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ABSTRACT

Context. The Poisson equation is the one of fundamental differential equations, which used to simulate complex physical proc-
esses, such as fluid motion, heat transfer problems, electrodynamics, etc. Existing methods for solving boundary value problems
based on the Poisson equation require an increase in computational time to achieve high accuracy. The proposed method allows solv-
ing the boundary value problem with significant acceleration under the condition of acceptable loss of accuracy.

Objective. The aim of our work is to develop artificial neural network architecture for solving a boundary value problem based
on the Poisson equation with arbitrary Dirichlet and Neumann boundary conditions.

Method. The method of solving boundary value problems based on the Poisson equation using convolutional neural network is
proposed. The network architecture, structure of input and output data are developed. In addition, the method of training dataset gen-

eration is described.

Results. The performance of the developed artificial neural network is compared with the performance of the numerical finite
difference method for solving the boundary value problem. The results showed an acceleration of the computational speed in x10—

700 times depending on the number of sampling nodes.

Conclusions. The proposed method significantly accelerated speed of solving a boundary value problem based on the Poisson
equation in comparison with the numerical method. In addition, the developed approach to the design of neural network architecture
allows to improve the proposed method to achieve higher accuracy in modeling the process of pressure distribution in areas of arbi-

trary size.

KEYWORDS: machine learning, Poisson equation, convolutional neural network.

ABBREVIATIONS
CFD is a computational fluid dynamics;
ANN is an artificial neural network;
FPN is a Feature Pyramid Network;
MSE is mean squared error;
GPU is a graphics-processing unit;
PDE is a partial differential equation;
RHS is a right hand side;
BC is a boundary condition.

NOMENCLATURE
A is the Laplace operator;

F (x,y) is the right-hand side function;
u(x,y) is the unknown function;
U j is the discrete value of the unknown function at

the node with (i,j) coordinates;

h is an area sampling step;

n,m are the number of steps in X and y coordinates, re-
spectively;

¢; 1is the Dirichlet boundary condition.

INTRODUCTION
Traditionally, we use CFD modeling to determine the
distribution of pressure and other parameters of the
movement of liquids or gases. Finite Difference Method,
Finite Element Method and Finite Volume Method are
key techniques for solving aerodynamic problems,
weather forecasting, life sciences and many other fields.
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However, all these methods have a number of signifi-
cant disadvantages. The main common disadvantage of
CFD methods is a significant increase in the amount of
computation and memory used with increasing number of
sampling nodes or domain size.

When using the finite differences method, the solution
of such a system can be simplified by using the fact that
in this case we obtain a three-diagonal matrix. This struc-
ture of the matrix allows the use of parallel calculations,
which significantly reduces the time to solve the problem.
However, this approach makes sense to apply in the case
of an area with simple geometry, because the finite differ-
ence method may lose convergence.

These factors interfere the widespread use of numeri-
cal methods in real-time applications and stimulate active
research into alternative methods for solving PDEs to
overcome these limitations.

The use of ANN has great prospects for solving these
problems. This opportunity appeared through significant
progress in the field of deep machine learning. The use of
ANN of various types to solve boundary value problems
is developing rapidly. This progress is based on a real
opportunity to overcome those objective limitations that
numerical methods have.

One of the fields of study, where deep learning algo-
rithms can be applied is a biomedical engineering. Accu-
racy of modelling of biological objects has less crucial
role, than speed of modelling. Moreover, GPU-
accelerated neural networks can be a new efficient solu-
tion for many biomedical problems.
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Example of such problem is the mathematical models
of anastomoses of human stomach. Determination of the
pressure field in the zone, which can be described by the
Poisson equation, of the reconstruction-recovery opera-
tion in the real time, doesn’t require extremely high preci-
sion. That’s why we consider application of artificial neu-
ral networks as alternative to numerical methods to solve
mentioned problem.

The object of study is the process of computational
hydrodynamics.

The subject of study is the methods and means of us-
ing ANN to solve the Poisson equation.

The aim of this work is to develop and train an artifi-
cial neural network for modeling pressure field changes in
areas with complex geometry and boundary conditions,
which allows to reduce the simulation time with accept-
able accuracy.

1 PROBLEM STATEMENT
Poisson equation is an elliptic partial differential
equation. The solution of this equation is presented as a
boundary value problem in a rectangular domain 2 with
parameters (x,y) €[0,n]x[0,m] . This problem can be

mathematically represented by next formulas:

Au(x,y) = F(x,y),
u(x,O) = (x),
u(0.y)=92(»), (1)
u(x,m)=¢3(x),
u(ny)=94(v).

