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ABSTRACT

Context. The problem of detecting anomalies from signals of cyber-physical systems based on spectrogram and scalogram im-
ages is considered. The object of the research is complex industrial equipment with heterogeneous sensory systems of different na-
ture.

Objective. The goal of the work is the development of a method for signal anomalies detection based on transfer learning with
the extreme gradient boosting algorithm.

Method. An approach based on transfer learning and the extreme gradient boosting algorithm, developed for detecting anomalies
in acoustic signals of cyber-physical systems, is proposed. Little research has been done in this area, and therefore various pre-trained
deep neural model architectures have been studied to improve anomaly detection. Transfer learning uses weights from a deep neural
model, pre-trained on a large dataset, and can be applied to a small dataset to provide convergence without overfitting. The classic
approach to this problem usually involves signal processing techniques that extract valuable information from sensor data. This paper
performs an anomaly detection task using a deep learning architecture to work with acoustic signals that are preprocessed to produce
a spectrogram and scalogram. The SPOCU activation function was considered to improve the accuracy of the proposed approach.
The extreme gradient boosting algorithm was used because it has high performance and requires little computational resources during

the training phase. This algorithm can significantly improve the detection of anomalies in industrial equipment signals.
Results. The developed approach is implemented in software and evaluated for the anomaly detection task in acoustic signals of

cyber-physical systems on the MIMII dataset.

Conclusions. The conducted experiments have confirmed the efficiency of the proposed approach and allow recommending it for
practical use in diagnosing the state of industrial equipment. Prospects for further research may lie in the application of ensemble
approaches based on transfer learning to various real datasets to improve the performance and fault-tolerance of cyber-physical sys-

tems.
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ABBREVIATIONS

XGBoost is an extreme gradient boosting;

AUC is the area under the receiver operating charac-
teristic curve;

CPS is a cyber-physical system;

SPOCU is a scaled polynomial constant unit;

PCA is a principal component analysis;

MIMII is a malfunctioning industrial machine investi-
gation and inspection;

LOF is a local factor outlier;

GMM is a Gaussian mixture model;

OC-SVM is a one-class support vector machine;

STFT is a short-time Fourier transform;

CNN is a convolutional neural network.

NOMENCLATURE
v is the minimum loss reduction needed for splitting;
A is a regularization term;
X is a time-frequency signal representation;
F is the number of frequency bins;
T is the time dimension;
Xj is a signal block;
| is the length of the feature vector;
o is a window function;
®O(m,7) is the Fourier transform;
v is the loss value of the XGBoost algorithm;
G(X) is an activation function;
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Y; is an objective optimization function;
K is the number of decision trees;
¢y 1s an independent tree with leaf scores,

@ is the space of the regression tree;
Q is a regularization term.

INTRODUCTION

An abnormal state of a cyber-physical system (CPS)
can be caused by faulty components, temporary failures,
misconfiguration, cyberattacks, or their combination [1,
2]. An adversary intervenes in CPS to manipulate the
readings of sensors or actuators, leading to abnormal sys-
tem operation.

Anomaly detection in an industrial scenario is essen-
tial because undetected failures can lead to critical dam-
age. Early detection of anomalies can improve the reli-
ability of fault-prone industrial equipment and reduce
operating and maintenance costs.

The development of Industry 4.0 has led to new tech-
nologies for efficient and reliable monitoring of such sys-
tems. Thus, modern CPSs include devices that form a
multi-sensor configuration. These systems simplify the
data collection process, resulting in the availability of
large datasets. Consequently, there has been an increase in
the development of data mining methods for detecting
anomalies [3].
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The classical approach to such problems usually in-
volves signal processing techniques that extract useful
information from sensor data.

The object of study is complex industrial equipment
with heterogeneous sensory systems of various nature.
For this purpose, preliminary data processing is required
to extract the most informative features [4]. It is usually a
very time-consuming task that requires expert knowledge.

The subject of study is methods for detecting anoma-
lies in industrial equipment signals based on transfer
learning. Images of signal spectrogram and scalogram are
reviewed for a more accurate classification of equipment
failures. The SPOCU (scaled polynomial constant unit)
activation function [5] is considered to improve the accu-
racy of the proposed approach. The XGBoost algorithm is
applied because it has high performance and requires little
computational resources at the training stage.

The purpose of the work is to use transfer learning in
combination with the XGBoost algorithm to improve the
accuracy of detecting an abnormal state from acoustic
signals of CPS.

