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ABSTRACT

Context. The relevance of studies of G/G/1 systems is associated with the fact that they are in demand for modeling data
transmission systems for various purposes, as well as with the fact that for them there is no final solution in the general case. We
consider the problem of deriving a solution for the average delay of requests in a queue in a closed form for ordinary systems with
Erlang and exponential input distributions and for the same systems with distributions shifted to the right.

Objective. Obtaining a solution for the main characteristic of the system — the average delay of requests in a queue for two pairs
of queuing systems with ordinary and shifted Erlang and exponential input distributions, as well as comparing the results for systems
with normalized Erlang distributions.

Methods. To solve the problem posed, the method of spectral solution of the Lindley integral equation was used, which allows
one to obtain a solution for the average delay for the systems under consideration in a closed form. For the practical application of the
results obtained, the method of moments of the theory of probability was used.

Results. Spectral solutions of the Lindley integral equation for two pairs of systems are obtained, with the help of which
calculation formulas are derived for the average delay of requests in the queue in a closed form. Comparison of the results obtained
with the data for systems with normalized Erlang distributions confirms their identity.

Conclusions. The introduction of the time shift parameter into the distribution laws of the input flow and service time for the
systems under consideration transforms them into systems with a delay with a shorter waiting time. This is because the time shift
operation reduces the value of the variation coefficients of the intervals between the arrivals of claims and their service time, and as
is known from the queuing theory, the average delay of requests is related to these variation coefficients by a quadratic dependence.
If a system with Erlang and exponential input distributions works only for one fixed pair of values of the coefficients of variation of
the intervals between arrivals and their service time, then the same system with shifted distributions allows operating with interval
values of the coefficients of variations, which expands the scope of these systems. The situation is similar with shifted exponential
distributions. In addition, the shifted exponential distribution contains two parameters and allows one to approximate arbitrary
distribution laws using the first two moments. This approach makes it possible to calculate the average latency and higher-order
moments for the specified systems in mathematical packets for a wide range of changes in traffic parameters. The method of spectral
solution of the Lindley integral equation for the systems under consideration has made it possible to obtain a solution in closed form,
and these obtained solutions are published for the first time.

KEYWORDS: Erlang and exponential distribution laws, Lindley integral equation, spectral expansion solution method, Laplace
transform.

ABBREVIATIONS
LIE is a Lindley integral equation;
QS is a queuing system;
PDF is a probability distribution function.

M is a exponential distribution law;
M’ is a shifted exponential distribution law;
W is a average waiting time in the queue;

w (s) is a Laplace transform of waiting time density

NOMENCLATURE function;
a(?) is a density function of the distribution of time A is a Erlang (exponential) distribution parameter for
between arrivals; input flow;

A*(s) is a Laplace transform of the function a(f); p is a Erlang (exponential) distribution parameter for

b(?) is a density function of the distribution of service
time;

B*(s) is a Laplace transform of the function b(f);

¢, the coefficient of variation of time between
arrivals;

o the coefficient of variation of service time;

E, is a ordinary Erlang distribution of the second order;

E, is a shifted Erlang distribution of the second
order;

G is a arbitrary distribution law;
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of service time;
p is a system load factor;

T, 1s a average time between arrivals;

?;% is a second initial moment of time between

arrivals;

T, 1s a average service time;

%
@_ (s) is a Laplace transform of the PDF of waiting

is a second initial moment of service time;

time;
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v, (s) is a first component of spectral
decomposition;
y_(s) is a second component of spectral
decomposition.
INTRODUCTION

This article is devoted to the analysis of two pairs of
QSs, including the Erlang distribution law as a special
case of a more general gamma distribution law and an
exponential distribution. The task is to derive solutions
for the average delay of requests in the queue, which is
the main characteristic for any QS. This characteristic, for
example, is used to estimate packet delays in packet-
switched networks when they are modeled using QS. The
considered QSs, according to the three-position
symbolism introduced by Kendall for their classification,
we denote by E,/M/1 and M/E,/1. Here the distribution
law for E, differs from the previously considered
normalized Erlang distribution.

We also investigated the above systems with time-
shifted input distributions in order to obtain a solution for
the average delay. In queuing theory, studies of G/G/1
systems are especially relevant because there is no
solution in the final form for the general case and one has
to carry out research for special cases of distribution laws.
In the study of G/G/1 systems, an important role is played
by the method of spectral solution of the Lindley integral
equation [1]. The paper proposes new models of queuing
with shifted second-order Erlang distributions, as a
special case of the Gamma distribution law.

In the previous works of the authors [2-7], it was
noted that the shift of the distribution laws in the QS by
the value #, >0 leads to a decrease in the average delay

of requests in the queue due to a decrease in the
coefficients of variation of the time intervals of arrivals
¢, and servicing ¢, . It is known that the average delay is

related to these coefficients of variation by a quadratic
dependence [1].

The object of study is the queueing systems type
G/G/1.

The subject of study is the average queue delay in
conventional systems E»/M/1 and M/E,/1 and in the same
systems, but with shifted input distributions.