To construct a difference scheme for the boundary
value problem (1), we introduce a uniform grid:

®p

= {xi = ih,yj = jh,i =1,_n,j =j_m} , Where h=1.

After discretization of the boundary value problem
(1), using the symbolic notation of difference operators,
we obtain the difference boundary value problem on the

oy, grid:

_(Ah)”i,j =fij>
uio =y (i),
g ; =92 (J) )
Ui =93 (i),
wy ;=04 (J)-

We use the second central difference to approximate
the Laplace operator at an arbitrary interior cell with co-

ordinates (xi, y j) and perform calculations on a five-

point template. Thus, we obtain an approximation of the
Poisson equation for interior cells:
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Since we use a step size equal to one, equation (3) has
a simplified form:

Jij =Aui ;=g e U U 4)

In reality, we do not use the whole domain £ to get
useful results, but only a certain part of it. The object in
the domain Q has a complex shape bounded by obstacles.

To represent difference between regions, the (mxn)-

matrix dist introduced by its elements:

1,(i, j)—node of the obstacle region,

0,(i, j)—node of the object region.

For all (i, j)-cells with dist; =1 we use f;; =0.
Otherwise, function f;; defined in tabular form. The
values of the f; ; function can vary in the range [-1, 1].

Example of domain, divided into obstacle and object,
presented in Fig. 1. Part of such domain presented more
detail in Fig. 2.
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Figure 1 — The black region is an obstacle and the gray
region is an object
We carry out calculations in accordance with equation
(4) only for those (i, j)-cells for which the following con-
ditions are satisfied:

diSti,j+l = 0,
diSti,j—l = 0, . .
‘ (1<z<n,1<]<m).
dlSti+1,j = O,
disrl‘*l,j = O
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Figure 2 — The black squares are obstacle cells and the gray
squares are object cells

The remaining cells belonging to the object may have
1, 2 or 3 neighbors located in the obstacle region. There
may be various combinations of obstacle and object
neighbor cells. All of them can be obtained by rotating
and/or mirroring the configurations shown in Fig.3.

We use different approximation schemes for each of
the following configurations:
one obstacle (Fig. 3a),

— 4u;;—u; i —u; ;g = f;; for two opposite obsta-
cles (Fig. 3b),

— 4wy ;—2u; ;= 2uy ;= f;; for two non-opposite
obstacles (Fig. 3c¢),

— 4u; j —2u; ;. = f;; for three obstacles (Fig. 3d),

We assume that f; ;=0 if /i and ; are outside the

domain.

To solve this boundary value problem, we transform
(2) into a system of linear algebraic equations and calcu-
late the unknown value for each cell.

1,7 |G|+ L

jj+1

ij-1] a if-1 b
i+l
i-1,j f'+1,j

Figure 3 — Basic combinations of obstacle and object
neighbor cells

2 REVIEW OF THE LITERATURE
The dynamics of fluid motion is an extremely impor-
tant task that underlies research and engineering solutions
in various fields of science and technology. CFD is
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widely used in many fields of study and industries [1]. At
the same time, there is a problem associated with the fact
that all numerical methods have a number of significant
disadvantages [2].These disadvantages can be partially
overcome by parallelizing the finite difference method
[3]. However, to achieve convergence of this method, we
must only use simple domain geometry or adaptive
meshes [4].

Thanks to the successful development of machine
learning and deep neural networks, it has become possible
to make a breakthrough in the field of modeling physical
processes [5]. The first investigations into solving PDEs
using machine learning was carried out in the early 90s.
Dissanayake and Phan-Thien [6] proposed multilayer
perceptron to solve non-linear problems, such as Poisson
equation and thermal conduction with non-linear heat
generation. The main limitation of this method is a rela-
tively small size of modeled domain [7]. Lee and Kang
[8] introduced the general concept of developing neural
algorithms for solving differential equations. Main limita-
tions of studies of mentioned period are specific range of
modelled RHS functions, a narrow set of BC and small
domain sizes.

In the beginning of 2000s, with the improvement of
computational efficiency, much more studies were pub-
lished, which presented more complicated and robust
models. In [9] the authors investigated Multilayer percep-
trons to predict the orthogonal decomposition of the 2D
Navier-Stokes equation and the 1D Kuramoto-
Sivashinsky equation. A more in-depth and complex re-
view of methods and techniques was conducted by Yadav
and Kumar [10].

