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ABSTRACT

Context. A model and training method for observational context classification in CCTV sewer inspection vide frames was
developed and researched. The object of research is the process of detection of temporal-spatial context during CCTV sewer
inspections. The subjects of the research are machine learning model and training method for classification analysis of CCTV video
sequences under the limited and imbalanced training dataset constraint.

Objective. Stated research goal is to develop an efficient context classifier model and training algorithm for CCTV sewer
inspection video frames under the constraint of the limited and imbalanced labeled training set.

Methods. The four-stage training algorithm of the classifier is proposed. The first stage involves training with soft triplet loss and
regularisation component which penalises the network’s binary output code rounding error. The next stage is needed to determine the
binary code for each class according to the principles of error-correcting output codes with accounting for intra- and interclass
relationship. The resulting reference vector for each class is then used as a sample label for the future training with Joint Binary
Cross Entropy Loss. The last machine learning stage is related to decision rule parameter optimization according to the information
criteria to determine the boundaries of deviation of binary representation of observations for each class from the corresponding
reference vector. A 2D convolutional frame feature extractor combined with the temporal network for inter-frame dependency
analysis is considered. Variants with 1D Dilated Regular Convolutional Network, 1D Dilated Causal Convolutional Network, LSTM
Network, GRU Network are considered. Model efficiency comparison is made on the basis of micro averaged F1 score calculated on
the test dataset.

Results. Results obtained on the dataset provided by Ace Pipe Cleaning, Inc confirm the suitability of the model and method for
practical use, the resulting accuracy equals 92%. Comparison of the training outcome with the proposed method against the
conventional methods indicated a 4% advantage in micro averaged F1 score. Further analysis of the confusion matrix had shown that
the most significant increase in accuracy in comparison with the conventional methods is achieved for complex classes which
combine both camera orientation and the sewer pipe construction features.

Conclusions. The scientific novelty of the work lies in the new models and methods of classification analysis of the temporal-
spatial context when automating CCTV sewer inspections under imbalanced and limited training dataset conditions. Training results
obtained with the proposed method were compared with the results obtained with the conventional method. The proposed method
showed 4% advantage in micro averaged F1 score.

It had been empirically proven that the use of the regular convolutional temporal network architecture is the most efficient in
utilizing inter-frame dependencies. Resulting accuracy is suitable for practical use, as the additional error correction can be made by
using the odometer data.

KEYWORDS: Sewer pipe inspection, convolutional neural network, error-correction output codes, Siamese network,
Information-Extreme Learning, information criterion, LSTM, GRU.

ABBREVIATIONS lyk is a v-th set of ordered video frame sequences
BB is a Building Block;
CNN is a Convolutional Neural Network;
GRU is a Gated Recurrent Unit;

for training;
Ly is a v-th set of ordered labels of video frame

LSTM is a Long Short-Term Memory; sequences for training;

MSCC is a Manual of Sewer Condition Classification; . V is a number of labeled frame sequences for
PACP is a Pipeline Assessment Certification Program;  training;

SLAM is a Simultaneous Localization and Mapping; W is a number of labeled frame sequences for
TCN is a Temporal Convolutional Network; testing;

1D is a One-Dimensional space; K, is a size of v -th set for training;

2D is a Two-Dimensional space. K, is a size of w -th set for testing;

NOMENCLATURE N is a size of high-level feature set;

train . . Z is asize of set of classes;
D, " is the labeled frame sequences for training;

D is the labeled frame sequences for testing;
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e, is a &, -th parameter which impacts on feature

&

representation, & =1, ;

f

., 1s a &, -th parameter which impacts on efficiency

of decision rules, &, =1,Z, ;

TP, is a numbers of true positives for decision rule of
z-th class;

FP, is a numbers of false positives for decision rule
of z-th class;

FN, is a numbers of false negatives for decision rule
of z-th class;

b: is a binary reference vector (center of optimal

container) for class X, ;

* . . . . .
d, is a radius of optimal container for class X in

Hamming distance units;
f(x) is a function describing the feature extractor;

X, 1s a image randomly selected from the mini-batch;

a

Xep Is a nearest neighbour in the minibatch belonging

to the same class;

C(x) is a function returning the image class;

X¢hn 1S @ sample image from the mini-batch which is
the closest among the samples of opposite classes, but

located further than hard negative sample;

e is a single column matrix, e =[L, 1, ..., I]T ;

A is a regularization coefficient;

f,(x) is a the value of sigmoid layer output i for input
image;

b,; is a value of i-th bit of the reference vector of the

z-th class to which the image x belongs;

E, is a Z-class information criteria, a function of the

accuracy characteristics;

agk) is a false postive rate on k-th traning step for z-th

class;

ng) is a false negative rate on k-th traning step for
z-th class;

ngz) is a true positive rate or sensitivity on K-th
traning step for z-th class;
D(zkz) is a true negative rate or specificity on k-th

traning step for z-th class;

d is a distance measure defining the hyperspherical
container radii in the radial basis of Hamming space;

{d} is a set of concentric radii of data distribution in
class z with the centre b, .

INTRODUCTION
Sewer pipes are critical infrastructure items which
require frequent monitoring. The most widely used
method for analysis of sewer pipe conditions involves the
CCTV inspection of the pipes view to identify the defects

and faults inside the pipe. Each of the detected defects
and faults is assigned a standardised code in accordance
with the applicable local standards, among which the
most common are the British MSCC5 and American
PACP6 or PACP7 [1].

The preparation of a report on the condition of
inspected sewer pipes in accordance with the standards
requires careful examination and detailed analysis of the
collected CCTV inspection videos. The use of computer
vision and machine learning techniques for CCTV
inspection footage analysis can increase productivity and
reduce costs [2].

To achieve the correct defect coding it is necessary to
have information about the location, orientation, shape,
severity and proximity of the defect to the upstream and
downstream manholes and sewer line branches
(laterals/service connections/taps). In turn, contextual data
on the orientation and relative location of the inspection
camera in the pipe is needed to extract such information.
Such data, however, as a rule is not available in the
explicit form. This makes observation context recognition
a relevant task.

