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ABSTRACT
Context. Neural networks require a large amount of annotated data to learn. Meta-learning algorithms propose a way to decrease
number of training samples to only a few. One of the most prominent optimization-based meta-learning algorithms is MAML. How-
ever, its adaptation to new tasks is quite slow. The object of study is the process of meta-learning and adaptation phase as defined by
the MAML algorithm.

Objective. The goal of this work is creation of an approach, which should make it possible to: 1) increase the execution speed of
MAML adaptation phase; 2) improve MAML accuracy in certain cases. The testing results will be shown on a publicly available
few-shot learning dataset CIFAR-FS.

Method. In this work an improvement to MAML meta-learning algorithm is proposed. Meta-learning procedure is defined in
terms of tasks. In case of image classification problem, each task is to try to learn to classify images of new classes given only a few
training examples. MAML defines 2 stages for the learning procedure: 1) adaptation to the new task; 2) meta-weights update. The
whole training procedure requires Hessian computation, which makes the method computationally expensive. After being trained, the
network will typically be used for adaptation to new tasks and the subsequent prediction on them. Thus, improving adaptation time is
an important problem, which we focus on in this work. We introduce A (lambda) pattern by which we restrict which weight we up-
date in the network during the adaptation phase. This approach allows us to skip certain gradient computations. The pattern is se-
lected given an allowed quality degradation threshold parameter. Among the pattern that fit the criteria, the fastest pattern is then
selected. However, as it is discussed later, quality improvement is also possible is certain cases by a careful pattern selection.

Results. The MAML algorithm with A pattern adaptation has been implemented, trained and tested on the open CIFAR-FS data-
set. This makes our results easily reproducible.

Conclusions. The experiments conducted have shown that via A adaptation pattern selection, it is possible to significantly im-
prove the MAML method in the following areas: adaptation time has been decreased by a factor of 3 with minimal accuracy loss.
Interestingly, accuracy for one-step adaptation has been substantially improved by using A patterns as well. Prospects for further
research are to investigate a way of a more robust automatic pattern selection scheme.

KEYWORDS: few-shot learning, meta-learning, Model-Agnostic Meta-Learning, MAML, adaptation time, adaptation speed,
optimization-based meta-learning.

ABBREVIATIONS B is a learning rate, § > 0.

MAML is Model-Agnostic Meta-Learning, a method
of optimization-based few-shot learning;

ResNet is a Residual Network, a particular architec-
ture of Convolutional Neural Networks;

NLP is Natural Language Processing.

NOMENCLATURE
N is a number of images per class that are given for
the network training.

K is a number of classes the network is trained to dis-
tinguish between.

X is a network input, in our case images.

®(6, X) is a neural network.

0 is a matrix of network weights.

B is a number of layers in the neural network.

p(7) is a distribution of all tasks.

T; is one of the tasks, consisting of Support Set S,
Query Set Q.

P is a number of adaptation steps.

0,7 is a matrix of adapted weights after j iterations that
correspond to i task.

a is an adaptation step size, o > 0.
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A is an adaptation template, which controls which
neural network layers should be updated during the adap-
tation procedure to the current task 7.

INTRODUCTION

The neural network accuracy for image classification
has significantly improved thanks to deep convolutional
neural networks. However, a very large number of images
is required for such networks to train successfully. For
instance, all of the ResNet [1] neural network configura-
tions from ResNet-18 to ResNet-152 (18 and 152 layers
deep correspondingly) are trained on the ImageNet data-
set [2], which contains 1.281.167 images and 1.000
classes (about 1.200 samples per class). Obviously, for
many of the practically significant tasks it is impossible to
collect and label a dataset that large. Thus, learning deep
convolutional networks from scratch might yield poor
results. Because-of that, on the smaller datasets typically
an approach called transfer learning is used instead. That
is, an ImageNet pretrained network of a particular archi-
tecture is taken and then further finetuned on the target
(smaller) dataset [1; 3; 4]. However, training on few ex-
amples per class is still a challenge. This contrasts to how
we, humans, learn, when even a single example given to a
child might be enough. Also, it is hard to estimate the
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quality of a certain ImageNet pretrained network on the
target dataset. Hence, we get a model selection problem:
if the model A4 is better than the model B on ImageNet,
will it be better on our small dataset? A promising ap-
proach to resolving both of these problems is to use meta-
learning or its benchmark known as few-shot learning.
Meta-learning trains the network on a set of different
tasks, which are randomly sampled from the whole space
of tasks. By learning the network in such a way, it is as-
sumed that the network will learn features that are rele-
vant to all of the tasks and not only to the single one, i.e.,
will learn more general features.