The purpose of the work is to obtain a solution in a
closed form for the main characteristic of the system — the
average delay in the queue for the above QS.

1 PROBLEM STATEMENT

The paper poses the problem of finding a solution for
the delay of requests in the queue in conventional QS
systems E»/M/1 and M/E,/1 and in the same QS with
shifted input distributions. Here E, means the second-
order Erlang distribution as a special case of a more
general Gamma distribution law and has the form
0] =22te™ for describing the distribution density of
the arrival intervals,
distribution with the density function f () = 402 M
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in contrast to the normalized

Moreover, these density functions differ in numerical
characteristics.

In a brief presentation of the method of spectral
expansion of the LIE solution, we will adhere to the
approach and symbols of the author of the classics of the
queuing theory [1]. At the heart of the LIE solution by the
spectral expansion method is to find for expression

B, (—s)F: (s)—1 a representation in the form of a product

of two factors, which would give a rational function of s.
Consequently, to find the distribution law of the delay of
requests in the queue, the following spectral expansion

B, (—s)F: (s)=1=w, (s)/w_(s) is necessary. Here
v, (s) and y_(s) are some rational functions of s that

can be factorized. Functions and must satisfy special
conditions according to [1].

To solve this problem, it is first necessary to construct
spectral solutions of the form

F;(—S)F:(S)—l=\|I+(S)/\V_(S) for these systems,

considering special conditions in each case.

2 REVIEW OF THE LITERATURE

The method of spectral decomposition of the solution
of the Lindley integral equation used in this work is
presented in detail for the first time in the classics of the
queuing theory [1]. This method was used by the authors
in [2-7] and in many other works in the study of QS with
shifted distributions. The spectral solution method is
widely used not only in queuing theory, but also in
mathematics, physics, electromagnetism and other fields
[8-12]. In both foreign and Russian-language literature,
the authors have not found research results in this subject
area.

The closest to this area are works [15, 16], where the
questions of accessing Internet web resources as queues
with time lag, described by Wiener-Hopf processes, are
investigated.

The problems of approximating distribution laws
using several initial moments of time intervals are
covered in [11-14], and the results of new research in the
queuing theory [18-27].

3 MATERIALS AND METHODS
As you know, the two-parameter gamma distribution
is given by the density function of the form

Bfatafleft/ﬁ
I'(0)
0, t<0,

/= =0

o0
where I'(a) is a gamma function equal 7'(z) = | e ar
0

for any real number z>0, a>0, $>0. In the case of integers,
this distribution turns into an Erlang distribution of order
o. For example, when replacing A=1/B,k=a, we get

the usual Erlang distribution of order £:

67



e-ISSN 1607-3274 Pagioenexrponika, inpopmaruka, ynpasminss. 2022. Ne 1
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 1

Xk tkflefkt

S (@) :W

For a second-order distribution, the density function
has the form f, (¢) = A2te”™ . This distribution differs from
the previously considered normalized Erlang distribution,
where  f; (1) = 432N .
normalized in order to make the mathematical expectation
independent of the order of the distribution %, therefore,
the numerical characteristics of the two forms of writing
the distribution will change.

The main differences between the normal (gamma-
derived) and normalized Erlang distributions E, are
shown below. Differences in numerical characteristics:

— for the usual Erlang distribution

The Erlang distribution was

T =2/, 15 =6/0% G =1/2,
— for normalized distribution

T o=1/0, 15 =3/2\Y). G =1/2.

Differences in the distribution parameter obtained by
the method of moments:

— for the usual Erlang distribution A =2/T7, ,
— for normalized distribution A =1/7, .

Thus, the indicated distribution laws differ in both
parameter and numerical characteristics, except for the
coefficient of variation. As we will see below, systems
formed by ordinary and normalized Erlang distributions
will have different spectral expansions. Due to such a
difference between the distributions, we are interested in
the fact whether this difference will affect the final result
of the QS — the average delay of requests in the queue,
especially in the case of shifted distributions.

In this regard, it will be interesting to see the results
obtained.

Next, consider a system E»/M/1 formed by two flows
given by functions of distribution densities:

— for the input flow

f()=2 2™, (1)
— for service times
Su@)=pe™. )

Let us write the Laplace transform of functions (1) and

(2): .
A7) A=

A+s - n+s
Then the spectral expansion of the LIE solution for the
E,/M/1 system takes the form:
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n

T ORE AR

_MPu-(=9) () _
(R=5)"(u+s) 3)
[t (=20 A -2p)]
) =5 u+s)
_ S(s+s)(s—57)
- s

since the quadratic equation
s+ (u-20)s+A(L—2u)=0  obtained from the
expansion numerator has one negative root

—s; =—(u—-21)/2—/u(n+41)/2 and one positive root

s =(2h—p)/2+/w(n+41)/2 in the case of a stable

system with A <p.
Therefore, we  will take an  expression
s(s+s . . .
v, (s)= u as a function y_(s), since its zeros

S+
s=0, s=-s and the pole s=—p lie in the region

2
Re(s) <0, and we take an expression _(s)=— (=5 a6
§—98

a function y_ (s) .