Xiao et al. [11] and Tompson et al. [12] were one of
the first to research the use of convolutional neural net-
works to solve the Poisson equation. Both works pro-
posed similar approaches to solve a boundary value prob-
lem based on the Poisson equation with a given RHS
function. It is reported that in both cases there are prob-
lems with the accuracy of the results with reduced simula-
tion time.

3 MATERIALS AND METHODS

The structure of the developed ANN was adapted and
modified from the FPN architecture [13]. The presented
version of the Poisson solution-oriented ANN allowed
reducing the number of trained parameters from
23534592 in the basic network to 337447.

The presented ANN includes two main parts, called
“bottom-up pathway” and “top-down pathway”. The gen-
eral structure of ANN is shown in Fig. 4.

The input data for the “bottom-up pathway” is pre-
sented as a tensor of size 96x96x2. We obtain such data
by combining two 96x96 matrices, where the first matrix
is the RHS of the Poisson equation and the second matrix
encodes the geometric space. The values of the elements
of the second matrix correspond to the following rules: if
the grid cell is located in the obstacle area, then the corre-
sponding matrix element is zero, otherwise the value of
the matrix element is equal to the distance to the nearest
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obstacle cell divided by 96\2. Example of geometry and
respective encoding is shown in Fig. 5.

The “bottom-up pathway” part consists of 4 blocks.
There are three modified “residual” blocks and one
“pre_conv” block in it. The structure of the “pre conv”
block is shown in Fig. 6. It contains three layers, namely
2D convolution layer, batch normalization layer and relu
activation layer. We included this block in the ANN struc-
ture to increase the number of channels from 1 to 64 and
pass the tensor forward to the “residual” blocks.

Each subsequent “residual” block halves the tensor
obtained from the previous block and transmits the result
to the corresponding upsampling layer, which is located
in the “top-down pathway” part. The proposed structure
of a convolutional neural network uses the main property
of neural networks of this type, which combines the char-
acteristics of the fluid at different scales. Thus, we com-
bine each cell with the rest of the considered domain. The

Bottom-Up Pathway

I
i
> ; up_sampling_2d
I
|

data outputs of each “residual” block and the “pre_conv”
block are transmitted to a 2D convolution layer with a
core size of 1 x 1 to reduce the number of channels.

Next, convolution outputs pass to upsampling layers,
which form “top-down pathway”, where size of first “re-
sidual” block output multiplies by 2, second output by 4,
and third output by 8. After this operation, all outputs
combine into single tensor by concatenating them along
last axis. Finally, this tensor moves to a two-dimensional
block “output_conv”, which consists of 2 layers of convo-
lution: the first layer consists of 7 filters and core size 3,
and the second contains 1 filter, core size 3 and the func-
tion of activating the hyperbolic tangent in the range from
—1 to 1. Output tensor of the model is 2D array, with
shape 96x96. To obtain solution of Poisson equation with
input RHS, values of the output array must be rescaled
into the original training data distribution.

Top-Down Pathway
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Figure 4 — General structure of the ANN
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Figure 5 — The left shows the geometry of the zone where the light shade represents the obstacle zone; the light shades in the right
figure correspond to the values of the elements of the distance matrix to the nearest obstacle
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The training data set contains 40,000 pairs of samples,
where the features are represented by 2 matrices of size
96 x 96. One matrix contains a tabular representation of
RHS, and the other specifies the geometry of the space.
The target matrix is a solution of the Poisson equation of
96 x 96 size. The solution is computed using the algebraic
multigrid Python PyAMG package [14].

We prepared 140 geometries, and for each geometry,
we generated 250 RHS matrices and corresponding solu-
tions. Thus, 35 000 samples were processed.

Examples of such a pairs presented in fig. 8. Addition-
ally, we generated 5000 samples without any geometries.
An example of such a pair we can see in Fig. 7. In this
case, all values of the distance matrix were equal to 1.
RHS matrices were created by generating 8 x 8, 12 x 12
and 16 x 16 low-resolution grids with random values
from —1 to 1, and then increasing the generated grids to
the target size of 96 x 96 by cubic interpolation.

Each pair of samples contains an array with the solu-
tion of the equation, i.e. the target value. However, those
values constrained in an interval, that highly bigger, that
[-1, 1]. To provide stability of network training, all values
of generated solution were normalized to distribution with
0 mean and 1 standard deviation. After normalization,
those values were rescaled to range [-1, 1]. Data normali-
zation and scaling was performed by scikit-learn library
[15]. Those values are final target variable of training
process.

