — optimal sequence of
polyline nodes. The simplest approach is to construct a
linear interpolation of the function s = W (#) by the initial

uniform grid values of ¢ — AIN . Finding the intersection of
the grid lines s = s; and the graphics of W(¥) constructed
on the grid Aﬁv, we obtain the corresponding values of

the sequence from the following expression of the inverse
dependence.

. T(sj—si)

(s;<s;<s; ,t~eAt . (11
N(S,'+1_S,') (z i+1> 4 N) ( )

S
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An alternative approach that can be proposed is inter-
polation of integral function ¥ () by a linear rational B-
spline. The principles of this approach were considered in
[16, 17]. This method provides C’ continuity at the inter-
polation nodes. In the proposed method each interpolation
interval [¢, ¢:] corresponds to the LRBS curve with an
open two-interval knot vector — [t;, #, ti1, tiv1, ti1ls
where f;1, — some internal parameter value within the
interval. The value ¢, can be determined by a coeffi-
cient A; ;11 (0 <A <1), then we define

ZH% == i) G+ A i L -

The monotonic increasing linear rational functions
that interpolate the function between the values s; =¥ (#)
and s;;; = W (t41) at the ends of the interval will take the
form:

—fortiSt<tl.+% :

w; Si(t,- )+ W, i (t-1)
B e R A
1,1+A Wi(ti+y t)+W+/(l

(12)
- fortl.+% <<ty

z+/ z+/(tt+1 D)+ wWigy Sip (- tl+/)
z+/(tz+1 D+ Wit = +/)

sl+l 1+1

2>

Having the values of the interpolated function and its
derivatives (s/, s/,1) at the ends of the interval, the coef-
ficients of the LRB — spline are defined according to the
following steps:

— the value of one of the weights according to [16] can
be taken arbitrarily — it will be a scale factor for other
weights, we are free to choose any positive value for the
first weight w; ;

— then the last weight is obtained from the expression
[16]:

(13)

Sit+l

— the value of 4; ;+; can be obtained according to [17]
as following:

1
(sl st
’ ’

Si ~Sitl

1 r_
E,HPH Si = Si+l>

! ro,
, [IpH §; ¢Si+15

(14)

}“i, i+l =
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— the value of the sy, at the internal point, will have
meet the conditions of smoothness [16]:

(1_7‘1‘ i+1)WiSi +7‘z i+1Wi+15i+1
(1 7“1 1+1)W +)"1 i+1Wi+1

Si+% = ; (15)

— the expression for the internal weight has the form:

i5:]- (16)

w. =——1[(1- W 1Sh g+ A
H_% Sial—S; l Wik 1Sinl TN i W,

Solving the equations (12) with respect to ¢, we obtain:

— fors; <s; <810
Z!

w; ti+%(sj —sl-)+wl.+% tl-(sl.+%—sl)
w; (sj—sl-)+wi+% (SH_%—Sj)

~. %

_ < < .
forsH% S S St

Si+y)+wl~+1 tHy(s,-H—sj)
H/)"' i+l (Sip1 —5;)

- Wi+% ti+l(sj -
Wi+% (S]

To estimate the modelling results and compare with
the maximum approximation error bound, the equidistant
method to the curve [1] can be used. The essence of this
method is to construct internal and external equidistant to
the reproducible curve. The method is to show con-
structed polyline together with the inner and outer equi-
distant to the curve.

The equidistant method provides the possibility of
visual control over the behavior of the polyline relative to
the limits of € — permissible “tube” for the original curve.
However, the significant disadvantages of this approach
are the impossibility of quantitative estimation of the ap-
proximation error bounds, the difficulty of visual control
for small errors and for a large number of polyline seg-
ments.

To eliminate the disadvantages of the equidistant
method, we consider the possibility of evaluation based
on quantitative characteristics of the quality of curve re-
construction. It is natural to choose as such a characteris-
tic the maximum distance d™ between the polyline seg-

.7

. £
ment /; and the corresponding curve arcI";  and to com-

t.
Jj-1

pare it with the given approximation error bound. Having

calculated these distances for the entire polyline, we ob-

tained a sequence of error values {d;{lzx} , (j=1,..., m)

where d;nax - =max{d(l“§{; ,lj)}. This sequence can
-1

be represented graphically as a bar chart, where the hori-
zontal axis represents the number of polyline segment,
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and the vertical axis — the corresponding distance ;™™
from the curve to the polyline. To simplify the compari-
son with the error limit and to be able to analyze the re-
sults obtained at different values of accuracy, we intro-
duce the concept of relative error of the segment — v;, for
which we take the ratio of the maximum distance of the
polyline segment to the approximation error bound —
y; = d™" / . This means that the values of the relative
error in the range from 0 to 1 satisfy the specified accu-
racy of the approximation, and values greater than one are
beyond the error bound.