Finally, the components of the spectral expansion for

the E;/M/1 system will have the form
s(s+s1)

\V+(S):ﬁ’ y_(s)=

Fig. 1 confirms the fulfillment of special conditions
[1] where the zeros and poles of the fractional rational
function on the complex s — plane are displayed to
eliminate  errors in  constructing the  spectral
decomposition.

2
U N )

§—S

im(s)$

Figure 1 — Zeros and poles of the function y_ (s)/w_(s) for the
E,/M/1 system

In Fig. 1, the poles are marked with crosses, and the
zeros are marked with circles.

Further, using the method of spectral decomposition,
we find the constant K, which determines the probability
that a demand entering the system finds it free:

Yy (S)
Is|>0 s

. +
= lim 2250
Is|>0 s+p  p
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Let us construct a function

K sp(s+u
O, (s)= = (s+1)
Vo(s) ms(stsy)
Laplace transform of the delay density function:

through which we find the

_S (s+p)

W*(s)zs-(l)+(s) W(sTs) .

)

Derivative of a function W~ (s) with a minus sign

incl. s=0:
*
aw (s)‘ | sl +s) s (s+p)u o=
- 0=~ 0=
ds ° u2 (S+S1)2 s
_ sip? —si’p _1 1
Wiy’ St M

Then the average delay of requests in the queue for the
E,/M/1 system:

W=1/s-1/u, (6)

where s; = (n—2A)/2+/u(u+41) /2 is the absolute value
of the negative root —s;. After the expression for the

average waiting time for the E,/M/1 system has been
found, we can proceed to the study of the E,/M/1 system
with a time lag.

We denote such a system E,/M™ /1. For this system,

the distributions of the arrival and service intervals are
described by the following shifted density functions:

Fu(£)=22 (1=tg)e M), 7)

fu(£)=pe ), ®)

Statement 1. The spectral expansion of the LIE
solution for the E,/M™ /1 system and the final formula

for the average delay have exactly the same form as for
the E,/M/1 system, but with changed parameters due to a
shift in the distribution laws.

Proof. Laplace transforms of functions (7) and (8)
have the form:

F(5)=(

For the E;/M /1 system, the spectral expansion will

2
A j 0, B (5) =
A+s H n+s

have the form:

F (=)L ()1 :[st

2
oo xLe’tOS 1=
w+s
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Here, the powers of the exponentials in the spectral
decomposition are also zeroed, and thus the time shift
operation is leveled. The last expression after the
transformations will result in the result (3). Thus, the
spectral expansions of the LIE solution for both systems
coincide. Consequently, all the above calculations for the

E,/M/1 system are also valid for the E;,/M /1 system.

Statement 1 is proved.
To determine the unknown distribution parameters

E, , we use the Laplace transform of function (7). The

average value of the interval between arrivals is given by
the first derivative of the Laplace transform with a minus
sign at the point s=0:

dF;, (s) 0205 A2gge 08
_—|s:0: 3 + 2
(hts)  O+s)

_0=2/A+1y.
T ]'SO 0

From here
?k:2/7»+t0. (9)

The second initial moment of the interval between
arrivals is equal to

2 *
d°F
CHRO| 6 40,0
dSZ 2 }\‘
s=0
From here
B 6 ty 2
T =—+4—+1 -
A }\’2 2 0

Determine the square of the coefficient of variation
F-(m)? 2

2
C;L = — = .
(1)} (Q2+Mp)?
From here
o, =~N2/(2+Mp) . (10)
Note that for the distribution E,: 7T, =2/A,

¢, =1/~4/2. Consequently, because of the shift of the
distribution laws by the value ¢, >0, the coefficient of

variation ¢, for the distribution E, decreases by
(1+xg/2) a factor of comparison with ¢, for the

distribution E,.
It remains to determine the numerical characteristics

for the shifted exponential distribution M~ .

dFu(S) _ d L) s _
__d_[_ e ]\s:o—
s\ p+s
.

B {ptoetos (s + u) + ueitos ]

:1/H+t0.

ds
2
(s+p) o

From here
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T,=1/pn+1 -

(11)

Using the second derivative of the Laplace transform
for s=0, we define the second initial moment of service
time

d? F, (s) _ 2 s fy

dS2 s=0 “2 H

+13 -

From here

¢ =1/(1+py) - (12)

Now setting the values obtained above T, T,y

as input parameters for calculating for the E,/M /1

system, as well as the shift parameter ¢,, you can

calculate the average delay using formula (6). Here, the
ranges of variation of the wvariation coefficients

. e(O, 1/2 ) and ¢y €(0,1), are determined by relations

(10) and (12), respectively, depending on the magnitude
of the shift parameter 0 <7y <7, .