Orientation and relative position of the camera can be
determined with the help of visual odometry or
simultaneous localization and mapping (SLAM) methods
[3]. However, CCTV inspection videos generally already
contain superimposed distance readings measured by a
mechanical odometer. Correct defect coding also does not
require high degree of precision in respect of the camera
optical axis angle and relative position in relation to the to
the center of the pipe. Employing a computationally
efficient frame sequence classifier to estimate the camera
orientation instead of computationally complex SLAM
algorithms is therefore more appropriate. In this case
alphabet of classes can be expanded to include various
non-standard situations which need to be processed
correctly.

A modern approach to the classification analysis of the
sequence of video frames involves the use of deep neural
networks. Important steps in the classification analysis of
individual video frames or their sequences are the feature
descriptions of both individual frames and the
relationships between them, as it has a direct bearing on
the effectiveness of the resulting decision rules.

Convolutional neural networks are still the most
effective approach to image feature description at present.
Where the analysis of time series is concerned, the
undisputed leaders are recurrent and temporal
convolutional networks, dilated versions of which provide
a speed advantage without information loss [4]. The end
results, however, depend not only on the architecture of
the model, but also on the methods of machine learning
and regularization employed. This is especially true where
the labelled training dataset is small and variability of
observations is high. The study of the effectiveness of
different model architectures and training methods for
specific applications thus remains a relevant task, as no
single universal approach to data analysis exists and
steady emergence of new research continually changes
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the paradigm, forcing a rethink of the current body of
knowledge and highlight new directions for further
research.

The research goal is development of an effective
deep learning model and its training method for
recognizing the context of observations during CCTV
sewer inspection. The object of research is the process
of detection of temporal-spatial context during CCTV
sewer inspections. The subjects of the research are
machine learning model and training method for
classification analysis of CCTV video sequences under
the limited and imbalanced training dataset constraint.

1 PROBLEM STATEMENT

Let V  sequences D\t/rain ={lyx Ly lv=LV;

k=1,K,} and W sequences DI ={ Tk Lk |

w=LW ;k=1LK,} are collected of labeled video
frames for training and testing, respectively. Let the set

{x§ |z= I,_Z} is characterized by observation context in

pipe, be given. In this case, the dataset is unbalanced, the
minority class can contain twice as many samples as the
majority.

Moreover, the structure of the vector of model
parameters is known

g =< el""’efl""’e31’ fl,..., ffz’"" sz > (1)

1 +5,=E.

In this case, the constraints Rgl (el,...,egl,...,eal)g 0,
Re, (fis-es fe 5o f5,) <0 are impose on parameters.

It is necessary to find by machine learning an optimal
values of parameters g (1) which provide to achieve the

maximum value of micro averaged F1 score for context
classifier

A
2> TP,
Fi= z

z z Z ’ )
2> TP, + Y FP, + 3 FN,
z z z

g*=argrnélx{Fl(g)}. 3)

When the model functions in its inference mode, it is
necessary to provide high confidence of classification of
frame context on test images.

2 REVIEW OF THE LITERATURE

Early algorithms for CCTV sewer inspection video
frames classification analysis employed edge and contour
detection methods for feature description [5]. Such an
approach, however, ignores a large amount of contextual
information and necessitates particular attention to the
design of a post-processing algorithm. An algorithm of
this kind would require a large number of handcrafted
parameters and conditions, which can lead to

incompleteness of decision rules or contradictions
between them due to the human error. Gabor filters offer
a more flexible and theoretically sound approach to visual
feature extraction [6]. However, models of this type are
characterized by insufficient information capacity for
computationally efficient description of contexts under
conditions of complex defect and/or design features
combinations.

Much progress in the field of visual data analysis had
been achieved within the framework of the deep machine
learning, based on hierarchical feature description. A
distinguishing feature of hierarchical feature extractors is
their higher information capacity in comparison to models
with one hidden layer [7, 8]. At present deep
convolutional neural networks are still considered the
most effective for image feature description [8]. In the
field of time-series analysis, the leading positions are
occupied by recurrent and temporal convolutional
networks. Their dilated versions provide a speed
advantage without loss of information [4] in both
customary, centered, and causal model output variants.
However, some observational contexts or their parts are
rare and can have significant intra-class variability,
leading to imbalances and a scarcity of labeled samples
corresponding to complex and irregular situations. This
imposes limitations on the use of deep models sensitive to
the volume and balance of labelled training data.

One of the ways to increase the efficiency of models
with a limited amount of marked data is to use the ideas
and methods of information theory and synthesis of
decision rules within a geometric approach. An example
of geometric approach methods are Siamese neural
networks, where the fitness function makes use of
constraints and relationships between the distances
between samples of the same and different classes [9].
Siamese networks have shown the greatest efficiency in
few-shot learning and meta-learning algorithms, but they
are most commonly used for feature embedding.

Information theory and coding methods are a natural
choice for increasing the resistance to noise, such as
artifacts and limited visibility. For example, error-
correcting output codes implement end-to-end pseudo-
ensemble, increase the multi-class classification accuracy
and Improve Probability Estimation for Adversarial
Robustness of Deep Neural Networks [10].

However, the existing methods of binary class code
selection does not take into account the internal structure
of classes. Information-extreme machine learning
methods provide optimization in the information sense of
the decision rule parameters based on error-correcting
output codes [11]. However, information-extreme
learning does not provide end to end deep model learning
mechanisms. Thus, the combination of ideas and methods
of Siamese neural networks and information-extreme
learning offers considerable promise for further
improvement of data analysis models, in particular for
context analysis in CCTV sewer inspections.
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3 MATERIALS AND METHODS

Classification analysis of CCTV video frames in the
simplest case can be performed by a single convolutional
network. Such network can be trained both in the
traditional way and as a part of Siamese or generative
models. However, in the situations of loss of visibility or
significantly close proximity of the camera to the pipe
walls, images lose the large part of their useful context
information. This necessitates the analysis of each frame
in conjunction with the neighbouring frames to restore the
context information. In general case context detection
model will have the 2D convolutional neural network at
the lower level for spatial feature extraction and 1D
temporal network for analysis of cross-frame
dependencies (Fig. 1).