In the case of an interpolation polyline, the start and
end points of its arbitrary segment lie on the curve and are
defined by the values of the curve parameter ¢ | and .
Thus, the arc of the curve interpolated by the current
segment is determined by the interval of the curve pa-
rameter — (t*j,l, t*j).

Therefore, the distance between the j-th segment of
the interpolation polyline and the point M (xy(f), ym(?)) on
the curve, is determined by the equation

dj(t)_‘ T}w} ‘ (18)

where 4; =y, |—y;, Bj=x;-x;4,C; =y;x; | =X;y;_.

To obtain the local extrema of function (18), we dif-
ferentiate its right-hand side by ¢ and, equaling it to zero,
we have

ij’(t) +Bjy'(t) =0. (19)

Having obtained the roots of this equation, which is
within the arc range of values, we choose the maximum
from them — d;™".

If the curve is composed of several elementary curve
arcs, the nodal points of the interpolation polyline may
belong to different components of the curves. This means
that the distance between the curve and the polyline must
be obtained among all the arcs of the curve that are within
the interpolation interval of a segment. For example, in
the case of B — spline based on an open knot vector
T (t; € [0, T]) we find the following values of the knot
vector f; > tj (for iy < l}) and tig = tj;[ (fOI' ti k1 <tj,]),
which correspond to the j-th segment of the polyline. For
each spline arc within the interval (#, ¢, ) we find the

distances according to the above algorithm — {d,rcnax}
And, then choose the
diy = max{d}cnax} .

maximum of them -

4 EXPERIMENTS
Experiments for reconstruction of curves by an as-
ymptotically optimal interpolation algorithm aimed to
investigate the influence of algorithm parameters and
methods on the quality of reconstruction results. Such
influencing factors include: the number of the initial uni-
form sampling nodes for the integral function — N, the
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error in calculating the values of the function ¥ — &%, the
interpolation method of this function.

Two plane convex curve (closed and open) were cho-
sen to the reproduction modelling. The first (Fig. 1) is a
Bezier curve of the sixth order with the coordinates of the
control polygon (0.0; 0.0), (0.55; 6.9), (11.8; 9.2), (16.5;
6.25), (22.0; 3.2), 24.5; 0.0), (18.0; —1.0). The second
(Fig. 2) is called the Pascal snail and has the following
parameters: radius of the base circle — 2.5, offset — 14.
Both curves do not contain inflection points.

In this work, we will focus on the study of the influ-
ence on the results of recconstruction the initial sampling
of the function (6) — N at a constant integration error &' .
The interpolation of the obtained values will be imple-
mented according to the linear algorithm — formula (11)
and using LRB-spline — formula (17). This will allow to
compare the results of the approximation and define the
sufficient value of the parameter N.

In [1], the following simple dependence was used to
define the value of N

N=|:l:|+1,
€

which considers only the recconstruction error bound and
does not depend on the properties of the curve itself. In
addition, this expression does not take in account how the
values of the integral function are interpolated at the in-
tervals between the sampling nodes. For the further com-
parison, we give a set of approximation error bounds and
the corresponding the number of sampling nodes, which
are calculated by (20) and summarized in Table 1.

(20)

5

Figure 1 — Bezier curve reconstructed by polylines

Figure 2 — Pascal’s snail reconstructed by polylines
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Table 1 — The value of the number of sampling nodes obtained by the expression (23)

Error bound — ¢ 0.0001 0.001 0.005 0.0075 0.01 0.025 0.05 0.1
Number of nodes
for the initial sam- 10001 1001 201 134 101 41 21 11
pling — N

For the linear method of interpolation, we take as a
basis the estimate of the error and starting from it we will
define the number of sampling points and fixe it impact
on the distribution of reconstruction errors. According to
[17], the estimate of the maximum error of linear interpo-
lation on a segment [#, 1, ;] has the form

§; = max |f(t)—L1(t)|§h2%, 21)

i—1°%

where M,; = max |f"(t)| )

i-12%

Given that we have a constant sampling step % =%

and extending the estimate to all intervals
M, = max|f”(t)| we find
T
M
N>T =2, (22)
83
For certainty, we define
M
N=|T /—2 +1. (23)
83

As follows from (23), linear interpolation has the con-
vergence order O (h%), and the error bound of linear ra-
tional interpolation was estimated in [18] as O (4°), i.e., as
a case of quadratic interpolation. The estimate of quad-
ratic interpolation has the form

NEY S

27

8; = max | f(6)—Ly(t)| <

liopol;

Ms,, (24)

where M;; = max |f’"(t)| .
i—12%
Based on this estimate, by analogy with linear interpo-
lation, we will have

6
N{T_ﬁM_]l o5)
3 )

We begin the choosing of the & value with the estimate
0 = ¢, and further, we will reduce this value by division on
2% (for linear interpolation case) and 3% (for LRBS case).
For calculating the values of the integral function ¥;, we
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use Clenshaw-Curtis quadrature with a constant value of
the integration error 8° = 0.5 10'°. To explain the recon-
struction results, we will compare the bar charts of error
distributions at different values of 6, shown on the same
scale factor — Fig. 3-6.