Next, consider the M/E,/1 system formed by two
flows given by the functions of the distribution densities
of the intervals:

— for the input flow

fty=nre™, (13)
— for service time
fu(t)=plee™ . (14)

The spectral solution of the Lindley integral equation
for this system takes the form

F;(—S)F:(s)—lzﬁ-[ﬁJ 1=
s[s2 +(2u—k)s+u(p—2k)}
(L=s)(u+s) '

The square trinomial s+ (2p—A)s+p(p—21) in
the numerator of the expansion in the case of a stable
system has two real negative roots —s;, —s, :

—sp=—(20—A)/2+ MM +4p) /2,
=55 =—(2u—A)/2—JA(h+4p) /2.
The final spectral solution will have the form

(U (s) _ s(s+s1)(s+s2) .
v-(s)  (r=s)(u+s)
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Based on the rules for constructing functions v (s)

SIs+s S+s
‘I/_(S) (S): ( 1)(2 2)
(hts)
y_(s)=A-s. The zeros and poles of this expansion are

and choose v,

>

shown in Fig. 2, where the poles are marked with crosses
and zeros are marked with circles.

Im{s]"

Figure 2 — Zeros and poles of the function v, (s)/y_(s) for the
M/E,/1 system

The constant required to obtain a solution
K= limw+—(s):ﬂ. Next, we construct the function
s—0 S H2
2
1- .
D, (s)= K = (1=p)(n+s) . Whence it follows

Sy, (s) s(s+sy)(s+sy)
that the Laplace transform of the density function of the
delay time in the M/E,/1 system

(1-p)(u+s)

W*(s)zs'q)+(s):(S+S1)(S+S2)

(15)

The first derivative of function (14) with a minus sign
at point s=0 is

Hence the average delay of requests in the queue
— 1 1 2
W=—+—-=.

16
St S22 M (16)

Comment. The Laplace transforms of the delay
density functions (5) and (15) make it possible to obtain
formulas not only for the average values of the delay, but
also for the moments of higher orders for the delay.
Considering the definition of jitter for
telecommunications as the spread of the delay around the
average value, then jitter can also be determined through
the variance of the delay [17].

There is another way to obtain the formula for the
average delay for the M/E,/1 system. Because this system
belongs to the class of M/G/1 systems, we will use the
known result for this system by the Polyachek — Khinchin
equation for the Laplace transform of the density function
of the delay for the M/G/1 system [1]:
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« v s(l-p)

d (S _S—X-I—XF:(S) ’ a7

where F: (s) =pu? /(s+u)2 is the Laplace transform of

the service time density function.

The Polyachek-Khinchin formula [1], gives the
average delay of requests in the queue in the M/G/1
system:

W =

2
-, (18)

where 0<p=2A/n<1. For the distribution E,, the second

initial moment of service time, then from (18) we obtain
the average delay in the M/G/1 system:

3p

V=)

(19)

Now it remains to verify that equalities (16) and (19)
are identical. When substituting already calculated values
51, §p in (16), and performing simple mathematical
calculations, we get a complete coincidence with formula

(19).

Let us begin to determine the average delay of
requests in the queue for the M/E,/1 system with delay.
To do this, consider a system formed by two flows given
by the functions of the distribution densities of the
intervals:

— for the input flow

fult)=2e ), 20)
— for service times
fu(t):pz(t—to)e’“(t’t‘)). 1)

We denote such a system M /E,/l1. Based on a
similar statement 1, we conclude that for a pair of systems
M/E,/1 and M /E,/1, their Laplace transforms, the

delay density functions and formulas for the average
delay of requests in the queue also coincide.

For the service time according to the law, we obtain
similar expressions for the average service time and the
coefficient of variation:

T,=2/u+1 22)

=2/ 2+n1) . (23)
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To determine the unknown parameters of distributions
(20) and (21), we use the corresponding moment
equations:

T=1/h+1 o =(1+2) 7",

cy =V2/@2+n1) -

By specifying the values of the numerical
characteristics and the shift parameter #, >0 as input

TH :2/}],"1‘[0,

parameters for the system, and having determined the
roots, we can calculate the average delay using formula
(106).

4 EXPERIMENTS
Table 1-2 below shows the calculation data for
systems E, /M~ /1 and M /E, /1 for cases of low,

medium and high load.for cases of low, medium and high

load p=0.1;0.5;0.9 for a wide range of ¢ , Cu and a

shift parameter ¢;. For comparison, the right-hand

columns show data for conventional systems E,/M/1 and
M/E,/1.