Decisions

—>

| Decision rules

2

Temporal Network
(1D CNN or RNN)

Intra-frame
relations
modeling

Frame
embedding

Video

frames e

Temporal window

Figure 1 — Generalized architecture of context classifier
model

For separate frame analysis the use of MobileNet
general purpose convolutional network is proposed [9].
Only a convolutional backbone without fully connected
layers is used [9]. Fig 2 a depicts the classic convolutional
network variant and Fig 2b its modification used for
research of the proposed training method.

Global Average Pooling is used for dimensionality
reduction and a Dropout pseudo-ensemble with 50% of
the input features dropping is used for regularization [5,
9]. Fully connected and sigmoid layers form the output
feature set.

Image classifier model’s decision rules contain the
rounding layer which produces the binary coded
representation and radial-basis function defining the
object’s belonging to a certain class, with classes
separated by hyper-spherical containers in binary
Hamming space. Each hyper-spherical container is
defined by the binary reference vector (container center)
and container radius in Hamming distance units. In this
case radial-basis membership function p,(b) for N-

dimensional binary vector b is

N
Mz (b)=1-3 b @by /d;, )
i=1

where b; — binary reference vector (center of optimal

container) for class X, ; d, — radius of optimal container

z

for class X, in Hamming distance units.

MobileNet backbone
Global Average Pooling 2D Layer

Dropout Layer (rate=0.5)

Dense Layer (128 nodes)

Sigmoid Layer

Dense Layer

Softmax Layer

a
MobileNet backbone

Global Average Pooling 2D Layer

Dropout Layer (rate=0.5)

Dense Layer (128 nodes)

Sigmoid Layer

Rounding Layer
RBF Layer

b
Figure 2 — Architecture of classic and modified variants of the
convolutional network for frame-by-frame classification : a —
baseline image classifier model structure; b — proposed image
classifier model structure

Temporal network can be implemented using one of
the popular model architectures, such as 1D dialated non-
causal convolutional network, 1D dialated causal
convolutional network, Recurrent neural networks with
Long Short-Term Memory (LSTM), Recurrent neural
networks with Gated Recurrent Units (GPU).

The Base Block (BB) convolutional temporal
networks is depicted in Fig. 3 The first layer of the BB is
a 1D dilated convolution with kernel size k = 3 where the
dilation factor is doubled for each subsequent BB, i.e. 1,
2,4, 8.

Dilated Conv
1x1 Conv

Figure 3 — Basic block of Temporal Convolutional Network

Fig. 4a gives an illustration of the receptive field
(black arrows) of an output activation from a single stage
with three stacked BBs with regular convolutions.
Regular convolutions have a receptive field that expands
equally wide to the right as it does to the left. This means
that it looks as far into the future (right) as it looks into
the past (left). Thus the current frame context will be
clarified using the information in both past and future
frames.
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Figure 4 — Temporal Network with Non-causal (regular)
convolutions

Fig. 5 illustrates temporal neural network with casual
convolutions which amplify the forecast productivity
nearer to the right edge. In this case, the curt frame
context will be completely defined on the basis of the
characteristics and interrelationships of the preceding
frames.

p __/.f--f/"} ,;’;Q =
— - — - — -~
! /;; %j Pe f Zﬁ :
1 88 AV T AV T AV |~ ~
P 68668 EEEEEEES
to Iy tnv-1
Figure 5 — Temporal Network with causal convolutions

LSTM has memory blocks connected by successive
layers, and it enables the network to selectively memorize
the input training data through a unique three-gate
structure (Fig. 6a). The line across the top of the diagram
is the cell state C, and represents the internal memory of
the unit. The line across the bottom is the hidden state h,
and the i, f, 0, and g gates are the mechanism by which

the LSTM works around the vanishing gradient problem.
During training, the LSTM learns the parameters for these
gates. Instead of the input, forget, and output gates in the
LSTM cell, the GRU cell has two gates, an update gate
Z,and a reset gate I (Fig. 6b). The update gate defines
how much previous memory to keep around and the reset
gate defines how to combine the new input with the
previous memory. There is no persistent cell state distinct
from the hidden state as in LSTM.

To compare and trace the changes in productivity as a
function of the proposed solutions, training will be
performed in stages. First the single-frame detection
model will be trained in a traditional manner and with the
proposed  training method without taking the
neighbouring frames into account. Then the best trained
model is chosen and its feature extractor, the layers
located up to and including the sigmoid layer, is used for
frame embedding into the temporal detection model.
Every neural network type will be trained with both
traditional and the proposed training method. The
capacity hyperparameter, responsible for the network size
will be grid-optimized for each model.

h,

by

Figure 6 — Cell of Recurrent Neural Network:
a—LSTM cell; b — GRU cell

Traditional training method involves an addition of
Dense layer with Softmax output normalization, error
backpropagation and cross-entropy loss function, such as
Adam, to the feature extractor.