1 PROBLEM STATEMENT
Suppose we are given an acoustic signal that has a

time-frequency representation X € RET , where T is the
time dimension, and F is the number of frequency bins.
For a given signal dataset, it is necessary to find the func-
tion F:X — R such that F(X) is higher for abnormal
samples than for normal operation recordings. The acous-
tic signal is split into fragments using a sliding window
X € R‘th
| -dimensional feature vector using a feature extractor for
each Xj. A pre-trained deep neural network is considered

(t<T). Here it is proposed to extract the

a feature extractor. Then some anomaly detection algo-
rithm F is trained on all features from the fragments of

the dataset A ={X;eRTT}IL,.

2 REVIEW OF THE LITERATURE

The detection of anomalies in industrial equipment is
becoming an important area of research. The difficulty
here is to obtain information from several sensors that
differ in their specific acoustic properties [6]. Researchers
propose new methods and expand existing algorithms for
detecting industrial equipment faults [6—13].

Morita et al. [7] proposed principal component analysis
(PCA) with local factor outlier (LOF) and Gaussian mix-
ture model (GMM) to detect abnormal sounds in the pres-
ence of limited computing resources and a small dataset.

Paper [8] described an approach that combines pre-
trained OpenL3 embeddings with the reconstruction error
of an interpolation autoencoder using GMM as the final
predictor. The parameters were set individually for each
machine using the results from the development set.

Michau and Fink [9] developed an architecture for
learning a meaningful and sparse representation of high-
frequency signals. They combined both the wavelets the-
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ory and deep learning for classification and anomaly de-
tection tasks.

The application of autoencoder deep learning architec-
tures for unsupervised acoustic anomaly detection based
on Dense and convolutional neural networks (CNN) was
considered in [10]. The energy features of the mel-
spectrogram were extracted from the raw sounds. Several
preliminary experiments were conducted to tune the auto-
encoder hyperparameters.

Tiwari et al. [11] proposed an ensemble of two sys-
tems capable of recording anomalous system behavior. In
the first system, an outlier detection method based on the
nearest neighbor search was proposed. In the second sys-
tem, i-vectors and GMM are applied for anomaly detec-
tion. The negative log-likelihood is used as its anomaly
scores.

OutlierNets, a family of very compact deep convolu-
tional autoencoder architectures adapted for real-time
acoustic anomaly detection, were proposed [12]. It has
extremely low complexity and matches or exceeds large
convolutional autoencoder architecture by AUC (area
under the receiver operating characteristic curve) exhibit-
ing microsecond scale latency on embedded hardware.

The efficiency of acoustic anomaly detection based on
image transfer learning was studied [13]. The authors
considered various deep neural models. Results showed
that features extracted with ResNet18 and ResNet34 with
GMM and OC-SVM (one-class support vector machine)
achieved the best average AUC. It confirmed that the im-
age-based features with transfer learning models might
achieve competitive results in acoustic anomaly detection.

The following conclusions can be drawn summarising
the analysis of the current research state in detecting
anomalies from industrial facilities acoustic signals:

1) A small amount of work was focused on transfer
learning for feature extraction and failure detection in
industrial machines.

2) All the functionality of deep neural networks is not
taken into account.

All this confirms the relevance of this study.

This paper proposes a new method for the automatic
detection of acoustic signal anomalies based on transfer
learning. The signal spectral information is considered as
input data for the proposed model. The addition of the
XGBoost algorithm improves the accuracy of CPS fault
detection. Experiments on a real MIMII (malfunctioning
industrial machine investigation and inspection) dataset
have shown the effectiveness of the proposed approach
and can help experts diagnose equipment malfunctions.

3 MATERIALS AND METHODS

The paper proposes an approach to detecting machine
signal anomalies using transfer learning. Transfer learning
uses weights from a deep neural model, pre-trained on a
large dataset. It can be applied to a small dataset, provid-
ing convergence without overfitting.

The proposed approach to detecting machine signal
anomalies from images using transfer learning consists of
the following steps: pre-processing, feature extraction
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using a deep neural network, feature fusion, and classifi-
cation based on the XGBoost algorithm (Fig. 1).

The considered signals are pre-divided into cells of
128 samples with 64 samples overlap. A scalogram based
on a wavelet transform and a spectrogram based on a
short-term Fourier transform are extracted from the sig-
nals (STFT). STFT splits the signal into several overlap-
ping blocks, multiplying them by the Hanning window
function:

O(w,1) = joo 0(t)o(t —t)e 2 lqt |

—00

()

where o is a window function.
And the Morlet wavelet is considered in the wavelet
transformation to obtain more informative images [14]:

y(t) = e_th2 /2 cos(mt), (2)

where B is a parameter that controls the shape of the

mother wavelet.