Table 1 — Results of experiments for QS E, /M™ /1 and

E,/M/1
Input parameters Average delay

For QS For QS

S G Ol B M| EMAI
0.643 0.1 0.9 0.000
0.672 0.5 0.5 0.005

01 0.700 0.9 0.1 0.023 0.030
0.706 0.99 | 0.01 0.029
0.389 0.1 0.9 0.003
0.530 0.5 0.5 0.132

0.5 0.672 0.9 0.1 0.491 0.618
0.704 0.99 | 0.01 0.605
0.134 0.1 0.9 0.055
0.389 0.5 0.5 1.609

09 0.643 0.9 0.1 5.322 6.588
0.701 0.99 | 0.01 6.456

Table 2 — Results of experiments for QS M~ /E; /1 and

M/Ey/1
Input parameters Average delay
For QS For QS
P n u fo M™/E; /1 M/Ey/1
0.643 0.071 0.9 0.001
0.950 0.354 0.5 0.021
01 0.990 0.636 0.1 0.068 0.083
0.999 0.700 0.01 0.082
0.550 0.071 0.9 0.008
0.750 0.354 0.5 0.188
0.3 0.950 0.636 0.1 0.608 075
0.995 0.700 0.01 0.735
0.190 0.071 0.9 0.068
0.550 0.354 0.5 1.688
09 0.910 0.636 0.1 5.468 675
0.991 0.700 0.01 6.616
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Results for systems with a delay are compared with
results for usual systems. It is obvious that the average
waiting time in a system with a delay depends on the shift
parameter f,. The load factor p in both tables is

determined by the ratio of average intervals p=71, /7, .

The calculations used the normalized service time ?u =1.

5 RESULTS

In this work, spectral expansions of the solution to the
Lindley integral equation are obtained for the usual dual
systems E»/M/1 and M/E,/1, as well as their analogs with
shifted distribution laws, with the help of which the
calculation formulas for the average delay of requests in
the queue in a closed form are derived.

The same calculation formulas are valid for systems
with time lag, respectively, taking into account changes in
the numerical characteristics of their shifted distributions.
The results of numerical calculations in Tables 1-2 are
identical to the data obtained for the same systems with
normalized Erlang distributions.

6 DISCUSSION

The average delay of requests in the queue in systems
with latency is, as expected, less than in conventional
systems, and as the value of the offset parameter
decreases, it approaches the average waiting time in a
conventional system. This fully confirms the adequacy of
the constructed mathematical models.

Thus, the results of Table 1 and 2 confirm the
complete adequacy of the constructed mathematical
models for determining the average delay of requests in
the queue both for ordinary dual systems and their
analogs with shifted distribution laws.

In contrast to the conventional E,/M/1 system, the

E; /M /1 system with delay can be used for a range ¢,
of 0 to 1/\/5 and Cu 0 to 1. In the case of the M/E,/1

system, the M~ /E, /1 system with delay allows a ramp
range ¢, of 0 to 1, and Cu from 0 to 1/+/2. Thus, the

main advantage of introducing distributions shifted to the
right from the zero point is to expand the range of
variation coefficients of arrival intervals and service time.

Due to this, the scope of these QSs is expanding. Note
that, in addition to the average delay of requests in the
queue, it is possible to determine the variance and
moments of higher orders of the delay time.

CONCLUSIONS

The problem of deriving formulas for the average
delay of requests in the queue for two pairs of dual
queuing systems with ordinary Erlang distributions in
contrast to normalized distributions is solved.

The scientific novelty of the results is that spectral
expansions of the solution of the Lindley integral equation
for the systems under consideration are obtained and with
their help the calculated formulas for the average delay in
the queue for systems with delay in closed form are
derived. These formulas complement and expands the
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well-known incomplete formula for the average waiting
time in the G/G/1 systems with arbitrary laws of input
flow distribution and service time.

The practical significance of the work lies in the fact
that the obtained results can be successfully applied in the
modern theory of teletraffic, where the delays of
incoming traffic packets play a primary role. For this, it is
necessary to know the numerical characteristics of the
incoming traffic intervals and the service time at the level
of the first two moments, which does not cause
difficulties when using modern traffic analyzers.

Prospects for further research are seen in the
continuation of the study of systems of type G/G/1 with
other common input distributions and in expanding and
supplementing the formulas for average waiting time.
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JBI MAPH IBOICTUMACHUCTEM MACOBOT'O OBCJIYTOBYBAHHA 31 3BUYAMHAMM 1 3CYHYTUMHA
PO3IIOAIJTIAMU

Tapaco B. H. — n-p TexH. Hayk, npodecop, 3aBigyBau Kadenpu MpOrpaMHOTO 3a0e3MMedYeHHS Ta YIPaBIiHHSA B TEXHIYHUX
cucremax [10BOI3BKOTO IEpKAaBHOTO YHIBEPCUTETY TEJICKOMYHIKaIii Ta indopmarnky, Pociliceka deneparis.

Baxapesa H. ®@. — n-p TexH. Hayk, mpodecop, 3aBixyBad kadenpu iHGOPMATUKH Ta OOUHCITIOBAIBHOI TeXHIKH [10BOI3BKOTO
JIep’KaBHOTO YHIBEPCHTETY TeleKOoMyHiKaliil Ta inpopmaTrku, Pocificeka ®enepartis.