The modified method consists of 4 stages necessary to
create a binary feature description used to form the
information-extreme decision rules (Fig. 7)

Phase | : Training feature extractor
as part of siamese network with
triplet mining and regularized loss

[)
Phase Il : Computation of binary code
for each class

1

Phase Ill : Training with joint binary
cross-entropy loss using binary code
for each class as label

)
Phase IV : Optimization of hyper-
spherical container for each class in
Hamming space based on information
criterion

Figure 7 — Proposed training method stages

The first stage involves training with soft triplet loss
and regularization component for penalising the binary
code output rounding error. The mode input receives a
mini-batch with M images of every class. The loss
function is calculated as

os exp(([f(xy) ~F(xgp)])

exp([£(xa) = £ (xep ) + exp((x4) ~ F (X))
+FME(xy)T (e = F(x,)) +F(xep) ' (€= F(xgp)) +
+ £ (Xghn) " (€= F(Xghn)), (%)

L=-
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Xy = ar min f(x,)-f(x 6
ep gx:C(x):C(xa)" (x) -, (6)
Xshn = arg C(){I)lj&ré(xa) "f(Xa)—f(X) , (7

X
£ (xa)-FCO|Exa )£ (xp)

The next phase is needed to determine the binary class
code in accordance with the error-correction output codes
principles but also accounting for intraclass and interclass
relationships. The training set of Z classes

{xzsz=1,Z,s=1,n,} containing n, samples of z-class,

is encoded with a  binary

{bz,s,i |z= l,_Z, s=1Ln,,i= I,_N} with dimensionality N.

representation

The binary coding of input image X, is achieved by

rounding the i sigmoid layer output to the whole number.

1, if fi(x,4)>0.5;
e 0, otherwise.

Binary reference vector b, for class z can be

calculated by [rank-wise] comparison of frequency of
binary ones in z class with the background binary ones
frequency in the training set

1 & 141 &
L, if —Y>b .:>—>—Yb..::

0, otherwise.

Reference vector b, for class z is used as a sample

label in further training with Joint Binary Cross Entropy
Loss, which is calculated for each training sample x as

N
L==3"(b,;logf;(x)+(1-b,;)log(l-f;(x))).
i=1

The last stage of machine learning is related to the
optimization of container radius by information criterion
to account for the boundaries of deviation of binary
representation of observations in each class from the
corresponding reference vectors.

E, =maxE,(d). (8)
{d}

Entropy criteria for a bi-alternative evaluation system
(Z =2) and equally probable hypothesis, representing the
most statistically difficult case, can be expressed as a
function of accuracy characteristics as follows [11]

E(Zk):“% © OL(Zk)(d?lo log> 55 a(Zk)(dzm *
a®@+D® @) o (@)+DN ()
B (d) B (d)
D (@+pM @ DX +pP @)
Dy, (d) Dy, (d)

log, +
k k
DI (@ +B () D () +BL ()
DY@ Py
@O @) 2 0 ® 0O |
o (@+DEN@) ol (@+DY(d)

©

4 EXPERIMENTS

The current article considers all the training stages and
their corresponding results obtained on the dataset
provided by Ace Pipe Cleaning, Inc.

Class alphabet used to detect the observation context
without taking into account the content of the
neighbouring frames contains 10 main context classes
(Table 1). This alphabet contains ignore, side and
connection classes. Samples for these classes are easy to
collect and label, however they do not provide complete
certainty as to the camera orientation, as it is not clear
which pipe wall camera is facing (Fig. 8).

Class alphabet used to detect the observation context
with taking into account the content of the neighbouring
frames contains 11 main context classes (Table 2).
Temporal features have to provide complete certainty as
to the camera orientation, hence there is no ignore class
and side and connection classes have been replaced by
Right, Left, Top, Bottom, Right connection, Left
connection, Top connection and Bottom connection. Semi
Left, Semi Right, Semi top, Semi bottom classes are
replaced by the corresponding Right, Left, Top, Bottom.
Temporal window for consideration of the neighbouring
frames is set to 128 frames. This window was selected as
a multiple of 2 and was experimentally selected as being
close to optimal for various models. Parsing labelled

video files {Dsrain} and {D\t,SSt} ensures the formation of

variable quantity of samples for each class..

Prior unsupervised learning of the upper convolutional
layers on unlabelled samples from the intended usage
domain is aimed at increasing the subsequent supervised
machine learning efficiency. It is worthwhile considering
the influence the parameters of the growing sparse coding
neural gas algorithm used in unsupervised learning have
on the results of supervised learning. Table 1 presents the
machine learning results and quantity Nc of generated
convolutional filters (neurons) as a function of the
parameter v, which characterises the accuracy of coverage
of the training set by the convolutional filters.

Before training, the entire dataset is balanced by
applying augmentation to minor classes (0—5% change in
scale, £5% rotation, £5% change in brightness).

Each model has a number of hyperparameters which
define its configuration and capacity. Optimal
hyperparameters are first selected for each architecture
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and a comparison of results obtained from various
architectures with these parameters. Models are trained
during 60 epochs. The hyperparameters are selected with
a view to avoid the noticeable overtraining effect.

Table 1 — Class set for the single-frame context classifier

model
Desig- Number of | Names Description
nation examples of
of class context
X0 5000 Forward | Camera pointing forward
! along the pipe
X9 3000 Side Camera is pointing at the
2 . .
pipe wall facing left,
right, down or up, when it
is hard to understand
which part of the pipe
(top, bottom, left of right)
the camera is pointing at
X9 1000 Semi Incomplete right turn,
3 right orientation of the camera
can be clearly determined
from a single frame
X© 1000 Semi left | Incomplete left turn,
4 orientation of the camera
can be clearly determined
from a single frame
x© 320 Semi top | Incomplete turn upwards,
3 orientation of the camera
can be clearly determined
from a single frame
X© 180 Semi Incomplete turn
6 . .
bottom downwards, orientation
of the camera can be
clearly determined from a
single frame
X9 2100 Con- Another pipe connecting
7 nection to the main
X0 500 Man- Point of entry into the
8 . . .
hole pipe for inspection, from
the manhole to the
beginning of the pipe
proper
X0 152 Col- Collapsed pipe, further
9 .
lapse movement forward is
impossible
X?O 100 Ignore Situations to be ignored
for processing purposes

Backbone of Mobilenet with the capacity coefficient
set to 0.25 and input resolution set to 160x160 pixels was
used as a single-frame feature extractor. Temporal
convolutional network has 1 stage configuration with 7
BBs. Quantity of feature channels in convolutional filters
of the first layer is set as C=128, to match the
dimensionality of image embedding. The last layer of the
temporal network is connected to the Dense layer, which
contains 128 nodes with sigmois activation function.
GRU and LSTM recurrent networks contain one layer
with 128 units. States of each unit are submitted to the
Dense layer which also contains 128 nodes with sigmoid
activation function. After the sigmoid layer of either
model two additional output layers analogous to those
depicted in Fig. 2 are used, dependent on the chosen
training method.