In this work we focus on one of the most prominent
optimization-based = meta-learning methods, called
MAML [5]. This method has become a keystone, and as it
will be shown in the literature overview section, many of
the newer method base on its ideas. Training of the
MAML method is split into the so-called adaptation and
meta-gradient update phases.

The subject of study is the class of optimization-
based meta-learning algorithms.

It has been shown that adaptation phase of the MAML
is quite slow to perform [6], and in general, high neural
network execution speed is a major problem for applica-
tions [7]. In this work we introduce gradient update pat-
terns, i.e., a selective update of the neural network
weights during the adaptation phase.

The purpose of this work is to show that by carefully
selecting the newly-proposed gradient update pattern, it is
possible to: 1) increase the execution speed of MAML
adaptation phase; 2) significantly improve MAML per-
formance in case, when only 1 adaptation phase is used.
The testing results will be shown on a publicly-available
few-shot learning dataset CIFAR-FS [8].

1 PROBLEM STATEMENT

The goal behind meta-learning is to train a neural net-
work ®(0), that is capable of adapting to the new previ-
ously unknown tasks given a small number of examples.
Meta-learning is also said to be learning to learn problem.
The training procedure is defined using a concept of tasks,
that are sampled from the whole task space p(7) of the
problem domain. The task is a tuple 7= {S, O}, consist-
ing of the so-called Support Set S = {Xs, ys} and Query
Set O = {Xp, yo} [5; 9-11]. In literature, the Query Set is
also sometimes referred to as Target Set. Support Set
{Xs ys} is used to adapt (or train) the network to the new
task. The set S is small. X are the network inputs, ys— the
expected predictions. The number of examples per class is
denoted as K and written as K-shot. K is typically in range
from 1 to 20, although no hard upper-bound is defined.
Xo, yo are the query inputs and expected outputs corre-
spondingly. Number of classes N the network should dis-
tinguish between is denoted as N-way.

We have given the general training procedure, next we
define it in more detail for image classification optimiza-
tion-based meta-learning, which this paper is focused on.
Optimization meta learning is defined in 2 steps: 1) adap-
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tation step, which computes adaptation weights in a form
of function 0°(0), that minimize task-specific error
L(y,, @(0°, X5)); 2) meta-gradient update, which updates
meta-weights 0. The idea behind such training procedure
is that by finding good weights 6, it will be possible to
adapt to new previously unseen tasks with few training
examples in the adaptation procedure. For classification,
the loss function used is typically cross-entropy (1):

L(y,®(0,X))=-D_y; log®(8, X,). 1)
i
We define the algorithm-specific part in the Materials
and Methods section. In this work we set a goal of im-
proving adaptation step execution time and accuracy.

2 REVIEW OF THE LITERATURE

The meta-learning approaches are mainly divided into
3 broad categories [12]: metric-based, model-based and
optimization-based. Representatives of each group differ
in the neural network design and training procedure. In
this work we focus on classification methods, yet applica-
tions exist in literally every field of machine learning [5;
13-15], such as NLP, Reinforcement Learning, Face
Verification, etc.

Next, we describe each category of meta-learning
methods. 1) In metric-based methods the goal is to define
a neural network architecture that produces an embedding
into a metric space and a similarity measure (metric), so
that the distance between embeddings of the same class is
smaller than that of different classes. Examples of such
methods include Siamese Networks [16], Matching Net-
works [17], Prototypical Networks [9]. 2) In model-based
methods the network architecture is designed, so that the
model has explicit memory cells, which help the network
to adapt quickly, for instance, Memory-Augmented Neu-
ral Networks [18]. 3) In optimization-based learning the
network architecture is not changed, which means that
conventional architectures for image classification can be
used. One of the quintessential methods in this category is
MAML [5], which defines the training procedure as
a 2"-order optimization problem. The method applicabil-
ity has been shown in regression, classification and rein-
forcement learning. Two popular datasets were consid-
ered for image classification: Omniglot [19] and minil-
mageNet [10; 17], where MAML has beaten with a mar-
gin many of the previous methods. After MAML has been
introduced, a lot of works have proposed its modifica-
tions. Reptile [20] has simplified MAML training scheme,
MAML++ [11] has given practical recommendation on
improving MAML training stability. In has been noted
that while MAML++ has introduced more parameters to
the network, total training time has decreased thanks to
the performance optimizations proposed. Authors of
Meta-SGD [21] note that by learning not only network
weights, but also separate update coefficient for each of
the weights, it is possible to achieve higher accuracies.
However, the network training time and memory con-
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sumption has significantly increased as twice the number
of the parameters should be optimized.