The model was implemented using TensorFlow 2.4.1,
with Adam weight optimizer [16], with following parame-
ters: learning rate=0.001, beta 1 = 0.9, beta 2 = 0.999,
epsilon = le-7. We take mean square error as a loss func-
tion during training.

Training was conducted on GPU MSI GeForce GTX
1660 Super Ventus OC 6GB GDDRG6, during 300 epochs
and with batch size of 32.

4 EXPERIMENTS AND RESULTS
The described ANN is used in modeling the distribu-
tion of pressure in the human stomach. We modeled the
stomach in 3 states-normal state and 2 different types of
anastomosis (Fig. 9).

MSE in the first case is 0.000185, in the second —
0.000161, in the third — 0.000344.

Results demonstrated in Fig. 10—12.

We obtained an increase in the simulation speed com-
pared to the numerical method. The PyAmg package was
used to implement the numerical method. We measured
the time of solving the boundary value problem on 1, 10,
50, 100, 200, 500 and 1000 samples. Due to the ability of
ANN to process many samples simultaneously using a
graphics processor, the highest increase in acceleration
speed was achieved in 500 samples (Table 1 and Fig. 13).

5 DISCUSSION

Figures 10 and 11 show that the trained neural network
selects the same regions with extreme pressure values as
the numerical method chosen as the ground truth. Despite
the ability to distinguish areas with high or low values, the
trained ANN needs to be improved to make better predic-
tions in the direction of smoothly varying values.

The experiments showed an increase in the simulation
speed compared to the chosen numerical method. This fact
can also be explained in particular by conducting experi-
ments using GPU, which accelerate the matrix operations
that are basic for CNN. Moreover, used GPU — nVidia
GTX 1660 Super isn’t the fastest GPU nowadays. Using
newer and powerful GPU will achieve even bigger gain in
computational speed. In respect of this fact and relatively
small accuracy loss, in comparison with numerical method,
the developed method can be applied in fields, where speed
of modelling is more crucial, than accuracy, like some parts
of biomedical engineering etc.

Further research will be aimed on improving neural
network architecture to make predictions smoother. In ad-
dition, we believe that the main disadvantage of this result
is the fixed size of the domain of 96 x 96. Therefore, we
will focus on developing methods of deep learning para-
digms that will allow us to work with arbitrary domain
sizes. This approach involves improving the generation of
training data sets, including the choice of a numerical
method for solving a boundary value problem that directly
affects the accuracy of the neural network.

corwv_2d, fiters=64, kemel=5, stride=1

Figure 6 — “Pre_conv” block
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nguk

Figure 7 — The graphical representation of the RHS function is presented on the left, the corresponding solution is shown on the right

Figure 8 — RHSs for the equation are shown on the left, the corresponding solutions are shown on the right; white indicates obstacles

© Kuzmych V. A., Novotarskyi M. A., Nesterenko O. B., 2022
DOI 10.15588/1607-3274-2022-1-6

53



e-ISSN 1607-3274 PapioenexrpoHika, inpopmaruka, ynpasminss. 2022. Ne 1
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 1

Figure 9 — Left —normal stomach, center and right-anastomosis
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Figure 10 — Normal stomach; left — RHS of equation, center — network prediction, right — ground truth; white color denotes obstacles
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Figure 11 — Anastomosis; on the left — the right equation, the center — the network forecast, on the right — the basic truth;
white indicates obstacles
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Table 1 — Comparison of ANN and numerical method speed performance

Number of samples Total time — Time per sample — Total time — numerical Time per sample — numerical
ANN, ms ANN, ms method, ms method, ms
1 23.80 23.80 237.00 237.00
10 29.00 2.90 7460.00 746.00
50 55.80 1.12 31400.00 628.00
100 91.20 0.91 52600.00 526.00
200 159.00 0.80 99000.00 495.00
500 334.00 0.67 261000.00 522.00
1000 725.00 0.73 536000.00 536.00
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Figure 12 — Anastomosis; on the left — the right equation, the center — the network forecast, on the right — the basic truth;
white indicates obstacles
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Figure 13 — Dependence of efficiency gain on the number of samples

CONCLUSIONS
This paper has investigated application of convolu-
tional neural networks in solving boundary value problem
based on the Poisson equation. We propose novel ap-
proach to solve Poisson equation with Dirichlet and Neu-
mann boundary conditions, in domain with fixed size —
96x96.
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Experiments with the developed method shown big
gain of computational speed, in comparison with numeri-
cal method.