Acquisition of the scalogram and spectrogram images
is performed in parallel. Visual representations (RGB) of
128x128x3 size are then sent to a deep neural network.

Since deep learning models are trained on large data-
sets of various images, they can be applied to anomalies
detection in signals from industrial facilities. Each of the
model layers is responsible for different image features.

In this paper, in order to extract features from spectro-
gram and scalogram images, the following pre-trained
deep neural networks are considered: Xception [15], Mo-
bileNet [16], DenseNet-121 [17] and InceptionV3 [18].

The MobileNet model is a small network that contains
depth-separable convolutions and improves recognition
performance [16]. The InceptionV3 network includes
parallel convolutional layers that are then combined to

Spectrogram Scalogram
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produce a result [18, 19]. The Xception network is a lin-
ear set of residual convolutional layers [15, 20]. The sum-
mation operation speeds up the transition from one model
layer to another [21]. The considered DenseNet model is
used to collect information from all levels of the network
and transfer it to subsequent levels when there is not
enough data for training [17].

The fully connected layer was treated as a feature vec-
tor using a pre-trained model. The results are combined to
extract information about various characteristics and re-
duce recognition errors. Thus, the total size of the feature
vector is 1x1024.

In this work, SPOCU [5] is considered in the proposed
model as an activation function in hidden layers to im-
prove the accuracy of anomaly detection in image-based
signals and is calculated as follows:

G(X) = pH[%&j—pH ®). 3)
where &€ (0,1), p,{>0 and
r(c), x=c
H(x)=4r(x), xe[0,c), )
0, x<0

—2x*+2) and 1<c<w. According
p=3.0937, £=0.6653

with r(x) = x> (x>
to (3), here
£=4.437.
Then the resulting feature vector is fed to the
XGBoost classifier, which was proposed by Chen et al. in
2016 [22]. XGBoost is a regression tree that supports the
classification task. The basis of the algorithm is to opti-
mize the value of the objective function. In this case, the
objective optimization function is defined as follows:

C=o, and

Deep Neural Network
(Inception, MobileNet,
DenseNet, etc.)
model

XGBoost
Algorithm

Feature
Fusion

Normal / Anomalous

Figure 1 — Flowchart of the proposed approach
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K
=2 0c(x), dxe®, ®)
k=1
where K is the number of decision trees, ¢y is an inde-

pendent tree with leaf scores, @ is the space of the re-
gression tree. In this case, the loss function is given by the
following equation:

L) =2 0(%i. i) + 2 Q) , (6)

where v is the loss value of the XGBoost algorithm, V;

is the predicted output, Q is a regularization term that
prevents overfitting (7).

Q<¢)=yK+%x||w||2, %

where K is the number of leaf nodes, W is the score on
each leaf, y and A are constants to control the degree of

regularization.
Thus, we get the following:

.
Lo~ D || 201 (W

=1 Liel;

Dohi+A|w

Iel

+— +K. 8
2 Y (3)

where g; is the first derivative, and hj is the second de-

rivative of loss function, respectively.
For the XGBoost method, the learning rate is 0.001,
number of trees to fit 100, maximum tree depth 6, y=0

and A=1.
4 EXPERIMENTS

This section provides the experimental dataset de-
scription, the evaluation metrics, and the experimental
results to evaluate the proposed approach based on trans-
fer learning.

The dataset of CPS under normal and abnormal oper-
ating conditions is considered to evaluate the proposed
approach [23]. The audio dataset was collected using a
circular microphone array consisting of eight separate
microphones as 16-bit audio signals with a sampling rate
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of 16 kHz [23]. It contains eight separate channels for
each segment. The MIMII dataset contains the sound of
four different machine types: valves, pumps, fans, and
sliders. For each type of machine, different real anoma-
lous scenarios were considered: pollution, leakage, rotat-
ing imbalance, rail damage, etc. MIMII also contains data
for four machine IDs (00, 02, 04, and 06). Different sig-
nal-to-noise ratio levels (6 dB, 0 dB, and —6 dB) were
considered in the dataset. It consists of 26.092 “normal”
sound segments and 6,065 abnormal sound segments.