For the analysis of modeling data, it is more conven-
ient to present results in the form of statistical characteris-
tics of errors distributions obtained for sequences of poly-
lines segments. These characteristics are:
maximum and minimum values of the errors sequence —
Ymax> Yimin, MEAN — 0 , median, the range of errors for the
sequence of segments — A, standard deviation — . The
characteristics are presented in tables that correspond to
the approximations of the curve having a given error
bound and the same number of polyline segments. The
results are obtained for different number of the integral
function sampling nodes.

5 RESULTS

Tables 2—5 show the values of the error distribution
characteristics for the curves (Fig. 1, 2) using a linear
interpolation of the integral function (6) by expressions
(11). From the presented results it follows that at values &
=g /64 ... € /256 the segments errors are stabilized being
within the range of admissible values close to its upper
limit — 0.9... 0.98. The comparison of the sample vari-
ances for the cases € /128, & /256 and & according to the
Cochren test with a confidence level of 0.95 did not show
statistical significance. Therefore, a further increasing the
number of sampling nodes did not have a significant ef-
fect on the approximation results.

Further, we will consider the effect of the integral
function interpolation by LRB-spline and compare them
with the results already obtained by linear interpolation.

In LRBS case, we will start to change the d-value in
(25) from the estimate & = 3¢. Tables 6-9 show the results
for the interpolation of the integral function by a linear
rational B-spline under similar conditions to the linear
method. The relative approximation error according to
these  tables was  stabilized at values of
O =¢ /81 ... € /243 at values close to those observed with
the linear method. Comparison of sample variances by the
Cochren’s test starting from & = ¢ /9... € /27 did not show
statistical significance. If we also compare the results of
the corresponding tables for the linear and LRBS interpo-
lation of the integral function, it becomes clear that to
achieve the same results of approximation by the spline
method required 5—6 times fewer sampling nodes than by
the linear method.
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Table 2 — The results of the reconstruction for the curve — Fig. 1 and € = 0.001
(number of polyline segments m = 122)

Statistical char- The interpolation error of the integral function, &
lacteristic 5
€ &2 €/4 €/8 &/16 €/32 £/64 €/128 £/256 €
[Ymax 0.989389  10.98049 0.974665  10.972353 0.972083 0.971481 971236 0.971281  |0.97122 0.9712
Vimin 0.953614  10.961996  0.967626  10.969393 0.969849 0.970404  10.970604  0.97069 0.970703  10.970723
A 0.035775  10.018494  0.007039  |0.002959 0,002234 0.001077  |0.000632  [0.000591  |0,000516  [0.00047
0 0.970928  10.970915  |0.970912  |0.970915 0,970911 0.970911  0.970911  [0.970909  |0.970912  [0.97091
0.970446  10.970743  |0.97083 0.970909 0.970871 0.970897  10.9709 0.970899  10.970911  [0.97091
o 0.007305  10.00322 0.001057  10.000627 0.000401 0.000196  [0.000141  [0.000108  [0.000101  9.72 10
NV 73 102 144 203 287 K05 572 308 1143 2257
! ¥
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Figure 3 — Errors distributions for the reconstruction of the
curve — Fig. 1 (given error bound ¢ = 0.001 and 6=¢)

Figure 5 — Errors distributions for the reconstruction of the
curve — Fig. 2 (given error bound ¢ = 0.01 and 6=¢)
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Figure 4 — Errors distributions for the reconstruction of the
curve — Fig. 1 (given error bound € = 0.001 and 6=¢/64)

Figure 6 — Errors distributions for the reconstruction of
the curve — Fig. 2 (given error bound & = 0.01 and d=¢/64)

Table 3 — The results of the reconstruction for the curve — Fig. 1 and € = 0.01
(number of polyline segments m = 40)

Statistical charac- The interpolation error of the integral function, 3

teristic P &2 &/4 &/8 &/16 €32 £/64 £/128 £/256 &

Vinax 0.957806 | 0.934061 | 0.914664 | 0.908149 | 0.90704 0.905889 | 0.905787 | 0.905455 | 0.905296 | 0.905335

Vomin 0.852996 | 0.876438 | 0.894885 | 0.897718 | 0.899909 | 0.901159 | 0.901194 | 0.901487 | 0.901521 | 0.901572
A 0.10481 0.057623 | 0.019779 | 0.010431 | 0.00713 0.004729 | 0.004592 | 0.003968 | 0.003775 | 0.003763
0 0.903137 | 0.903025 | 0.902994 | 0.902989 | 0.902987 | 0.902986 | 0.902987 | 0.902987 | 0.902986 | 0.902986
median 0.900533 | 0.900686 | 0.901924 | 0.902694 | 0.902683 | 0.902828 | 0.902873 | 0.902906 | 0.902914 | 0.902931
c 0.022944 | 0.011551 | 0.004583 | 0.002402 | 0.001687 | 0.00108 0.001008 | 0.000904 | 0.000875 | 0.000853