AHOTAIIA

AKTyalIbHiCTB. AKTyanbHICTh HociikeHHs: cucteM G/G/1 moB’s3aHa 3 THM, LI0 BOHHM TOTPiOHI JUTi MOJETIOBAaHHS CHCTEM
nepenayi pi3HOro MpPU3HAYEHHS, a TAaKOXK 3 THUM, LIO Ul HUX HE iCHYe pilleHHsS B KiHIIEBOMY BHIJIAII B 3arajJbHOMY BHIAIKY.
PosrnsiHyTO 3amady BUBEOECHHS pIillEHHS AJS CEpelHBOI 3aTPHMKH BHMOT Y 4ep3i B 3aMKHYTIH (opmi Ui 3BHYAHUX CHCTEM 3
€pIAHTIBCHKUM 1 eKCIOHEHTHUM BX1THUMH PO3MOIIAMH 1 IS IUX CUCTEM 31 3CYHYTHMH BIIPABO PO3IOILITaAMH.

Meta po6oru. OTpuMaHHS PIlICHHS U OCHOBHOI XapaKTEPHCTUKKM CHCTEMH — CEpEIHbOI 3aTPUMKH BHUMOT' Y 4Yep3i Ul JBOX
Iap CHCTEM MacOBOr0 OOCIYrOBYBaHHS 31 3BHYaHHMMH 1 31 3CyHyTUMH E€pJIAHTIBCBKMMH Ta EKCIOHEHIIANbHUMH BXiXHUMHI
PO3MOiIaMH, a TAKOX MOPIBHSAHHS Pe3yJIbTATIB YISl CUCTEM i3 HOPMOBAaHUMH €pJIAHTIBCHKUMHE po3moiaamu. OTpHUMaHHS PillleHHS
JUTS OCHOBHOI XapaKTEPUCTUKH CHCTEMH — CEPEIHBOr0 4acy O4iKyBaHHS BUMOT B 4ep3i JJIS JBOX CHCTEM MacOBOT'O 0OCIyrOBYBaHHS
tuny G/G/1 31 3cyHYyTHMH BXiJHUMHU PO3MOIITIAMH.

Mertop. [Iy1s1 BUpIIICHHS TOCTABICHOTO 3aBIaHHs OyB BUKOPUCTaHUI METOJ CIIEKTPAJbHOTO PILlIEHHs iHTETpalbHOTO PIBHSHHS
Jlirti, SKuil 103BOJISIE OTPUMATH PIIIEHHS VI CEPEAHBOI 3aTPUMKHU B 4ep3i A PO3TISIHYTHX CHCTEM B 3aMKHYTIH ¢opmi. s
MPAKTUYHOTO 3aCTOCYBAHHS OTPUMAHUX Pe3yIbTaTiB OyJ0 BUKOPUCTAHUH BiJOMHI METO MOMEHTIB Teopii KMOBIpHOCTEHA.

PesyasTaTn. OTpHMaHO CIEKTpabHI PIIEHHS iHTErpaJbHOrO PiBHSAHHS JIIHUT JUIL JBOX Iap CHCTEM, 3a JOMOMOTOIO SKMX
BUBEJICHI PO3PaxyHKOBI (hOPMYIIH I CEPEIHBOI 3aTPUMKH BUMOT Y Uep3i B 3aMKHYTii Gopmi. [TopiBHIHHS OTpHIMaHUX pe3yNbTATiB
31 JaHUMH JJIs CUCTEM 31 HOPMOBaHUMH €PJIaHTiBCHKUMH PO3IIO/iIaMH MiATBEPDKYE TXHIO 1IEHTHYHICTB.

BucnoBku. BeeneHns napamerpa 3cyBy B 4aci B 3aKOHM PO3IOALTY BXIZHOTO MOTOKY 1 4acy OOCIyrOBYBaHHS JUISl CHCTEM, IO
PO3IIIAAIOTHCS, IEPETBOPIOE X B CHCTEMH 3aIli3HEHHSM 3 MEHIIMM 4acoM OdiKyBaHHs. Lle moB’s13aH0 3 THM, IO Omepallis 3CyBY Yy
Jaci 3MeHIIy€e BeMYMHY KOoe]illieHTIB Bapiamiii iHTepBaliB MiXkK HaIXODKSHHSIMU BUMOT Ta HOro 4acy 0OCIyroBYBaHHsI, a SIK BiZIOMO
3 Teopii MacoBOro OOCIYroBYBaHHSA, CEpeOHS 3aTpPMMKa BHMOI MOB’S3aHAa 3 IMMH KoeQillieHTaMH Bapialiii KBaIpaTHYHOIO
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3aJIeXKHICTIO. SIKIO crcTeMa 3 epraHTiBCHKUM 1 eKCIIOHEHTHUM BXiTHUMH PO3MOAITAMHE NPAIfO€ TUIBKH IIPU OXHIH QikcoBaHil mapi
3HaueHb KoeQillieHTiB Bapiamiii iHTepBaJdiB MDK HAIXO/DKCHHSAMH BUMOI Ta iX 4acy oOOCIIyroBYBaHHsS, TO I JK CHCTeMa 3i
3pYIICHUMH pO3IOJIIaMU JIO3BOJISIE ONEpYBaTH 3 IHTEpBAJBHUMHU 3Ha4eHHAMH Koe(illieHTiB Bapiamiii, mo po3mupioe chepy
3aCTOCYBaHHSI L[MX CHCTEM. AHAJOTIYHO i 3i 3pYIICHUMH EKCIIOHEHTHHMH po3nofinamu. KpiM Toro, 3pyuieHHi eKCIOHEHTHHU
PO3MOAIT MICTUTH IBa HapaMeTpu 1 03BOJSIE ANPOKCHMYBATH [IOBUTBHI 3aKOHM PO3IOJITY 3 BHKOPHUCTaHHSIM MEPIIMX BOX
MoMeHTiB. Takuil miaxin H03BOJIsE pO3paxyBaTH CEPeIHIi Yac OYiKyBaHHSA Ta MOMEHTHU BHIIMX MOPSAAKIB IS 3a3HAUYEHHUX CHCTEM Y
MaTeMaTHYHUX IMaKeTax IS MIMPOKOTo Iiana3oHy 3MiHM mapamerpiB Tpadiky. MeTo CIeKTpalbHOTO BHUPILMICHHS iHTETPAILHOTO
piBHsHHS JIIHIUTI 171 PO3TIISHYTHX CHCTEM JO3BOJIMB OTPUMATH PIlIEHHS y 3aMKHYTiH GopMi, 1 I1i OTpuMaHi pillleHHs MyOlTiKyeThes
BIIEpIIE.