The “normal” and abnormal signatures for all machine
types in the time domain of the MIMII dataset are shown
in Fig. 2 ((a) — (d)) and Fig. 2 ((¢) — (h)), respectively.

STFT spectrogram and scalogram based on wavelet
transform for fans, pumps, sliders, and valves are shown
in Fig. 3 and 4, respectively.

Performance evaluation of the proposed model is
based on the following metrics: precision, recall, and F-
measure.

The precision measure determines as the number of
objects classified as positive that are truly positive:

Precision = _TP . )
TP +FP
where TP defines true positive values, TN are true nega-
tive values, FP are false positive values, and FN are false
negative values.
The recall measure is used to determine the part of the
positive samples selected by the classifier:

TP

Recall =——.
TP +FN

(10)

F-measure combines the recall and precision metrics:

2 x Recall x Precision
Recall + Precision

F —measure =

an

All considered metrics are widely used performance
indicators in machine learning [24].
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Figure 2 — Waveforms of normal ((a)—(d)) and abnormal operation ((e)—(h)) for four considered machines:
a, e — Fan; b, f— Pump; ¢, g — Slider; d, h — Valve

© Sukhostat L. V., 2021
DOI 10.15588/1607-3274-2021-3-11

127



e-ISSN 1607-3274 PapioenexrpoHika, inpopmaTuka, ynpasminas. 2021. Ne 3
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2021. Ne 3

0 Q

Q

3¢

G0

g 2 ¥
g 3 8

90

120 120 120

[=]
L=

a6

60

g 3 ¥
g 2 ¥

120 120 120 120

0 30 60
g h

(&

Figure 3 — Short-time Fourier transform spectrogram of the four considered machines (ID: 00) under normal ((a)—(d)) and anomalous
((e)—(h)) conditions at -6dB SNR:
a, e — Fan; b, f— Pump; ¢, g — Slider; d, h — Valve
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Figure 4 — Continuous wavelet transform scalogram of the four considered machines (ID: 00) under normal ((a)—(d)) and anomalous
((e)—(h)) conditions at -6dB SNR:
a, e — Fan; b, f — Pump; ¢, g — Slider; d, h — Valve
5 RESULTS Table 1 — Performance evaluation of the proposed approach
In this paper, the experiments are conducted in Python Model Metric Machine

2.7.13 using various libraries, including Tensorflow, Li- Fan | Pump | Slider | Valve

. Recall 87.0 95.0 98.0 100
brosa, and Keras. Intel Xeon (R) CPU X5670 @ 2.93GHz | Inception+ [— =t ——o—— e

* 24 with 24 GB of RAM machine was used. XGBoost F-measure | 92.3 90.6 08.1 96.3
This study analyses and compares various deep learn- . Recall 100 88.0 | 98.0 100

. . . Xception+ —
ing models (such as Xception, Inception, DenseNet, and XGBoost |_Frecision | 842 | 100 100 | 92.6
MobileNet). They are trained on the MIMII dataset and F-measure | 968 | 928 | 981 95.3
. . . Recall 96.0 88.0 94.0 100
applied to feature extraction from spectrogram and scalo- Mobilenet+ — = 8.7 957 100 %2
o ! XGBoost recision . . X
gram. Recall, Precision, and F-measure were considered F-measure | 920 | 909 | 961 972
as evaluation metrics. b o Recall 99.9 | 96.0 | 98.0 100
e Precision | 870 | 100 | 100 | 97.

XGBoost

F-measure 98.2 97.1 98.1 97.7

© Sukhostat L. V., 2021
DOI 10.15588/1607-3274-2021-3-11

128



e-ISSN 1607-3274 PapioenexrpoHika, inpopmaTuka, ynpasminas. 2021. Ne 3
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2021. Ne 3

Hyperparameters optimization was performed using
cross-validation. The combination of parameters was cho-
sen based on the lowest training loss and the highest accu-
racy. The best performance of the model was observed
with a batch size equal to 32. Also, the evaluation of the
learning rate was performed on different values. The ac-
curacy of the model decreased with the increasing learn-
ing rate. It is important to note that all four considered
models achieved high accuracy by decreasing the learning
rate to 0.001.

The results of the experiments are shown in Table 1.
Comparison of various deep neural models showed that
Densenet+XGBoost outperformed the other considered
models in detecting anomalies from machine signals ac-
Models

formed well for a Slider machine using recall and preci-
sion metrics. Even though all models showed the best
results in terms of recall for a Valve-type machine, they
were inferior to Densenet+XGBoost according to preci-
sion and F-measure.