N 24 33 47 65 92 129 182 257 362 639
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Table 4 — The results of the reconstruction for the curve — Fig. 2 and € = 0.001
(number of polyline segments m = 286)

Statistical The interpolation error of the integral function, &
characteristic | 2 €/4 /8 €/16 €/32 £/64 /128 £/256 ¢
Vinax 1.00654 0.99826 0.99214 0.98935 0.98913 0.98854 0.98828 0.98822 0.98821 0.98821
Ymin 0.9693 0.97773 0.98395 0.98678 0.98681 0.98743 0.98768 0.98769 0.98773 0.98774
A 0.03724 0.02053 0.00819 0.00257 0,00232 | 0,00111 0.0006 0.00053 0.00048 0.00047
0 0.98798 0.987977 0.98797 0.987955 | 0.98797 | 0.987969 | 0.987963 | 0.987971 0.987967 | 0.987966
median 0.98799 0.98798 0.987935 | 0.98798 0.98798 | 0.98796 0.98796 0.98796 0.98797 0.98797
o 0.006474 | 0.003764 0.001683 | 0.00052 0.00035 0.000216 | 0.000121 8.5610° 74710° | 6.9610°
N 87 122 172 243 343 484 684 966 1366 7627
Table 5 — The results of the reconstruction for the curve — Fig. 2 and € = 0.01
(number of polyline segments m = 91)
HaiimenyBaHHs The interpolation error of the integral function, &
TIOKa3HHUKa € €/2 €/4 e/8 €/16 €/32 £/64 €/128 £/256 g
Vinax 1.031872 | 0.999084 | 0.988514 | 0.979086 | 0.978574 | 0.977092 | 0.976432 | 0.976231 | 0.975974 | 0.975947
Vimin 0.918589 | 0.953424 | 0.964541 | 0.971311 | 0,972784 | 0,974536 | 0.975064 | 0.975238 | 0.975292 | 0.975361
A 0.113283 | 0.04566 0.023973 | 0.007775 | 0.00579 0.002556 | 0.001368 | 0.000993 | 0.000682 | 0.000586
0 0.975881 | 0.975812 | 0.975791 | 0.975784 | 0.975784 | 0.975783 | 0.975783 | 0.975783 | 0.975783 | 0.975783
median 0.975494 | 0.975934 | 0.975165 | 0.976036 | 0.975893 | 0.97578 0.975793 | 0.975794 | 0.975787 | 0.975783
c 0.019654 | 0.010643 0.005374 | 0.001766 | 0.001046 | 0.00058 0.000264 | 0.000185 | 0.000101 | 910~
N 28 40 55 78 109 154 217 307 433 764
Table 6 — The results of the reconstruction for the curve — Fig. 1 and & = 0.001
(number of polyline segments m = 122)
Statistical The interpolation error of the integral function, §
characteristic 3¢ £ €/3 €/9 /27 /81 £/243 g
Vinax 0.973099 | 0.972094 | 0.971562 | 0.971373 0.9713 0.971228 | 0.971232 0.971195
Vmin 0.967027 | 0.969814 | 0.97064 0.970705 0.970726 | 0.970728 | 0.970705 0.970729
A 0.006072 | 0.00228 0.000922 | 0.000667 0.000574 | 0.000501 | 0.000527 0.000466
0 0.97091 0.970914 | 0.970913 | 0.970914 0.970912 | 0.970914 | 0.970914 0,970911
median 0.970872 | 0.970909 | 0.970898 | 0.970908 0.97091 | 0.970909 | 0.970909 0.970908
c 0.000701 0.000306 | 0.000148 | 0.000109 0.000102 | 0.0001 9.83E-05 9.5210°
N 28 40 57 81 116 167 240 3817
Table 7 — The results of the reconstruction for the curve — Fig. 1 and € = 0.01
(number of polyline segments m = 40)
Statistical The interpolation error of the integral function, &
characteristic | 3g € €3 /9 €27 /81 £/243 g
Ymax 0.911873 | 0.908855 | 0.906987 | 0.90518 0.905401052 0.905290953 0.905338795 0.905324594
Yimin 0.898304 | 0.900459 | 0.901631 | 0.901539 | 0.901569423 0.901586084 0.901585175 0.901584787
A 0.013569 | 0.008397 | 0.005356 | 0.003642 | 0.003831629 0.003704868 0.003753621 0.003739807
0 0.902988 | 0.902987 | 0.902986 | 0.902986 | 0.902986498 0.902986386 0.902986403 0.902986184
median 0.902984 | 0.902739 | 0.902931 | 0.90293 0.902928449 0.902927493 0.902928085 0.90292768
c 0.002580 | 0.00162 0.001009 | 0.000847 | 0.00084955 0.000845842 0.000845356 0.000845317
N 14 19 27 38 55 78 112 383
Table 8 — The results of the reconstruction for the curve — Fig. 2 and € = 0.001
(number of polyline segments m = 286)
Statistical The interpolation error of the integral function, &
characteristic | 5 e e/3 &/9 &27 &/81 €243 &
Yo 0.9911 0.98927 0.98829 0.98823 0.98822 0.98823 0.98823 0.98823
Vmin 0.98623 0.98716 0.9876 0.98773 0.98772 0.98772 0.98772 0.98772
A 0.00487 0.00211 0.00069 0.0005 0.0005 0.00051 0.00051 0.00051
6 0.98797011 | 0.987963007 | 0.98797035 | 0.98796374 | 0.987962657 | 0.98796965 0.987970105 | 0.987969231
median 0.988075 0.98801 0.98799 0.98797 0.98797 0.98797 0.98797 0.98797
o 0.000535 0.000254 0.000113 8.0278 10~ | 7.86862 10~ | 7.74136 10~ | 7.21426 10° | 6.92676 10~
N 28 40 57 82 118 169 243 3872
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(number of polyline segments m = 91)