KJIOYOBI CJIOBA: epnaHTiBChbKMH 1 €KCIIOHGHTHHII 3aKOHHM pO3MOALTY, IHTerpajibHe piBHSHHS JIiHDI, MeTox
CIIEKTPAILHOTO PO3KIIaiaHHs, epeTBopeHHs Jlamaca.

VJK 621.391.1:621.395

JBE IAPBI JIBOMCTBEHHbBIX CHCTEM MACCOBOI'O OBCJIYKUBAHMA C OBBIYHBIMUA U
CABUHYTBIMU 3AKOHAMMU PACIIPEJEJEHUNA

Tapaco B. H. — 1-p TexH. Hayk, mpodeccop, 3aBemyronmii kadeapoll mporpaMMHOrO OOCCIICYCHUS W YIPABJICHHS B
TEXHHYECKNX cHucTeMax I[IOBOIDKCKOrO TroCyZapCTBEHHOI'O YHUBEPCHUTETa TEJICKOMMYHHUKAaMd M uHpopMmaTHkd, Poccuiickas
Ddenepanus.

Baxapea H. ®. — 1-p TexH. Hayk, mpodeccop, 3aBeayromas kadenpoidl HHOOPMATUKH W BBIYUCIUTEIBHON TEXHHKU
[ToBOMKCKOro rocy1apCTBEHHOTO YHHBEPCUTETA TEIEKOMMYHHUKAIMK 1 nHpopMaTuku, Poccuiickas @eneparnusi.

AHHOTAIUSA

AKTyasIbHOCTb. AKTyaldbHOCTH HcciemoBanmii cucreM G/G/1 cBsi3aHa ¢ TeM, YTO OHHM BOCTPEOOBAaHBI ISl MOJCITHPOBAHUS
CHCTEM Nepelavyd NaHHBIX Pa3INYHOrO Ha3HAa4YeHHs, a TakKe C TeM, YTO Ul HUX He CYIIeCTBYeT PEIlCHUS B KOHEYHOM BHIE B
obmem cirydae. PaccMoTpeHa 3ajada BbIBOJA PEIICHUS I CpeIHEH 3allepKKu TpeOOBaHMI B odyepeny B 3aMKHYTOH (opme s
OOBIYHBIX CHCTEM C 3PJIaHIOBCKHM M SKCIIOHEHLIMAIBHBIM BXOIHBIMH PACIpPENECICHUAMU M UL STHUX )K€ CUCTEM CO CIABHUHYTBHIMH
BIIPABO paclpeieeHUsIMU.

Heas padorsl. [loxyduenue penieHus 11 OCHOBHOW XapaKTEPUCTHKU CHCTEMBI — CpeTHEeH 3aepKKU TpeOOBaHHIA B OUepeIn st
JBYX Hap CHUCTEM MacCOBOTO OOCIY>KHMBaHHUS C OOBIYHBIMH M CO CIBHHYTBIMH 3PIIAHTOBCKUMH U KCIIOHEHIHATbHBIMH BXOJHBIMHU
pacrpeneneHusIMH, a TakKe CpaBHEHUE Pe3yIbTaToOB AN CHCTEM ¢ HOPMUPOBAHHBIME APJIAHTOBCKUMH PacIpe/ie/ICHUSIMH.