Thus, the Densenet+XGBoost model turned out to be
the best. In order to evaluate its performance, it was com-
pared with such models as Alexnet [13], ResNetl8 [13],
ResNet34 [13], SqueezeNet [13], IAEO3 opt [8] and
PCA+LOF+GMM [7] for all types machines and machine
IDs (00, 02, 04 and 06) according to the AUC metric (Ta-
ble 2). Densenet+XGBoost showed the best performance
of all machine types, resulting in average AUCs of 93.1%,
97.3%, 98.4%, and 93% for fan, pump, slider, and valve,

cording to the F-measure metric.

Incep-
tion+XGBoost, XceptiontXGBoost, and Densenet per-

respectively.

Table 2 — Comparison of mean AUC of different transfer learning models on the MIMII dataset

Machine Fan Pump Slider Valve
Model 00 02 04 06 00 02 04 06 00 02 04 06 00 02 04 06
AlexNet+tGMM 57.7 | 61.7 | 539 | 945 | 84.1 | 70.8 | 81.6 | 66.0 | 98.3 | 80.9 | 61.4 | 57.5 | 60.2 | 69.2 | 59.9 | 53.5
[13]
AlexNet+OC-SVM | 51.0 | 73.1 | 59.7 | 932 | 77.5 | 56.4 | 81.1 | 60.1 | 96.2 | 81.4 | 53.6 | 56.5 | 61.6 | 73.6 | 48.3 | 48.9
[13]
ResNet18+GMM 62.6 | 64.1 | 593 | 944 | 845 | 713 | 84.0 | 683 | 99.1 | 858 | 688 | 65.6 | 583 | 73.3 | 60.2 | 56.9
[13]
ResNet34+GMM 58.7 | 656 | 57.0 | 909 | 784 | 66.8 | 87.9 | 63.2 | 99.6 | 90.4 | 82.5 | 69.1 | 73.0 | 79.1 | 60.1 | 61.9
[13]
ResNet34+0C- 50.1 | 67.4 | 57.5 | 83.0 | 649 | 51.5 | 81.2 | 60.2 | 96.8 | 85.0 | 71.4 | 643 | 756 | 77.8 | 64.3 | 53.1
SVM [13]
SqueezeNet+OC- 55.6 | 648 | 46.2 | 788 | 86.7 | 494 | 884 | 623 | 99.2 | 81.5 | 594 | 71.6 | 69.0 | 71.3 | 53.1 | 58.2
SVM [13]
Morita et al. (2020) | 67.4 | 87.1 | 793 | 96.2 | 72.5 | 704 | 942 | 87.1 | 97.7 | 759 | 96.9 | 942 | 99.4 | 91.8 | 94.2 | 80.7
[7]
TAEO3 opt [8] 655 | 833 | 714 | 98.1 | 844 | 77.8 | 98.0 | 789 | 959 | 84.0 | 979 | 85.9 | 100 99.7 |1 99.8 | 98.8
Densenet+XGBoost | 93.6 | 95.1 | 87.9 | 959 | 97.7 | 969 | 97.8 | 97.1 | 99.6 | 99.5 | 97.2 | 973 | 93.8 | 95.7 | 939 | 88.6
6 DISCUSSION onstrated the reliability and robustness of the proposed

The proposed model made it possible to achieve a signifi-
cant improvement in anomaly detection according to the
data of machine sensors according to AUC 95.45%, com-
pared to the previously proposed models [7, 8, 10, 13].
Densenet+XGBoost improved by about 8% over the PCA
model [7] applied to the log spectrogram of the audio
signal combined with LOF and GMM on the MIMII data-
set. Grollmisch et al. [8] proposed a method combining
OPENL3 embeddings and interpolation autoencoder
(IAEO3 opt) for acoustic signals anomaly detection.
Compared to the IAEO3 opt model, the Dense-
net+XGBoost model has improved by approximately 7%
[8]. Densenet+XGBoost gave comparable results (AUC
95.5%) on the reviewed MIMII dataset. Coelho et al. [10]
used CNN and Dense network in combination with an
autoencoder for the task of unsupervised acoustic anom-
aly detection, where the results averaged 72.0%, 73.1%,
91.8%, and 78.9% for the fan, pump, slider, and valve,
respectively. The accuracy of the proposed method is
93.1% for the fan, 97.3% for the pump, 98.4% for the
slider, and 93.0% for the valve, which is significantly
higher than the above result. The results on the MIMII
dataset showed that the Densenet + XGBoost model out-
performed other approaches. The 10-fold-cv results dem-
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CONCLUSIONS

The urgent problem of detecting anomalies is solved
based on acoustic signals from industrial equipment.