Figure 8 — Sample images of each class :

a —class Xf ; b—class Xg ; ¢ —class Xg ; d —class Xﬁ ;e—
class Xg ; f—class Xg ; g —class X(7) ; h—class Xg ;1—class

X9 ;j—class X7,
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Table 2 — Class set for context classifier model accounting for

neighbouring frames content
Designation Number Names of Description
of class of context
designation examples
X? 4500

Camera
pointing
forward along
the pipe
Incomplete or
complete right
camera turn
Incomplete or
complete left
camera turn
Incomplete or
complete
camera turn
upwards
Incomplete or
complete
camera turn
downwards
Connecting
pipe on the
right
Connecting
pipe on the left
Connecting
pipe at the top
Connecting
pipe at the
bottom

Point of entry
into the pipe
for inspection,
from the
manhole to the
beginning of
the pipe proper
Collapsed pipe,
further
movement
forward is
impossible

Forward

X 1500 Right

X2 1420 Left

X 400 Up

X 180 Down

Right con-

X© 500
nection

Left con-
nection
X0 150 Top con-

8 nection
Down con-
nection

X2 500

X9 75

500 Manhole

170 Coll
X9, ollapse

Fig. 9 depicts the change in F1 score on the test
dataset during the classifier training with the baseline and
proposed (Fig. 7) methods. The test dataset was created
by selecting 15% of the samples from each class
represented in Table 1.
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Figure 9 — Dependency of F1 score on test dataset from training
epochs for single frame context classifier without accounting of
neighbouring frames

Analysis of Fig. 9 shows that up to 30 epochs both
training methods are performing with similar efficiency.
However, the third phase (Fig. 7) of the proposed method,
employed after 30th epoch, increases accuracy by 6%.
Hence the feature extractor trained with the proposed
training method is used for embedding into the high-level
neural network.

Fig. 10 depicts the change in the F1 score on the test
dataset when training the frame classifier which accounts
for the neighbouring frames. Training is done with the
baseline method but with varying architectures of the
temporal network. Test dataset is created in the same way,
but selecting 15% of the samples of each class
represented in Table 2.

0.9
0.81
0.7
®
)i ’
o 0.6 i
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e I === F1_val_cnn_regular
y K4 —— F1_val_gru
0471 1/ —.= F1_val Istm
0 10 20 30 40 50 60
Epochs

Figure 10 — Dependency of F1 score on test dataset from
quantity of training epochs when training with the baseline
method for context classifier with accounting of neighbouring
frames

Analysis of Fig. 10 shows that the accuracy of
recurrent networks during the initial training epochs
increased slower than that of the convolutional networks.
However, during the final stages the accuracy effectively
reached a plateau with the results for different networks
converging to virtually indistinguishable values. Amongst
the convolutional network regular rather than causal
architecture shown the best result. F1 score for the regular
temporal network reached 0.87, whereas F1 for LSTM
and GRU model stands at 0.843 and 0.839 respectively.

Fig. 11 shows the change in test dataset F1 score when
training the classifier which accounts for the neighbouring
frames trained with the proposed (Fig. 7) method using
different temporal network architectures. Test network
was formed in the same way by selecting 15% of the
samples of each class illustrated in Table 2.

Analysis of Fig. 11 shows that accuracy of recurrent
networks in the case is also inferior to those of the
convolutional networks. Regular structure model had
likewise shown to be the leader among the convolutional
networks. However, the maximal F1 score for the model
with the regular structure trained with the proposed
method is 92%, which exceeds the baseline training
method results on the same network by 4%.
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Figure 11 — Dependency of F1 score on test dataset from
quantity of training epochs when training with the proposed
method for context classifier with
accounting of neighbouring frames

Thus the advantage of using a convolutional model for
observation context analysis and the proposed multi-
phase training method had been established. It was also
empirically proven that the regular convolutional
temporal network architecture is the most efficient in
utilising interframe dependencies. Resulting accuracy is
suitable for practical use, as the additional error correction
can be made by using the odometer / distance counter
data.

6 DISCUSSION
It is worth considering not just the aggregated metrics
but also the confusion matrix to properly evaluate the
efficiency of the proposed approach. A normalised
confusion matric derived from the model with regular
TCN trained with the conventional approach is presented
in Fig. 12.
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Figure 12 — Normalized confusion matrix for the optimal
context classifier based on regular TCN trained with the
conventional approach

Analysis of the confusion matric presented in Fig. 12
shows that the lowest accuracy corresponds to the
complex classes : Right Connection, Left Connection,
Top Connection and Manhole. These classes combine
both camera orientation and distinctive structural
elements of the sewer system.

Fig. 13 depicts the normalized confusion matrix for
the context classifier based on the regular TCN trained
with the proposed approach.
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Figure 13 — Normalized confusion matrix for the optimal
context classifier based on regular TCN trained with the
proposed multi-phased approach

Analysis of Fig. 13 shows that the forward class is
intersecting with almost all the other classes. In
comparison with the conventional training methods, the
proposed solution ensures increase in detection accuracy
for complex context classes, such as Right Connection,
Left Connection, Top Connection and Manhole.

Despite the improvement in accuracy, training on the
same data is still not error-free. Some connections can be
missed and for connections in 10:00-02:00 sector the
camera orientation can be confused with the connections
in the 02:00-05:00 and 07:00-10:00 sectors. This can be
due to the insignificant difference between the specific
degrees of partial camera turn. However, the impact of the
erroneous context classification at the intersection of the
context classes on the effectiveness of sewer pipe
inspection is outside the scope of this study.

CONCLUSIONS

The scientific novelty of the work lies in the new
models and methods of classification analysis of spatial
and temporal context for automation of CCTV sewer
inspections under the limited training dataset and data
imbalance constraints.