In contrast to previous works, in this paper we focus
on improving the network adaptation and not training
time. We assume that after the initial training, the network
can be adapted to multiple tasks in an online format.
Thus, minimizing adaptation time is an important prob-
lem. The results obtained in the paper will be applicable
to many of the optimization-based algorithms, including
but not limited to the ones mentioned above.

3 MATERIALS AND METHODS
In this work we propose a modification to the MAML
algorithm. As we have described in the problem statement
section above, this class of algorithms is defined in terms
of adaptation and meta-gradient update phases.
The algorithm starts by randomly sampling a training task
T~p(T). To sample a task 7; means to 1) randomly select
N classes from all classes that are available in the dataset
split (training, validation or test, based on which accuracy
we want to compute); 2) randomly select K images per
each of NV classes for the Support Set and K, images per
each class N for the Query Set. The first phase of the al-
gorithm is adaptation, where MAML minimizes loss func-
tion (1) on the Support Set by performing several stochas-
tic gradient descent steps. To do that the algorithm itera-
tively builds model weights 6,”() via formula (2), note
that 0, = 0

0 =0 —av, s ooV xs ) @

Having iteratively built the task specific weights 0,
the algorithm updates the meta-weights 0 using formula

3):

0c0-pvy Sibg.ob"xp) )
O;€T;

In essence, in (3) the algorithm updates the meta-weights
0 by averaging computed loss function (1) on the Query
Set, for the neural networks @ with weights 6,” on sev-
eral tasks T, i.e., in this step the algorithm backpropagates
through the losses of all the task-specific adaptations.
Throughout the paper we use 4 tasks for the meta-update
step. Note, that in (2) task-specific weights 0,” are com-
puted on the Support Set, and in (3) Query Set is used for
the loss computation. Also, in contrast to the conventional
neural network training procedure the loss function is
computed twice: first, to compute the adaptation weights
0" in (2); second, to compute the resulting adaption loss
in (3). Also, in (2) the gradient is taken by task-specific
weights 0,/ from previous step, and in (3) the gradient is
taken by meta-weights 6. Thus, as can be seen from for-
mulas (2), (3), the method requires Hessian computation
during the meta-gradient update, hence, this is a second-
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order optimization method. The whole training procedure
can be seen in algorithm 1. A more detailed information
can be found in the original paper [5].

Algorithm 1. MAML adaptation procedure

1:  Randomly sample task T; from task space p(7)

2:  Foreach task T={S;, O}, where S; = {Xs, ys}, O;i = {Xo, yo}

3: For iterationj = {1, ..., P}

4: Adapt the network via formula (2) using S;

5: End for

6:  End for

7:  Update meta-weight 8 via (3) using Q; and the task specific
weights 0,”

Next, we define our modified adaptation procedure.
Given a convolutional neural network that has B layers,
we define an adaptation pattern (4), where A; is an indica-
tive function as defined in (5), which indicates layers of
the network that should be updated during backpropaga-
tion.

A={A, Ay, Ag), @)

VIiA, = {1, if layer | is updated, )

We say that pattern is full if V/: A;=1. In this case
our adaptation phase will be equivalent to the one pro-
posed in MAML. We consider all possible patterns A,
except V/: A;= 0, when no weights can be updated, thus,
no adaptation is possible. We assume that updating only
certain weights might be useful, because the neural net-
works tend to learn features that differ in complexity, the
closer the layer is to the input the simple the features are
[22]. Also, authors of Meta-SGD [21] have shown that by
learning weight-specific learning rates the resulting qual-
ity was superior to the original MAML algorithm. How-
ever, Meta-SGD approach was much slower to train as
both weights and learning rates have to be learned during
the training procedure. Training time in our approach is
intact. In contrast to previous works, we propose to up-
date only certain weights, thus, essentially freezing some
layers. This allows us to decrease gradient computations
required during the adaptation phase as is shown on Fig. 1
for a convolutional network that contains 4 convolutional
and a single fully-connected (linear) layer.