The scientific novelty of obtained results is that a
transfer learning approach with the XGBoost classifier is
proposed. There has been little research done in this area,
and therefore studies are underway on various pre-trained
deep neural model architectures to detect anomalies. The
spectrogram and scalogram of the acoustic signal were
considered as input data for the proposed architecture.
The SPOCU activation function [5] was used to improve
the accuracy of the proposed approach.

The practical significance of the obtained results is
that experiments on a real MIMII dataset showed the ef-
fectiveness of the proposed approach and can help experts
in diagnosing equipment malfunctions. Comparison with
other known methods proves the superiority of Dense-
net+XGBoost in terms of anomaly detection accuracy.

Prospects for further research are in the develop-
ment of ensemble approaches based on transfer learning
using other real datasets to improve the performance and
fault-tolerance of CPS.
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IHTEJEKTYAJIbHA MOJIEJIb BUSIBJIEHHS AHOMAJIIM Y KIBEP®I3IYHUX CACTEMAX HA OCHOBI
TJINBOKOTO TPAHC®EPHOI'O HABUAHHSI

Cyxocrar JI. B. — kauj. TexH. HayK, JOIeEHT, [HCTUTYT iHpopManiitHux Texnomnoriii, HanionansHa akanemis Hayk A3sepOaifmka-
ny, baky, Azep6aiimkaHn.

AHOTAIIA

AKTyalbHicTh. Po3risHyTO 33124y BUSBICHHS aHOMaJIii CUrHAIIB Kibepdi3nuHUX CHCTEM Ha OCHOBI 300pakeHb CIIEKTPOrpaM i
ckasorpaM. O6’€KTOM IOCIIKEHHS € CKJIaJHE IPOMHUCIIOBE YCTATKYBaHHsI, SIKE Ma€ HEOAHOPIHI CEHCOPHI CUCTEMH PIi3HOI MPUPO-
.

Merta po6oTu. Pozpobka MeTomy BUSBICHHS aHOMAJIill CUTHAIIIB Ha OCHOBI TpaHC(EepHOTO HABUaHHS Y MOEIHAHHI 3 AITOPUTMOM
€KCTPEMAaJIBHOTO IPalieHTHOrO OYCTIHTY.

MeToa. 3anpoNOHOBAHO IIIXiM Ha OCHOBI TPaHC(EPHOrO HABYAHHS i €KCTPEMATBHOTO IpaJiceHTHOTO OyCTiHTY, po3poOeHui
JUISL BUSIBJICHHS] aHOMaJIii B aKyCTHYHHX CUTHaJaxX Kidep(iznuHux cucteM. Y 1ii obnacti Oysio IpoBeieHo Majlo JOCIiKeHb, 1 ToMy
BUBYAQINCS PIi3HI apXiTEeKTypH 3a3jajieriib HaBYEHHX IJIMOOKMX HEHPOHHHMX Mojejei, 00 MOJIMIINTH BHSBICHHS aHOMaJii.
TpancdepHe HaBUaHHS BUKOPUCTOBYE Baru 3 IIIMOOKOI HEHPOHHOI MOJE, MOMepeJHhO HABUCHOI HA BEJIMKOMY HaOopi MaHHX, i
Moke OyTH 3aCTOCOBaHE 10 HEBEINKOro HaO0Opy HaBYAIBHHX JaHUX, 10 3abe3mnedye 301kHICTh Oe3 nepenaByanus. Kimacuunuii min-
X1/ 10 Takoro poay mpodieM 3a3BU4ail BKIIIOYA€E B cede METOAN OOpOOKH CUTHAIMIB, SIKi O3BOJISIFOTH OTPUMYBATH KOPUCHY iH(OpMa-
LiI0 3 JTaHUX CEHCOpiB. Y Il CTaTTi BUKOHYETHCS 3aBJAHHS BUSABICHHA aHOMAIil 3 BUKOPHCTaHHSAM apXiTEKTypH TTHOOKOTO Ha-
BYaHHSI U1 pOOOTH 3 aKyCTHYHUMU CUTHAJIAMH, 3 SIKHX HONEPEIHBO BUTATYIOTHCS CIIEKTPOrpaMu i ckanorpamu. OyHKIIs aKTHBALIi
SPOCU 6yna po3rmisiHyTa Iyl MOJIIIISHHS TOYHOCT] 3aIIpOIIOHOBAHOTO MiIX0/y. ANTOPUTM €KCTPEMAIBHOTO IpaieHTHOTO OyCTiH-
ry OyB BUKOPHCTaHHH, OCKIIBKH BiH Ma€ BHCOKY IPOJYKTHUBHICTH i BUMarae Majo o0YMCIIIOBAIBHHUX PECYpCiB Ha eTari HaBYaHHS.
3acTocyBaHHS JQHOTO AJITOPUTMY JO3BOJISIE JIOMOITHCS 3HAYHOTO MOJIIINCHHS BHUSBJICHHS aHOMAJid B CHIHalax MPOMHUCIOBOTO
o0JaiHaHHS.