Table 9 — The results of the reconstruction for the curve — Fig. 2 and € = 0.01

Statistical The interpolation error of the integral function, &
characteristic | 3 € &3 €9 €27 &/81 £/243 &
Vimax 0.984439 0.980645 0.977005 0.976055 0.975935 0.975909 0.975911 0.975908
Vrmin 0.968286 0.972696 0.973873 0.975333 0.975368 0.975312 0.975367 0.975367
A 0.016153 0.007949 0.003132 0.000722 0.000567 0.000597 0.000544 0.000541
6 0,975784121 | 0.975783604 | 0.975782813 | 0.975783154 | 0.975783374 | 0.975782956 | 0.975783121 | 0.975782791
median 0.976166 0.976035 0,975893 0.97582 0.975794 0.975785 0.975783 0.975781
o 0.002169927 | 0.001081117 | 0.00042438 0.000149687 | 9.17794 10° | 8.61524 10 | 8.52029 10 | 8.50578 10°°
N 14 19 27 39 55 79 114 389
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Figure 7 — Dependencies of sample variance on the ratio of the
number of function sampling nodes N to the number of ap-
proximation polyline segments m for reconstructing the curve —
Fig. 1 with tolerance £=0.001
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Figure 8 — Dependencies of sample variance on the ratio of the
number of function sampling nodes N to the number of ap-
proximation polyline segments m for reconstructing the curve —
Fig. 1with tolerance £€=0.01
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Figure 9 — Dependencies of sample variance on the ratio of the
number of function sampling nodes N to the number of ap-
proximation polyline segments m for reconstructing the curve —
Fig. 2 with tolerance €=0.001
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Figure 10 — Dependencies of sample variance on the ratio of
the number of function sampling nodes N to the number of
approximation polyline segments m for reconstructing the
curve — Fig. 2 with tolerance £€=0.01

6 DISCUSSION
In more detail to see the difference between the two
interpolation methods of the integral function (linear and
LRBS), we compare the dependence of 6> on a number of
sampling nodes. To reduce the effect of a given approxi-
mation error g, we will determine the dependence on the
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ratio of the number N of sampling points to the number of
approximation segments m. On Fig. 7-10 we present
these dependencies. It follows from these graphics that
the rate of variance decreases when the nodes number
ratio increasing was different for linear and for LRBS
interpolations. This is confirmed by the fact that the ap-
proximation errors for LRBS interpolation were stabilized
at the ratio up to 1 + 2 N/m (for the linear method at the
ratio 5 + 7 N/m).

Comparison of sampling node numbers for expres-
sions (20) and (24), (25) shows that formula (20) can give
both increased and decreased number of sampling points
relative to the stabilization values (see Tables 2-9).

The experiments also showed the suitability of the
models for the reconstruction of real parametric curves.
The approximation error of polyline was stabilized at the
level 90-98 percent of the error bound. This indicates that
the asymptotically optimal algorithm pro-vides an error
close to the upper limit of the error bound and the small-
est number of the polyline segments.

CONCLUSIONS

The simulation of the reconstruction of convex plane
parametric curves by an asymptotically optimal linear
interpolation algorithm showed quite acceptable results
without exceeding the approximation error bound in cases
of a sufficient number of integral function sampling
nodes.

The scientific novelty of obtained results is to identify
the influence of increasing the number of the initial sam-
pling of the integral function — the regulator on the quality
of curves reconstruction. The effect is to improve the
characteristics of approximation error distribution for the
polyline segments sequence, namely, to reduce the varia-
tion of the error series, which corresponds to the stabiliza-
tion of the error values around the mean value. Experi-
mentally, it was confirmed that the increase in the number
of integral function sampling nodes is bounded by the
values of stabilization, after which the differences be-
tween the variances are not statistically significant. For
the first time in the asymptotically optimal algorithm,
LRBS interpolation of the integral function was used,
which allows to significantly reduce (by 5 = 6 times) the
number of sampling nodes and related calculations.