Scientific novelty is represented by the method of
solving a boundary value problem based on the Poisson
equation, which allowed to significantly accelerate the
speed of its solution in comparison with the numerical
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AHOTAIIA

AxTyanbHicTb. PiBusuus [lyaccona — ne oxHe 3 GyHIaMeHTanbHUX AU(GEPEHIIATbHUX PiBHSAHB, SKE€ BUKOPUCTOBYETHCS IS
MOJICJTIOBAHHS CKJIAAHUX (i3MYHUX TMPOLECIB, TAKUX SIK PyX PIIUHH, MPOOIEMH TEIIOOOMIiHY, EICKTPOJMHAMIKK Tomlo. IcHyroui
METOAHM PO3B’sI3yBaHH: KpaHOBUX 3a1ad Ha OCHOBI piBHAHHA IlyaccoHa it JOCSATHEHHS BUCOKOI TOUHOCTI, BUMAraroTh 301bIICHHS
Yyacy 004HMCIICHb. 3alPONIOHOBAHUI METO I03BOJISIE PO3B’A3yBaTH KpaioBy 3aj1auy 3i 3HAUHUM NPHCKOPEHHSM, 32 YMOBH HE3HAYHOI
BTPATH TOYHOCTI.

Meta. Metoro Hauioi po6oTH € po3podka apXiTeKTypH IUTYy4YHOI HEHPOHHOT Mepexi [UIsl pO3B’si3yBaHHs KpailoBoi 3aiaui Ha Oc-
HOBI piBHsHHS [lyaccona 3 oBUTbHUMH KpaiioBumu ymoBamu [lipixiie ta Helimana.

MeTton. 3anpornoHOBaHO METO/ PO3B’A3yBaHHS KpaloOBHX 3a7ay Ha OCHOBI piBHsIHHSA [lyaccoHa 3a J0NOMOTO0 3rOPTKOBOI HE-
poHHOT Mepexi. Po3pobieHo apxiTeKTypy Mepexi, CTPYKTYypYy BXiJHHX Ta BHXiIJHUX IaHHX. Takok OMHCaHO MeToa (HopMyBaHHs
HABYAJIBHOI'O HA0OPY JaHUX.

PesyabTaTn. Pesynprat po6oTH po3po0iieHOT HEHPOHHOT Mepeski Oyir MOPIBHSAHI 3 MPOAYKTUBHICTIO YHCEIFHOTO METOIY CKi-
HYCHHHX DI3HUIb JUIA BHUPILMICHHS KpaloBoi 3amadi. Pe3ynpTaTé mMpoaeMOHCTPYBaIH MPUCKOPEHHS OOYUCIIOBAIBFHOI MIBUIAKOCTI Y
x10-700 pa3iB, B 3a1€XXHOCTI BiJ{ KUIBKOCTI BY3JIiB JUCKpETH3aIii.
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BucHoBKH. 3anpornoHOBaHMI METO 3HAUYHO IPUCKOPHB MIBUAKICTH BUPIIICHHS KpaiioBoi 3a1a4i Ha OCHOBI piBHsAHHSA [lyaccoHa
B MOPIBHSHHI 3 YHCEIBHUM METOJIOM. TaKoX po3poOIeHHH MiaXi 10 MPOEKTYBAHHS apXiTEKTypH HEHPOHHOI Mepexi J03BOJISIE BIO-
CKOHAJIUTH 3alPOIIOHOBAHUI METOJ JUIsl JOCATHEHHS OUIBII BUCOKOT TOYHOCTI ITPU MOJISIIOBAHHI MPOLIECY PO3NOALTY TUCKY Yy 00ia-
CTSIX JOBLIBHOTO PO3MIpY.

KJUIFTOYOBI CJIOBA: marinnHe HaBYaHHs, piBHsHHS [lyaccoHa, 3ropTKoBa HEHPOHHA Mepexa.

VK 004.93
PEIIEHHUE YPABHEHUSI TYACCOHA C IPUMEHEHUEM CBEPTOYHBIX HEMIPOHHBIX CETEN

Ky3smuu B. A. — PhD cryznent xadenpbl BHIUUCIHTETbHON TeXHUKH, HannoHanbHBIN TeXHUYSCKUI YHHBEPCUTET YKpaWHBI
«Kuesckuil nonurexHuueckuit ”HCTUTYT uMeHU Urops Cukopckoroy.