In Fig. 1 the backpropagation pass goes in the direc-
tion opposite to arrows (forward pass). The architecture is
taken as an example and can be arbitrary in practice. For
the example pattern A = {0,1,0,1,1}, we can see that for
the Convolutional Block 4 and the Linear layers both the
gradient is computed and the weights are updated. For
Convolutional Block 3 gradients are computed, but
weights are not updated as Convolutional Block 2 re-
quires weight update. However, for Convolutional
Block 1 no gradients computation or weight update are
performed.

0, otherwise.
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Figure 1 — A pattern backpropagation scheme. Backpropagation is performed in order reverse to the arrows. In red — gradients are
computed, networks weights are updated; yellow — gradients are computed, no network weight update; green — both gradient
computation and network weight update are skipped

Given the above-described A pattern description, the
updated adaptation formula will look as follows (6):

0/ =0/~ Aav, ths ol xs )@

4 EXPERIMENTS

To conduct the experiments, we have reimplemented
the MAML algorithm. The following paragraph describes
the details.

The authors of MAML have defined convolutional neu-
ral network architecture and have used it for minilmageNet
experiments. This network is commonly referred to as
“CNN4” in the later meta-learning literature. It has 4 con-
volutional blocks, followed by a linear layer. Each of the
blocks has a convolutional layer with kernel size of 3 and
padding of 1, followed by the Batch Normalization [23],
ReLU activation and Max Pooling with kernel size of 2.
Number of filters in the convolutional layers is a configur-
able parameter, the authors have used 32, which we follow.
Number of outputs in the linear layer is defined by K for K-
way classification problem. Training is performed via
Adam [24] gradient descent method as meta-optimizer with
learning rate of p=10" and a = 0.01 as the adaptation step
size. Each model has been trained for 600 epochs. While
the authors used meta-batch size of 2 for 5-shot and 4 for
2-shot experiment to reduce training memory consumption,
we stick to 4 as it leads to slightly better performance on
CIFAR-FS [8] dataset during our experiments. Also, the
dataset memory footprint is small, so we don’t have to re-
duce memory consumption by using a smaller batch-size.
Each epoch has 100 randomly sampled tasks. For the gra-
dient update N-K samples are taken for N-shot K-way
classification problem for training and 15 samples per class
for evaluation, thus following [10].

In addition, we have modified the network adaptation
procedure, so that it updates only weights defined by pat-
tern A as defined in (4)—(6).

For the experiments we have used the novel CIFAR-
FS [8] dataset. It has been constructed from a well-known
classification dataset, called CIFAR-100 [25]. It has im-
ages of different kinds of mammals, reptiles, flowers,
man-made things, etc. The images are in color and have a
size 32x32. Originally, this dataset was not supposed to
be used in a few-shot learning setting. In [8] it has been
suggested to split 100 classes into train, validation and
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test sets. If it has been the non-few-shot neural network
training, we would expect all of the 100 classes to be rep-
resented in each of the sets, only the images themselves
would have been split. However, in few-shot learning
case different disjoint classes are taken. Thus, 64 training,
16 validation and 20 test set classes have been selected.
The exact classes that go into each split are important for
testing the resulting accuracy and are defined in [8]. By
using different classes for training and testing, the adapta-
tion to the new classes can be better estimated. After such
training the model is expected to quickly adapt to the
new, unseen classes. We have taken the CIFAR-FS data-
set for our experiments as it hasn’t been analyzed by the
MAML authors and is also faster to compute than minil-
mageNet.

All of the training procedures and time measurements
were done on our own MAML implementation and tested
on NVIDIA GTX 1050Ti GPU.

5 RESULTS
Given the network configuration as described in the
experiments section, we have implemented the MAML
algorithm. CIFAR-FS accuracy and adaptation timings
are presented in Table 1.

Table 1 — Accuracies and adaptation timings on
CIFAR-FS dataset

1-shot 5-shot 1-shot 5-shot

2-way 2-way 5-way 5-way

Accuracy 77.2% 87.6% 51.7% 70.3%
Time 38.43 ms 40.70 ms 41.67 ms 45.35 ms

In (6) we have proposed a modified adaptation
scheme, where only a part of weights is updated during
the adaptation procedure. To begin with, we consider only
trivial patterns A, where only one network layer is up-
dated during the adaptation procedure. We show the accu-
racy on the test set in Fig. 2, where in a and b we conduct
the experiment for 1-shot 5-way and 5-shot 5-way con-
figurations correspondingly. To see the impact of the
number of adaptation steps, we also show the accuracies
for P =10 (default) and 1, 3, 5 adaptation steps. As it can
be seen, the model accuracy differs significantly between
the configurations. For 1-shot 5-way, learning one of the
three first convolutional layers only has no effect, the
accuracy remains on the level of random guessing (20%).
However, training either convolutional layer 4 or the last
linear layer improves the model accuracy. Note, that the
number of parameters in layers differs. In Table 2, we