PesyabraTi. Po3pobnenuii niaxin peatizoBaHuii IPOrpaMHo i JOCTIHKEHMH i Yac BUPILICHHS 3aBIaHHs BUSBIICHHS aHOMAJil
B aKyCTHYHHX CHTHaJIaX Kibepdiznunux cucrem Ha Habopi qanux MIMIL.

BucHoBku. [IpoBeneHi exciepuMEHTH MiATBEPIMIN MPale3AaTHICTh 3alIPOIIOHOBAHOTO MiAXOAY 1 TO3BOJISIOTH PEKOMEHIYBATH
HOro JuIsi BUKOPUCTAHHS Ha IPAKTHLI NPU BUPILICHHI 3aBJaHb J[IarHOCTYBaHHS CTaHy HPOMHUCIOBOrO YCTaTKyBaHHs. IlepcnekTusu
MOJANBIINX JOCTIIKEHb MOXYTh IIOJISITaTH B 3aCTOCYBaHHI aHCAMOJIEBUX IIJXOMIB Ha OCHOBI TpaHC(EPHOro HABUAHHS IO PI3HUX
peanbHUX HAaOOPIB JAaHUX JUIS MiJBUIIEHHS MTPOIYKTHBHOCTI Ta BIIMOBOCTIIKOCTI Kibep(i3HIHUX CUCTEM.

KJIFOUYOBI CJIOBA: BusiBiieHHs aHOMaiil, aKkyCTUYHHN CUTHAJ, TpaHC(EpHEe HaBYaHHs, CIIEKTporpama, ckajiorpama, Kidepdi-
3WYHA CHCTEMa.
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UHTEJUIEKTYAJBHAS MOJEJIb OGHAPYKEHUS AHOMAJIMI B KHBEP®U3NYECKAX CUCTEMAX HA
OCHOBE I''IYBOKOI'O TPAHC®EPHOI'O OBYYEHHUSA

Cyxocrar JI. B. — kaHa. TexH. Hayk, OomneHT, Muactutyr MHpopMmanmonnsix TexHomoruii, Hammonansaas Axagemus Hayk
Asepbaiipkana, baky, AzepOaiikan.

AHHOTALUA

AKTyanbHOCTh. PaccMoTpeHa 3aaua oOHapy)keHUs] aHOMAaJIMH CUTHAJIOB KMOEp(U3MUECKUX CHCTEM Ha OCHOBE M300pakeHWi
CIIEKTpOrpaMMm ¥ ckajorpaMM. OGBEKTOM HCCIIeJOBaHUS SBISIETCS CJI0KHOE IPOMBIIUICHHOE 000pyJ0OBaHNEe, KOTOPOE MMEET HEOll-
HOPOJHbIE CEHCOPHBIE CUCTEMBI PA3IUYHOM MPUPOIBI.

Iean padorsl. PazpaboTka MeTona oOHapyXEeHUSI aHOMAJIN CUI'HAJIOB HA OCHOBE TpaHC(EpHOro oOy4yeHUsl B COUETAHUH C al-
TOPUTMOM SKCTPEMATIBHOTO IPaJHEHTHOTO OyCTHHTA.