HoBotapckmii M. A. — 1-p TexH. HayK, nnpodeccop kaderpbl BEIMUCIUTEIHHON TEXHUKH, HallnoHa IbHBII TEXHUYECKHI YHUBEP-
cuteT Ykpaunsl «KueBckuil nonuTexHuueckuit MHCTUTYT uMeHH Mrops Cuxkopckoroy.

Hecrepenko O. b. — xann. ¢us.-mat. Hayk, 3aBeayrouias kadenpoi npukiIaaHoid GU3NKK U BbICIICH MaTeMaTHKH, KueBckuii
HaIlMOHAJIbHBIM YHUBEPCUTET TEXHOJIOTHI U AU3aiiHa.

AHHOTAIUA

AKTyanbHOCTb. YpaBHeHne [lyaccona — 3170 ogHO u3 (yHAAMEHTAIBHBIX AU((epeHIINaNbHbIX yPAaBHEHUH, KOTOPOE UCTIONb3Y-
eTCsl UISl MOJEIMPOBAHMS CIIOXKHBIX (PU3NUCCKUX IPOIECCOB, TAKUX KaK JBIKEHHE >KHIKOCTHU, MPOOJIEMBI TEINIOOOMEHA, JJIEKTPO-
JUHAMHUKH 1 ToMy Hono0Hoe. CyInecTBYIOIIe METOb! PEIICHHUS KpaeBhIX 3a7ad Ha OCHOBE ypaBHEHUs [lyaccoHa mis JOCTVKCHUS
BBICOKOHM TOYHOCTH, TpeOyIOT YBEIMYECHHsS BPEMEHH BbIUMCICHHH. [IpeioskeHHbIH MEeTO| O3BOJISET pellaTh KpaeByro 3a1ady co
3HAYUTENILHBIM YCKOPEHHEM IIPH yCIOBUM HE3HAYUTEIBHON IOTEPH TOYHOCTH.

Hean. Llensto Hame# paboTh ABIAETCS pa3paboTKa apXUTEKTYPbl HCKYCCTBEHHON HEHPOHHOW CETH /IS pellieHHs KpaeBoi 3aa-
Yy Ha OCHOBE ypaBHeHus IlyaccoHa ¢ npou3BOIbHBIMU IPAHUYHBIMU ycii0BUsAMH [upuxiie u Helimana.

Mertoa. [Ipennoxen MeTo pelIeHHs KpaeBbIX 3ajjauy Ha OCHOBE ypaBHeHMs IlyaccoHa ¢ OMOIIBIO CBEpTOYHON HEHPOHHOU ce-
tH. Pa3zpaboraHa apXuTeKTypa CETH, CTPyKTypa BXOAHBIX M BBIXOJHBIX JaHHBIX. Takxke omucaH MeTox (HOPMHUPOBAHUS YIeOHOTO
Habopa TaHHBIX.

Pe3yabTatsl. Pe3ynsraTel paboThl pa3paboTaHHON HEWPOHHOI ceTH OBUTH CPaBHEHBI ¢ IPOU3BOAUTENEHOCTHIO YUCIEHHOTO Me-
TOJla KOHEUHbIX pa3sHOCTEH Ul pelieHus KpaeBoil 3anaun. Pe3ynbTaThl IpoJeMOHCTPUPOBAIN YCKOPEHHUE BBHIUUCIUTEIBHONU CKOPO-
cti B Xx10-700 pa3, B 3aBUCUMOCTHU OT KOJIMYECTBA y3JI0B JUCKPETU3ALIMU.

BeiBoabl. [IpemnaraemMblil METOJ 3HAUUTENBHO YBEJIMYMUII CKOPOCTh PELLIEHUS KPAaeBOM 3a1aun Ha OcHOBE ypaBHeHus [lyaccona
M0 CPAaBHEHMIO C YHCICHHBIM METOAOM. Takxke pa3pabOTaHHBIA MOAXOA K MPOEKTUPOBAHHIO APXUTEKTYPHI HEHPOHHOH CETH MO03BO-
JSIET YITyUIIUTh MPEAT0KCHHBIH METO JUTS JOCTIDKEHHS OOJbIIEH TOYHOCTH NP MOAEIHPOBAHUH MIPOLECCa paclpeieNICHUsT JaBie-
HUS B 00/1aCTSAX TPOU3BOJIBHOTO pa3Mepa.

KJIFOYEBBIE CJIOBA: mammHHOE 00y4eHHe, ypaBHeHHE [lyaccoHa, CBEpTOYHAS HEHPOHHAS CETh.
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