Metona. i1 pemeHust IOCTaBICHHOHN 3aJa4y HUCIOIB30BaH METO/] CHEKTPAIBFHOTO PEIICHNS] HHTETPANBEHOTO ypaBHEeHUS JInHuH,
KOTOPBIH O3BOJISET MOJIYYHUTh PEIICHNE ISl CPEIHETO BPEMEHH OKHIAHHS I PAacCMaTPUBAEMbIX CUCTEM B 3aMKHYTOH dopme. [l
MIPAaKTHYECKOT0 NPHUMEHEHHS ITOJIyYeHHBIX Pe3y/IbTaTOB HCII0JIb30BAaH METOZ MOMEHTOB TEOPHHU BEPOSITHOCTEH.

PesyabTartsl. [lomydeHsl cHeKTpasibHBIE PEIICHHS MHTErPajbHOTO ypaBHEeHWs JIMHIUIM Uil ABYX Hap CUCTEM, C ITOMOLIBIO
KOTOpBIX BBIBEJCHBI pacyeTHble (OpMyINbl Mg CpeaHed 3aiepkku TpeOoBaHUII B odepead B 3aMKHyToW ¢opme. CpaBHeHHE
MOTYyUYEHHBIX PE3yJIbTaTOB C IAHHBIMH A CHUCTEM C HOPMHPOBAHHBIMU SPJIAHTOBCKMMH DAaCIpeleNeHUsIMU TOATBEPKIAET HX
HAEHTUYHOCTb.

BriBoabl. Beenenne mapamerpa caBura BO BpeMEHH B 3aKOHBI PACIpeeTIeHIs BXOJHOTO MOTOKA U BPEMEHH O0CITyKHUBAaHUS AT
paccMaTpHBaeMBIX CHCTEM, IIPeoOpasyeT MX B CHCTEMBI 3alla3AblBaHHEM C MEHBIIUM BPEMEHEM OXKHJIAHUS. DTO CBS3aHO C TEM, 4TO
oriepanysi CIBHATA BO BPEMEHH YMEHBIIAeT BENNINHY KOI((GHUIHEHTOB BapHAIi HHTEPBAIOB MEX/Iy NOCTYIUICHUSIMU TPeOOBaHUH U
HX BpPEMEHH O00CITy>KUBaHHMs, a KaK M3BECTHO M3 TEOPHH MAacCCOBOTO OOCITY>KUBaHHMsI, CPEIHSS 3a1epiKKa TpeOOBaHMI CBsI3aHa C STHMHU
K03 GUIEeHTaMH Bapualui KBaJpaTUYHOH 3aBHCHMOCTBIO. Ecim cucTeMa C 3pIaHrOBCKMM M 3KCIOHEHIMAIBHBIM BXOJHBIMHU
pacnpeneneHUs MU paboTaeT TOJNBKO MPU OJHOH (PUKCHPOBaHHOH mape 3Ha4YeHHH K03(hGHUIMEHTOB BapHalMii UHTEPBAJIOB MEXIY
MOCTYIUICHUSAMU TPeOOBaHMI U MX BPEMEHM OOCIY)KMBAaHHSA, TO 3Ta )K€ CHCTEMa CO CABHHYTHIMH DacIpEAENCHHSMH I103BOJIACT
OIIEpUPOBATh C HMHTEPBAIBHBIMH 3HAYECHHSMH KO3()(HIMEHTOB BapHalMid, 4TO pacIIupsieT 0o0JacTh NPHMEHEHHS ITUX CHCTEM.
AHaIOTHYHO 0OCTOUT AENIO0 U CO CABHHYTHIMU SKCIIOHEHIMATBHBIMU paciipefeseHusiMU. KpoMe Toro, CIBUHYTOE SKCIIOHSHIIHAIEHOE
pacmpenenieHHe COACPKUT [Ba IapaMeTpa M IIO3BOJISIET AaNIIPOKCHMHPOBATH IIPOM3BOJIBHBIE 3aKOHBI PACIpeneleHHs C
HCTIONBF30BAHUEM JIBYX MEPBBIX MOMEHTOB. Takoil MOJAXOA MO3BOJISIET PAcCUUTATh CPEeIHEe BPEMsl OXKUJAHUS M MOMEHTHI BBICIINX
MOPSIAKOB IS YKa3aHHBIX CHCTEM B MaTeMaTHYECKHX MaKeTax JUIsl MIMPOKOTO JHala3oHa W3MEHEHUs IapaMeTpoB Tpaduka. Merox
CHEKTPAIILHOTO PEUIeHNs WHTErpajbHOrO0 ypaBHeHUs JIMHIIM JUIs paccMaTpHBaeMBIX CHCTEM IO3BOJHI IOJNYYHUTHh pEIICHHE B
3aMKHYTOH (popMe M 3TH TOTyUYECHHBIE PEILICHHs Ty OINKYeTCs BIIEPBHIE.

KJ/IFOYEBBIE CJIOBA: 3pnaHroBckuii M 3KCIIOHEHIMANBHBIN 3aKOHBI paclpelesieHHs, UHTerpaibHoe ypaBHeHHe JIuHIuH,
METOJ] CHEKTPAIILHOTO pa3lIokKeHHs, Mpeodpazosanue Jlammaca.
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