Model contains a 2D convolutional network which
produces feature embedding as an output of the sigmoid
layer and 1D temporal convolutional regular network with
the sigmoid and [rounding] output layers with radial-basis
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AHOTAULIA

AKTyaJabHicTb. Po3po0ieHO Ta HOCHIIKEHO MOAETh Ta METOA HaBYaHHS A Kiacu]ikalii KOHTEKCTIB CIIOCTEPEKEHHS Ha
Kazpax BineoiHcHekuil cTigHuX TpyO. OO’€KTOM MOCHIIKEHHS € IPOLEC BHSABICHHS IPOCTOPOBO-4aCOBOTO KOHTEKCTY IMiJ dac
iHcnekniit crivamx TpyO. [Ipemmerom MOCHiKEHHS € MOZENH Ta METOJ MAIIMHHOTO HAaBYaHHS U1 KiIacH(ikamiHHOTO aHamizy
KazpiB BiZIeOiHCIIEKNii B yMOBaX 0OMEKEHOT0 Ta He30aJlaHCOBAaHOTO HAOOpy PO3MIYEHHX HaBYaJIbHUX JaHUX.

Meta fpocaigTKeHHs] — pO3poOIeHHsT e(EKTUBHUX MOZENI 1 METOLY MAIIMHHOTO HABYaHHS I KiacU]iKaliifHOro aHaizy
KOHTEKCTY BiJICOK/IpiB iHCIIEKUii CTIYHUX TPYO B yMOBaxX OOMEXKEHOro 0O0Csry Ta He30alaHCOBAHOCTI PO3MIYEHOTO HABYAJILHOTO
Habopy DaHUX.

MeTtoau aociif:keHHsl. 3allPONOHOBAaHO YOTHPHOX ETAHUM aNropuTM HaBuaHHA kiacudikaropa. [lepmuit eram mossrae y
HaBYaHHI 3 HOPMaJIi30BaHOIO TPUILIETHOIO (YHKII€I0 BTPAT i PEryJsipU3yIOUOI0 CKIIAJ0BOI0, siKa MTpadye 3a MOMHUIKY OKPYTIICHHS
BHUXIJTHOTO CHUTHAIy 10 IBiKOBOro nojaHHs. HacTymHuil eram Mojsrae y BU3HAUCHHI JBIHKOBOTO KOy VISl KOXKHOTO KIIacy s
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peamizarnii KoJiB, [0 BUIPABISIOTh HOMIJIKH, AJle 3 YpaXyBaHHSAM BHYTPINIHBOKIACOBHX Ta MDKKJIACOBHX BimHOIMIEHb. OTprMaHUH
STAJIOHHMH JBIKOBHH BEKTOP Ul KOXKHOTO KJIacy IOTIM BUKOPHUCTOBYETHCS SIK LITbOBA MITKa ITiJ] YaCc HACTYITHOTO €Tary HaBYaHHS
3 OIHAPHOIO KPOC-CHTPOIIiiHOK (yHKIl€0 BTpaT. OCTaHHIi eTanm MAIlMHHOTO HABYAHHS IOB’SA3aHHWU 3 ONTHUMI3AIi€0 MapaMeTpiB
NpaBUjIa NMPUHHATTS pillleHb 3a iHGOpPMaLifHUM KpUTEpieEM Ul BU3HAYSHHS MOIYCTHMHX MEX BIIXWICHHS ABIHKOBOTO HOJAHHS
CIIOCTEPEKEHb KOXKHOTO KJAcy BiJ BiJNOBIZHOIO €TaJOHHOrO BekTopa. Posrismaerbcst 2D 3ropTKOBHH E€KCTPAKTOp O3HAK Y
MOEIHAHHI 3 TEMIOPAJIbHOI0 MEPEXEI0 ISl aHAI3y MIXKKaJIpOBHUX 3anexHocTell. PosrisnaloTecs Bapiantu 3 1D 3ropTkoBa Mepexa 3
JipSABUMH PEryJIApHUMHM 3ropTkamu, 1D 3roprkoBa Mepexa 3 JIpBUMH NPUYHHHO-HACIIJKOBUMHM 3rOPTKaMH, PEKypEHTHa Mepexka
LSTM Tta pekypentna mepesxka GRU. IlopiBHSHHA epeKTHBHOCTI MOAENEH MPOBOAUTHCS HAa OCHOBI MiKpo ycepemneHoi F1-mipw,
004HcIIeHOT Ha TeCTOBOMY HabOpi TaHHX.

PesyabTaTn. Pesynbratu, otpumani 3a Habopom manux, HaganuMm Ace Pipe Cleaning, Inc, miaTBepmKyOTh IPUIATHICTh MOJCII
Ta METOXy AJISl MPAaKTHYHOTO BHKOPHCTAHHS, OCKUIBKM OTpPUMaHa TOYHICThH JOpiBHIOE 92%. ITopiBHSHHS pe3yibTaTiB HaBUAHHS i3
3aIpONOHOBAHUM METOJOM Ta TPAAWIIHHMM METOIOM IIOKa3ano repesary Ha 4% 3a Mikpo-ycepeqHUM 3HadeHHSM F1-mipm.
Ionmampmmit aHami3 MaTpUIli TMOMIJIOK TOKa3aB, IO HAMOUIBII CYTTEBE MiJBUIICHHS TOYHOCTI MOPIBHSAHO 31 TpaIuLiiHIMHU
METOJaMH JJOCATAETHCS ISl CKJIQIHUX KIIACiB, SIKi HOETHYIOTh SIK OPi€HTALiI0 KaMEepH, TaK 1 0COOIMBOCTI KOHCTPYKLIi CTiYHOT TPyOH.