The practical significance of the work is to clarify
and refine the parameters of the asymptotically optimal
interpolation algorithm, which affects the results of curve
reconstruction.
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MOJEJIOBAHHS ACUMIITOTUYHO-ONTUMAJIBHOI KYCKOBO-JIIHIMHOI IHTEPHOJISIIII IIJIOCKUX
MMAPAMETPUYHHNX KPUBUX
®poaos O. B. — kaH/. TeXH. HAYK, JOICHT, JOICHT Kadeapu iHPpopMaliiHUX crucTeM XapKiBChbKOTO HAIIOHAJIBHOTO TEXHIYHOTO
yniBepcutety im. C. Ky3neus, XapkiB, YkpaiHa.
JloceB M. IO. — kaHz. TexH. HAyK, IOLEHT, TOLUCHT Kadeapu iHpopmauiiiHux cucteM XapKiBCHKOTO HalliOHAIBHOTO EKOHOMIY-
Horo yHiBepcurety iMeHi Cemena Kysnens, Xapkis, YkpaiHa.

AHOTAIIA

AKTyalIbHiCTB. ANIpOKCHMAITisl KPUBHX JJAMAaHUMH IIPUBEPTAE yBAry 3 METOIO ii 3aCTOCYBaHHS 10 BIITBOPEHHS 00’€KTIiB CKIIaJ-
Hoi opmu Ha koM 'toTepi, Bepcrarax 3 UIIK Ta 3D npuntepax. [Ipu upomy 6akaHo MaTy HaiiMEHIIy KUIBKICTb JJAHOK JIAMaHOT, 110
3aMiHIOE KPHBY, 31 30epEKECHHAM HEOOXiJHOT TOUHOCTI BiZITBOPEHHS.

Merta. BaockoHaneHHsI METOy aCHMITOTHYHO ONTHUMANIBHOT KyCKOBO-JIHIHHOT IHTEPHOMALIT IJIOCKUX MapaMeTPHYHUX KPHBHX
Ha OCHOBI JJOCJTI/DKEHHS BIUIMBY HOTO MapaMeTpiB Ta aICOPUTMIB Ha PO3IO/IiIH HOXHOOK anpoKCUMAIi]l peallbHUX KPUBHX JIHIH.

Meton. B po6oTi po3risiiaeTbesi aCHMIITOYHO-ONITUMAIbHA IHTEPIOJSIIS TNIOCKUX KPUBHUX, SIKi 3aJOBOJBHAIOTH YMOBI MiHiMa-
JIBHOCTI KUTBKOCTI JIAaHOK arpoKkcuMariii. byiio 3anponoHoBaHO anropuTMH OTPUMAaHHs 3HAYCHb MOCTIIOBHOCTI BY3JIiB alpoKcHMAIii
Ha OCHOBI YHCEJIBHOTO IHTETpYBaHHS (QYHKILII — PEryssTopa 3 MOAANBIIO0 JIHIHHOIO Ta CINIAHHOBOIO IHTEPIIOJALIEO ii 3HAYCHB.
OOrpyHTOBaHO METOJHKY OLIHKH Pe3yJIbTaTiB MOJCIIOBAHHS allpOKCHUMAIIi] peaJbHUX KPHUBHUX, IO 0a3y€ThCsl Ha CTATUCTHUHIN 00-
pobui psmiB BITHOCHHUX MOXMOOK JIaHOK JlamaHoi. [IpoBeneHo MoenoBaHHS alpoKCHMaii peabHUX KPUBHUX Ta JOCII/PKEHO BIIUB
Ha MOKa3HUKH PO3IOALTY MOXMOOK KUIBKICHOI XapaKTepHCTHKHU CTYIICHIO AUCKpeTH3aLil inTerpanbHol GyHKIIT — peryistopa By3iiB
B 3JIOXKHOCTI BiJl METOy IHTEPHOJIALIT 3HAYEeHb iIHTErpabHOT QyHKIIT.

PesyabraTn. [IpoBeneHi 10CHiIKeHHs JO3BOJIMIN BUSIBUTH BIUIMB TIEPBICHOT qUCKpeTH3alii iHTerpanbHol QyHKIIT — peryssropa
BY3JIiB Ha SIKICTh BIATBOPEHHSI KPUBUX JIAMAHHUMH 32 aCHMITOTHYHO ONTUMAJIbHUM aIrOPUTMOM Ta MOXJIMBOCTI BU3HAYCHHS paLio-
HAJIBHOTO CTYICHIO THCKPETU3allii IMpH MPaKTHIHUX PO3paxyHKax I BiATBOpPEeHHS BHpOOIB ckimamgHoi ¢opmu. BeranosieHo, mio
MIPY AOCTATHIA KITBKOCTI TOYOK AMCKPETHU3AIIT JUCIIEPCis pO3MOILTY TOXHOOK ampoKCHMAIlil cTabimi3yeThes 1 30UIBIICHHS i€l KiTb-
KOCTI Ha IOPSIOK HEe 3HAYHO IMiJBHINY€E TOYHICTh BiATBOpEHHS KpuBOi. [Ipn nmboMy crutaiiHOBa iHTEepIIOJIALis 3HAUCHB IHTETPaIbHOT
¢yHKOii gaBana 3HAUYHO OUTBIIY IIBUIKICTH crabumizamii 3HaYeHb MapaMeTpiB PO3MOALTIB, IO JO3BOJISIE 3HU3UTH KUTBKICTH BY3IIB
HepBiCHOT TUCKpeTH3alii y 5—6 pa3iB Marouy aHAJIOTIYHI HOKa3HUKH TOYHOCTI arpoOKCUMAILiT.