85



e-ISSN 1607-3274 PapioenexrpoHika, inpopmaruka, ynpasminss. 2022. Ne 1
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 1

show the number of parameters for each layer. Note that
final layer has different number of parameters depending
on N output classes. It can be seen that the first convolu-
tional layer and the final linear (fully-connected) layers
have fewer parameter than inner convolutional blocks.
This can explain the fact that learning only the linear layer
has worse performance. For 5-shot 5-way we see that only
convolutional layers 3 and 4 have a positive impact on the
performance if adapted alone. Interestingly, number of
adaptation steps has a significant impact on the perform-
ance with only convolutional layer #3 enabled. As we will
see later, such an impact is higher, than when the full
network is updated during the adaptation.

In Fig. 3, a and b we depict a similar experiment for 1-
shot 2-way and 5-shot 2-way configurations correspond-
ingly. Note, that random guessing baseline for these con-

Configuration = 1-shat 5-way

figurations is now at 50%, so the lower bound for accu-
racy is now higher than in Fig. 2. Here we see an opposite
trend, where updating the first layers also has a positive
impact on the resulting accuracy. Contrasting to previous
experiment, updating the Convolutional Block 4 only
doesn’t provide the best results in either case.

Table 2 — Number of parameters for each layer

Layer Name Number of Parameters

Conv Block 1 960

Conv Block 2 9.312

Conv Block 3 9.312

Conv Block 4 9.312

Linear 1.602 (2-way)
4.005 (5-way)

Total 30.498 (2-way)

32.901 (5-way)

Configuration = 5-shat 5-way

ad 1 E
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g 30 4 w3
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20 4 .
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convl conv2 conv3 canvd linear canvl cany? conv3 canvd linear
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Figure 2 — Adaptation accuracy for trivial A patterns, i.e., only a single layer is updated during adaptation:
a is 1-shot 5-way, b is 5-shot 5-way
Configuration = 1-shot 2-way Configuration = S5-shot 2-way
a0 - .
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Figure 3 — Adaptation accuracy for trivial A patterns, i.e., only a single layer is updated during adaptation:
a is 1-shot 2-way, b is 5-shot 2-way
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As one of the goals in our work is to improve the
model adaptation speed, we have timed experiments for
trivial patterns A. On Fig. 4 and 5 we show the model
adaptation time corresponding to all of the four configura-
tions depicted on Fig. 2 and 3. As we can see, in both
cases we have a similar trend where the closer the layer
we update to the end of the network, the smaller the adap-
tion time is. This follows our previous idea that by skip-
ping some gradient computations (as have been shown on
Fig. 1), adaptation time can be reduced.

As can be seen from Fig. 4 and 5, number of adapta-
tion steps has a significant impact on the adaptation
speed. On Fig. 6 we show the model accuracy for each of
the four scenarios and on Fig. 7 we depict the correspond-
ing timings, both shown with respect to the number of the

Configuration = I-shot Saway

35 o b

30 A B

[l N N
w (=] %,
L
1

Adaptation Time (ms)

=
o

conv3 convd linear

Active

comyl canvi

canvl

adaptation steps. As before, the experiments have been
conducted for P=1,3,5 and 10 adaptation steps. The
results between those reference points have been linearly
interpolated. The presented accuracies and timings are the
average taken for all 31 possible patterns A. Note, that
throughout the article we exclude pattern V/: A;=0, as
no weights can be changed for such pattern, therefore no
adaptation is possible. As can be seen, while the adapta-
tion time grows linearly with the number of adaptation
steps, the accuracy growth plateaus at around 5 adaptation
steps. Actually, for the full pattern A increasing number
of adaptation steps from 5 to 10 has less than 0.3% im-
provement in accuracy. In typical practical scenarios such
an improvement is insignificant. Thus, we suggest that
performing 10 adaptation steps is redundant.