BucnoBkn. HaykoBa HOBU3HA pOOOTH MOJIATAE Y HOBUX MOJICIAX Ta METO/aX KiIacH(DiKaI[iifHOro aHalli3y MPOCTOPOBO-4aCOBOTO
KOHTEKCTY Ul aBTOMATHU3allil BilCOIHCHEKIi CTIYHUX TPyO B yMOBax OOMEXKEHOro OOCSIry Ta He30alaHCOBAHOCTI PO3MIYECHHX
HAaBYAJILHUX JIaHUX. Pe3ysbTaTi HaBYaHHS, OTPUMaHI 32 IPOIIOHOBAHMM METOJIOM, TIOPIBHIOIOTECS 3 PE3yJIbTaTaMU, OTPUMaHUMH 32
JOTIOMOTOI0 TPaJHIIIIHOr0 MeTOy Kiacu]ikalliifHOro aHasisy 300paXkeHb. 3anpoNOHOBAHHUIA METO/] IPOICMOHCTPYBAB IiepeBary Ha
4% 3a MiKpo-ycepeJHeHUM 3HaueHHAM F1-mipu.

Emmipruano Oyno moBeneHo, Mo TeMITopaibHa Mepeka Ha OCHOBI 1D 3ropTkoBoi Mepexki 3 AipsSBUMHU PETyISIPHUMH 3TOPTKAMU €
HaOLTBII e()eKTUBHOIO [UTS aHANI3Y MIKKaJIPOBHUX 3asIexkHOCTeH. OTprMaHa TOYHICTH 3a0e3medye MpUAaTHICTE OTPUMAaHUX MOAeIen
JUIS IPAKTHYHOTO BUKOPUCTAHHS, OCKLUIBKH JJOJATKOBE BUITPABJICHHS IOMHJIOK MOXKHA peaizyBaTH Ha OCHOBI JaHUX OJOMETpA.

KJIIOYOBI CJIOBA: iHcniekmist CTiYHHX TpyO, 3rOpTKOBa HEHpOHHA Mepexa, KOAW 3 CAaMOKOPEKIIi€I0 ITOMHIIOK, ciaMChKa
HeWpoHHa Mepexa, iHpopMaliiiHo-eKcTpeMalbHe HaBuaHHs, iHdopmariiauit kpurepiit, LSTM, GRU.

YJIK 004.891.032.26:629.7.01.066
MOJEJIb U METOJ OBYYEHUA NJIAd KTACCUPUKAIIMOHHOI'O AHAJIN3A KOHTEKCTA KAJIPOB
BUJEOUHCIIEKIIMA CTOYHBIX TPYD

MockaJjienko B. B. — xanj. TexH. HayK, JOIEHT Kadeapbl KOMIbIOTEpHbIX Hayk, CyMCKO#l TOCYIapCTBEHHBIH YHHUBEPCHUTET,
Cywmpl, YKpanHa.

3apeunxnii H. A. — acmpaHT Kadeapsr KOMITBIOTEPHBIX HayK, CyMCKOH rocyIapcTBEHHBI YHUBepcuTeT, CyMbl, Y KpanHa.

Mockajenko A. C. — KaHJI. TeXH. HayK, CTaplINii MperoiaBarens Kapeapsl KOMIBIOTEPHBIX HayK, CyMCKOH ToCyIapCTBEHHBIH
yausepcuter, CyMmbl, YKpauHa.

IManbra A. A. — MarucTp HHKCHEPHH, aCCUCTEHT KadeIpsl KOMIBIOTEPHBIX HayK, CyMCKOH rocyaapCTBEHHBIN yHUBEPCHUTET,
Cywmsl, Ykpausa.

JIbiciok B. B. — marucTp nmkeHepun, coocHoBartenb komnanuu Molfar. Al sp. z 0.0., I'nanck, Ilonbmra.

AHHOTAIUSA

AKTyalIbHOCTB. Pa3zpaboTaHbl M McClenOBaHbl MOAETb M METOJ OOY4YEeHHUsS I KIacCH(PUKALMM KOHTEKCTOB HAOJIOACHUS Ha
KaJipaXx BUJICOMHCIEKIMU CTOYHBIX Tpy0. OOBEKTOM HCCIENOBaHUS SBISIETCS MPOIECC PAacMo3HaBaHHUS MPOCTPAHCTBEHHO-
BPEMEHHOTO KOHTEKCTa BO BpPEMs HMHCIIEKIMI CTOYHBIX TpyO. IIpenmeToM mccienoBaHUs SIBISIETCS MOJETb M METOJ MAIIMHHOTO
o0ydeHns1 Ui KIACCH(HUKAIMOHHOTO aHann3a KaJpoB BUACOMHCIEKIMM B YCJIOBHSX OTPAaHWIEHHOTO M HecOATaHCHPOBAHHOTO
Habopa pa3MEYeHHBIX 00YUarONINX TaHHBIX.

Leap nccaenoBanus — pazpaborka 3(hGHEeKTUBHEIX MOIEIN M METOa MAIMHHOTO 00yYeHUs IS KIIacCH(UKAIMOHHOTO aHaIN3a
KOHTEKCTa BUICOKAIPOB MHCHEKIMH CTOYHBIX TPYO B YCIOBHSIX OIpaHHYEHHOro 00beMa M HecOAIaHCHPOBAHHOCTH Pa3MEUYEHHOTO
o0ydaromero Habopa JaHHBIX.