BucHoBkH. BiATBOpeHHs peanbHHX IUIOCKUX IapaMETPUYHUX KPUBHX OIYKJI0l (OpMM JlaMaHMMM 32 ACHMITOTHYHO-
ONTUMAJILHUM QJITOPUTMOM IHTEPIOJIALIT 10KA3aJI0 LINIKOM IPUIHATHI pe3yabTaTH 0e3 NepeBHILEeHHS JOIyCTUMOI OXUOKH anpok-
cuMalii y BUHaJAKax JOCTaTHBOIO CTYICHIO JAMCKPETH3allil 3HaueHb iHTerpanbHol QyHkuii. HanmpsMkamu momamblinx IOCIHIIKEHb
MOKe OyTH AOCIiIKCHHS MOKIIMBOCTI CIPOIICHHS PO3paxyHKIB IPH OOYHCICHH] 3HaUeHb 1HTETpaitbHOi (PyHKIIT pO3MOaiTy Yuceb-
HUMH METOJIaMH, & TAKOXX MOYJIMBOCTI BUKOPUCTAHHS AMCKPETHUX aHAJIOTIB MOXIAHUX Y BUpa3i i€l QyHKIII.

KJIIOYOBI CJIOBA: inTepnossmis, JaMaHa, eKBiIUCTaHTa, IHTETPyBaHHs, INIOCKA ITapaMeTpUYHa KpPUBa, IIOXHOKA.
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MOJIEJTJMPOBAHUE ACUMIITOTHYHO-ONTUMAJBHOM KYCOYHO-TUHEHNHOW HHTEPIOJISILAA
IIVNIOCKUX MIAPAMETPUYECKHUX KPUBBIX
®posaos O. B. — kaHA. TeXH. HayK, AOIEHT, AOIEHT Kadeapsl MHPOPMAMOHHBIX cHCTeM XapbKOBCKOTO HAMOHAIBHOTO KO-
HOoMu4eckoro yauepcureta uM. C. Ky3Hena, XapekoB, Ykpaunsa.
JloceB M. IO. — xaHz. TeXH. HayK, TOLEHT, JOUECHT Kadeapbl HHPOPMAIIMOHHBIX CHCTEM XapbKOBCKOTO HAI[MOHAIBHOTO YKOHO-
muyeckoro yuusepcurera umenu Cemena Kysnena, XappkoB, Ykpauna.

AHHOTANUA

AKTYaJIbHOCTD.. ANINIPOKCUMAIVSI KPUBBIX JIOMaHBIMH MPUBJIEKAET BHUMAaHHUE C LIEJIBIO €€ MPUMEHEHHS K BOCCTAHOBJIEHHIO 00b-
eKTOB CJIOKHOH (hopMbl Ha KommbioTepe, ctankax ¢ YITY u 3D npunrtepax. [Ipu 3ToM kenaTenbHO HMETh HAMMEHbIIIeE KOJINYECTBO
3BEHBEB JIOMAHOH, 3aMEHSIOMIEH KPUBYIO, C COXpaHEHHEM HEO0OXO0MMOI TOUHOCTH aNMPOKCHMALIUH.

Leapb. CoBepHIeHCTBOBAHNE METOJAa ACHMITOTHYECKH ONTUMANBHOM KyCOYHO-TMHEHHOW MHTEPIONSANUH IUIOCKUX MapaMeTpH-
YEeCKUX KPUBBIX Ha OCHOBE HCCIEIOBAHHS BIHMSHHS €0 TapaMETPOB U ATOPUTMOB Ha PacIpeeleHus MOTPENTHOCTEH IPH aIllIpoOK-
CHUMallUM PEaIbHBIX KPUBbIX JIMHUM.