Merton. [Ipemnosxer moaxo Ha OCHOBE TpaHC(HEPHOTO OOYUEHHS U IKCTPEMAIBHOTO TPAIUCHTHOTO OyCTHHTa, pa3paboTaHHbIH
JUIsl OOHAPYKEHHS aHOMAJIHH B aKyCTHUECKUX CHTHanax KHOep(hU3HIecKux cucTeM. B aToit o6nacTu ObUIO IIPOBEAEHO Mo HCClle-
JIOBaHUMH, U II09TOMY HM3y4aJHCh Pa3INYHBIC apXUTEKTYpPHI 3apaHee OOYUEHHBIX ITyOOKHMX HEHPOHHBIX MOAENEH, YTOOB! yIIydIINTh
obHapyxeHue anoManuii. TpancdepHoe 00yUeHHE UCTIONB3YET Beca U3 rIyOOKON HEWPOHHOM MOJIEIH, IPEIBAPUTEIBLHO 00YICHHOMN
Ha 00JBLIOM HAa0Ope TAaHHBIX, K MOXKET OBITh NPHMEHEHO K HeOOJNIbIIOMY HAaOOpy 0O0ydYaloIuX NaHHbBIX, YTO 0OECIeurBaeT CXOAHU-
MocTh 6e3 nepeoOyuenns. Kinaccnueckuil moaxoa K Takoro poaa npodiemMaM oObIMHO BKIIIOYAET B ceOs MeToabl 00pabOTKH CUI'HA-
JIOB, KOTOPBIE T03BOJIAIOT U3BJIEKATh MOJIE3HYI0 MHGOPMALIMIO U3 JAHHBIX CEHCOPOB. B 3TOM cTarbe BHIIONHACTCS 3a/1a4a 0OHapyxKe-
HUSI aHOMAJIMH C MCIOJIB30BAaHUEM apXUTEKTYpBI TTyOOKOro 00ydeHust Juist paboThI ¢ aKyCTHUECKUMH CHTHAJIAMU, U3 KOTOPBIX MPe-
BapUTENNBHO M3BIEKAIOTCS CIIEKTPOTpaMMEI U ckanorpaMmsl. Oynkmus aktusaruy SPOCU 6blu1a paccMOTpeHa [UIS yITydIIeHUs TOd-
HOCTH HPEIUIOKEHHOTO MOAX0Aa. AJITOPUTM HKCTPEMAIBHOTO TPAJAMCHTHOr0 OyCTHHTa OBLI MCHOJIB30BAH, IOTOMY YTO OH OOJlaiaeT
BBICOKOH ITPON3BOJUTEIBHOCTHIO U TPeOyeT MaJlo BEIYHCIUTENEHBIX PECYPCOB Ha dTare o0ydeHus. [IpuMeHeHre TaHHOTO anroput-
Ma HO3BOJIET JOOUTHCS 3HAYUTEIBHOTO YIIYUIIeHHs] 0OHAPY)KESHUSI aHOMAJIMIT B CHTHAJIaX ITPOMBIIIIIEHHOTO 000pYX0BaHMSI.

Pe3yabTaTtsl. PazpaboTaHHbIi 101X0/] peann30BaH MPOrpaMMHO U MCCIIEJOBAH IIPH PEIICHUH 33/1au¥ 0OHapy>KeHUsI aHOMAaJIUH B
aKyCTHYECKHX CHTHalIaX kubepdusndeckux cucreM Ha Habope nanueix MIMIL

BoiBoabl. IIpoBeieHHBIE SKCIIEPUMEHTHI MOATBEPAUIH PAOOTOCIOCOOHOCTh MPEIOKEHHOTO MOAX0Aa U MO3BOJAIOT PEKOMEH-
JIOBaTh €T0 JUISl UCIIONB30BAHMS HA MPAKTUKE TPH PEHICHUN 331a4 JHATHOCTHPOBAHMS COCTOSIHUS IIPOMBIIIIEHHOTO 000pyA0BaHMSI.
[NepcriekTuBBI JanbHEHIINX HCCIEIOBAHMI MOTYT 3aKJIIOYATHCSI B IIPUMEHEHUH aHCAMOJIEBHIX MOAXOM0B Ha OCHOBE TPAHC(EPHOTO
0o0y4eHHsI K pa3IMYHBIM peaTbHBIM HAa0OpaM JAaHHBIX JUIS HOBBIMICHUS IPOM3BOIUTEILHOCTH M OTKa30yCTOHIMBOCTH Kubephusude-
CKHX CHCTEM.

KJIFOYEBBIE CJIOBA: oOHapykeHHE aHOMAJIMi, aKyCTHYCCKUN CHUTHAI, TpaHCepHOe 0O0ydYeHHE, CIIEKTpOorpamma, CKajo-
rpamma, kubepdusuueckas cucrema.
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