MeTtoas! ucciaexoBanus. [IpeioKeHO YETBIPEXITAIHBIN AITOpUTM 00yueHHMs Kiaccudukaropa. [lepBblii oTam 3akiIro4aeTcs B
o0y4eHHH C HOPMAaJM30BaHHOW TPUILIETHOrO (YHKIMEH NOTeph M PEryISIpU3UPYIOIIeH COCTABISIIONISH, KoTopas mTpadyer 3a
OmMOKY OKpYIJICHHSI BBIXOJHOTO CUTHajda K JABOWYHOMY IpencrapieHHio. CIleIyIOmuMi ATam 3aKiIiovyacTcsi B ONpeAeiIeHUH
JBOMYHOTO KOJA JUIl KaXIOro Kiacca Juisl pealu3allid KOJOB, HCHPABISIOMINX OLIMOKHM, HO C Y4YEeTOM BHYTPUKIACOBBIX HU
ME)KKJIACCOBBIX OTHOLICHUH. I1oydeHHBIN 3TaNOHHBIA JBOMYHBIA BEKTOP JUId KaXKAOIO KJIACCA 3aT€M MCIOJb3yeTCsA Kak IieeBas
METKa BO BpPeMsI CIIE/IYIOIIero dTana o0y4deHus ¢ OMHApHOW KPOCC-OHTPONMHHOW (QyHKuMel motepb. [lociaeaHuii Tan MalinHHOTO
o0ydeHHsl CBA3aH C ONTUMHU3AIUEH MapaMeTpOB MpaBUia MPUHATHS PEIICHUH 3a HH()OPMAIIMOHHBIM KPUTEPHEM AT ONIPEASIICHUS
JOTYCTUMBIX HPEJeNIOB OTKIOHEHHS JBOMYHOTO MPECTaBICHUS HAOMIOACHNH Ka)KIOTo KJlacca OT COOTBETCTBYIONIETO STAJOHHOTO
BekTopa. PaccmatpuBaercss 2D CBEpTOUHBIH JKCTPAaKTOp NPHU3HAKOB B COYETAHWH C TEMIIOPAIBHOW CETHIO IS aHain3a
MEXKKaJIPOBEIX 3aBHCHUMOcTed. PaccmatpuBatoTcst BapmanTsl 1D cBepTOUHOH ceTH C ABIPSIBEIMH PETYJSIPHBIMH CBepTKamu, 1D
CBEPTOYHOM CETH C ABIPSABBIMH IIPUYMHHO-CICICTBEHHBIMHM CBEpTKaMM, peKyppeHTHas cetb LSTM u pexyppentHas cers GRU.
CpaBHeHue 3p(eKTHBHOCTH MOJieNiel IPON3BOIUTCS HAa OCHOBE MHUKPO ycpelHEeHHOH F1-Mepbl, KoTopast BEIYHUCIISIETCS HA TECTOBOM
Habope JTaHHBIX.

PesyabTathl. Pesynbrarhl, modyueHHble Ha Habope HaHHBIX, npenoctaBieHHbIM Ace Pipe Cleaning, Inc, moarBepskparoT
MIPUTOJHOCTh MOJEIH M METOfAa Ul MPaKTUYECKOTo HCIOJIb30BaHUS, TaK KaK IOMydeHHas TOuHOCTh paBHa 92%. CpaBHeHHe
pe3ynbTaToB 00Yy4EHHUs 3a MPEATOKEHHBIM METOIOM C Pe3yJIbTaTaMM 33 TPAAUIMOHHBIM METOJOM MOKa3ao MPperMyIiecTBo Ha 4%
3a MHKPO-YCpeAHEHHbIM 3HaueHueM F1-mepbl. [lanpHelmuii aHaaus3 mMaTpuipsl ommMOOK IOKa3asl, 4TO Hamboyee CyIIeCTBEHHOE
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TIOBBIIICHHE TOYHOCTH MO CPABHEHUIO C TPAUIIMOHHBIMA METOAMH JOCTHIAETCs JUIS CIIOXKHBIX KITACCOB, KOTOPBEIE OOBEUHSIOT KaK
OPHEHTAIMIO KaMepbl, TAK X 0COOEHHOCTH KOHCTPYKIIUU CTOYHOM TPYOBI.

BroiBoabsl. Hayunas HoBu3Ha palOoTBl 3aKJIIOYAETCS B HOBBIX MOJIEIM M MeETOJE KIACCH(DUKALMOHHOTO —aHalM3a
MPOCTPAHCTBEHHO-BPEMEHHOTI'O KOHTEKCTa JUIsl aBTOMaTH3allMY BUACOMHCIICKIIMH CTOYHBIX TPYO B YCIOBUSX OrpaHUYEHHOTO 00beMa
U HecOanaHCUPOBAaHHOCTH Pa3MEUCHHBIX OOYYaloIINX NAHHBIX. Pe3ynbTaThl 0OyueHHs, MOTyuUEHHBIE IO MpEIaraéMoMy METOLY,
CPaBHMBAIOTCSI C PE3yJIbTaTaMHU, MOTYUYSHHBIMU C IOMOIIBIO TPAAUIIMOHHOTO METO/1a KIAacCU(PHUKAIIMOHHOTO aHaIu3a U300paXeHHH.
ITpennoxxeHHbIH METOA TPOAEMOHCTPHPOBAI IPEUMYIIECTBO Ha 4% 32 MUKPO-yCpeAHEHHbIM 3HaueHHeM F1-Mepsbl.

OMmmuprdecku ObIIO T0Ka3aHO, YTO TEMIIOpaIbHAS CeTh HAa OCHOBE 1D CBEPTOYHOM CEeTH ¢ ABIPSBBIMH PETYISPHBIMU CBEPTKAMHU
siBIsIeTcs Hanbomee 3(GEeKTUBHOMN JUIs aHAIM3a MEXKAIPOBBIX 3aBHCHMOcTel. [lomydenHas TOYHOCTH oOecreuynBaeT IPUTOAHOCTD
MOTyYeHHBIX MOJIEIIEH JUIsl MPAKTHIECKOTO NCTIOIb30BAHHS, IIOCKOIBKY JOTIOMHUTEIRHOE HCTIPABICHNE OMIMOOK MOXKHO PEai30BaTh
HA OCHOBE JAHHBIX OJIOMETpa.

KJIIOUEBBIE CJIOBA: uHCnieKIus CTOYHBIX TPYO, CBEpTOUHASI HEHPOHHAS CETh, KOJBI C CAMOKOPPEKINEH OMMOO0K, cHaMcKast
HeWpoHHas CeTh, HHPOPMALMOHHO-3KCTpEMalIbHOE 00yUeHue, HHpOopMaoHHsbIi kputepuii, LSTM, GRU.
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