Metoa. B paGore paccMaTrpuBaeTcs aCHMITOYHO-ONTHMAIbHAS HHTEPIIOISIIUS INIOCKUX KPUBBIX, yJIOBIETBOPSIONINX YCIOBHUIO
MUHHMMAJIbHOCTH KOJIMYECTBA 3B€HbEB alIPOKCUMALUU. Bbulo mpeioskeHs! alropuTMbl IOJIyUeHHs 3HAaUEHUH 110CIIeJ0BaTeIbHOCTH
y3JIOB alNpPOKCUMAIMY Ha OCHOBE YMCIICHHOTO MHTErpupoBaHMs QYHKIIMU — PEryJsITopa ¢ MOCeyIomel TMHeWHOH 1 CrilailHOBO#
HHTEpHONANUN ee 3HaueHuil. O60CHOBaHa METOAWKA OLIEHKH PEe3yJIbTaTOB MOJETHPOBAHUS AMIpPOKCUMAIMU PEANbHBIX KPHUBBIX,
OCHOBAHHBII Ha CTaTUCTHYECKOH 00pabOTKe MOCIe0BaTeIbHOCTEH OTHOCUTEIBHBIX MOTPEIIHOCTEH 3BeHbeB ToMaHou. [IpoBeneHo
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MOJIEJIMPOBAHUE aNMPOKCUMAIUK PEaJbHBIX KPUBBIX U UCCIIEJOBAHO BIMSHHUE HA MOKA3aTeIN PacIlpeesIeHus OTrpelHoCTel KoIu-
YECTBECHHOM XapaKTEPUCTUKU CTCIICHU JUCKPETU3AIMH UHTEIPATLHON (QYHKIUH — PETYJISITOpa Y3JI0B B 3aBUCUMOCTH OT METOJIa UH-
TEPIOJISIIIAY 3HAYCHU I HHTErPAIbHON (DyHKIIHH.

PesyabTatel. [IpoBeneHHble HCCIENOBAaHHS IO3BOJMIM BBIABUTH BIMSHHE MEPBOHAYAIBHOW AMCKPETH3ALUU HHTETPANbHON
(YHKLIUH — PETYJIATOpa Y3JI0B HA KaYeCTBO BOCCTAHOBIICHUS KPUBBIX JIOMAaHBIMH U BO3MOXHOCTH OIIPEIETICHUS PALlMOHATIBHOM cTe-
MIEHH JUCKPETU3AINU P MPAKTUICCKUX PacdeTax sl BOCIIPOU3BEACHUS U3ICTHIA CIOKHON GOPMBL. Y CTAaHOBIICHO, YTO TPH JOCTA-
TOYHOM KOJIMYECTBE TOUCK NUCKPETU3AIMU JUCIICPCHs PacIpelesIeHHs TOTPEUIHOCTEH anmpoKCHMAIiK CTaOWIN3UPYETCS U YBEIH-
YeHHE TOr0 KOJIMYECTBA HA IMOPSAAOK HE3HAYMTEIHHO MOBBIIIAET TOYHOCTh BOCIpOU3BeNeHUs KpuBoil. [Ipu sToM crutaiiHoBast vH-
TEPIOJISIIUS 3HAYCHUH MHTETPaJbHOW (DYHKIMU JaBajia 3HAYUTEIHHO OOJIBIIYI0 CKOPOCTh CTAOWIHM3allMM 3HAYCHWH MapaMeTpoB
pacrpeieneHuid, 4To M03BOJISIET CHU3UTh KOJIMYECTBO Y3JIOB [IEPBOHAYATILHON AUCKPETH3AMH B 5—6 pa3 uMes aHAJIOTHYHbIE TT0Ka3a-
TEJIM TOYHOCTH arMpOKCUMAIIH.

BriBoabl. BoccraHoBneHHe peaibHBIX INIOCKHX MAPAMETPUYECKUX KPHUBBIX BBIMYKIOH (OPMBI IOMAHBIMU TIPH TIOMOIH aCHM-
NTOTHYECKU-ONTUMAILHOTO aJITOPUTMa MHTEPIOJIALMH [IOKA3al0 BIIOJIHE MIPUEMIIEMbIE PE3yJIbTaThl 03 MPEBBIMICHUS T0IyCTUMOM
MOTPEIIHOCTH ANMPOKCHMAIH B CIy4asX JOCTATOYHOW CTCTNEHW AMCKPETH3AllMU 3HAYCHUI MHTerpaibHoil (yHkuun. Hampasie-
HUSIMH JaJTbHEHIINX HCCIEIOBAaHUN MOKET CITY>)KUTh UCCIIEIOBaHNE BO3MOKHOCTH YIPOLIEHHUS PAcYeTOB MPU BHIYUCICHUN 3HAYCHUAN
MHTETPATLHONH (QYHKIWU PacHpe/ICICHUs] YACICHHBIMA METOJaMH, a TaK)Ke BO3MOXKHOCTH HCIOJIB30BaHUS TUCKPETHBIX aHAJIOTOB
MIPOM3BOHBIX B BEIPAKCHHU 3TOUW (DYHKIIUH.

KJIIOYEBBIE CJIOBA: untepnossiuus, JoOMaHasi, SKBUJUCTaHTa, UHTEIPUPOBAHUS, TUIOCKas MapaMeTpudeckasl KpuBas, Io-
PEUIHOCTb.
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