Configuration = S-shot 5-way

Adaptation Steps
LS
w3
. 5
s 10

conv3d convd linear

Active
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Figure 4 — Adaptation time for trivial A patterns:
a is 1-shot 5-way, b is 5-shot 5-way
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Figure 5 — Adaptation time for trivial A patterns:
a is 1-shot 2-way, b is 5-shot 2-way
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Figure 6 — Accuracy averaged for all patterns A for different
N-shot K-way problems with respect to the number of
adaptation steps P

Next, we try to search for such a pattern A and num-
ber of adaptation steps, so that the resulting accuracy
drops no more than 0.07 times the full pattern accuracy.
We see such a quality degradation threshold reasonable
for practical applications. It should be noted that the ap-
proach we propose can be applied with an arbitrary qual-
ity degradation threshold. We show such patterns in ta-
ble 3. Based on this table, we suggest using the
A"={1,0,1,1,1}, which offers factor of 3.0 speed im-
provement with an insignificant quality loss. It can be
seen that pattern A = {0,1,1,1,1} also suits the specified
criteria and also has a slightly higher (factor of 3.1) per-
formance improvement, however, it has a significantly
lower performance for both of the 2-way configurations,
degrading on 2.5% and 3.2% relative to the best selected
pattern A". We consider such a degradation not worth the
speed up. The fact that enabling first CNN layer is sig-

nificant for the 2-way learning accuracy, closely follows
the presented above description of Fig. 3. Also, not to be
mistaken, in Fig. 2-5, we had only one layer updated dur-
ing the adaptation phase (thus X; A;=1), however, the
best selected pattern A" has all expect one layer updated.
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Figure 7 — Adaptation time averaged for all patterns A for
different N-shot K-way problems with respect to the number
of adaptation steps P

Finally, we pose a question, whether updating only
part of weights in the neural network can improve the
method performance. We have discovered, that in ex-
treme case of learning with a single adaptation step
(P =1), we have significant improvement in 5-way adap-
tation performance by updating with a partial pattern A.
The performance for the full pattern, as well as a partial,
is shown in table 4.

Table 3 — Adaptation speedup depending on pattern A and the number of adaptation steps. Patterns with loss degradation of less than
7% (relative to full pattern A and 10 adaptation steps) are shown.

Adaptation Pattern A 1-shot 2-way | 5-shot2-way | 1-shot5-way | 5-shot 5-way Mean Adaptation Relative Speedup
Steps (%) (%) (%) (%) Time (ms) (times)
3 0,1,1,1,1 74.7 83.2 49.3 69.7 13.3 3.1
3 1,0,1,1,1 76.6 85.9 49.3 69.8 13.9 3.0
3 1,1,1,1,1 76.6 87.2 49.3 70.0 15.0 2.8
5 0,1,1,1,1 75.2 83.9 51.5 69.9 20.0 2.1
5 1,0,1,1,1 76.9 86.2 514 70.1 21.1 2.0
5 1,1,1,1,1 77.0 87.4 51.6 70.2 22.6 1.8
10 0,1,1,1,1 75.4 84.6 51.7 70.1 36.1 1.2
10 1,0,1,1,1 77.1 86.6 51.7 70.1 38.6 1.1
10 1,1,1,1,1 77.2 87.6 51.7 70.3 41.5 1.0

Table 4 — Accuracy improvement for P =1 gradient step

adaptation with pattern selection

Accuracy 1-shot S-shot 1-shot 5-shot
2-way 2-way 5-way 5-way

A={1,1,1,1,1} 74.3% 86.0% 36.8% 20.4%
A=1{1,1,0,1,1} 74.3% 83.1% 36.9% 53.1%
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We have also performed a search of all cases, when
our approach gives better results than the original with
P =1. The results are shown in Table 5.
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Table 5 — Accuracy improvement for P =1 gradient step
adaptation with pattern selection if pattern is selected
per configuration

1-shot 5-shot 1-shot 5-shot
2-way 2-way 5-way 5-way

Accuracy on 74.3% 86.0% 36.8% 20.4%

A={1,1,1,1,1}
Accuracy on 74.5% 86.2% 36.9% 54.8%
selected A
Selected Pattern A | 1,1,1,0,1 | 1,1,1,0,1 | 1,1,0,1,1 | 1,1,0,1,0

6 DISCUSSION

In [22] it has been shown that each trained neural net-
work’s convolutional layer has a different meaning. The
first layer tends to learn simple features, like edges, lines
or color gradients. The second layer increases its com-
plexity and understands simple shapes, e.g., circles, cor-
ners or stripes, while the last layers learn high-level fea-
tures, such as eyes, faces, text-like objects, etc. The exact
features learned, obviously, depend on the training data-
set, however, such logic is retained. In the few-shot learn-
ing classification scenario the tasks differ by the types of
objects that the model has to classify (e.g., horse, vehicle,
frog, etc.). As we have described in the experiments sec-
tion, train and test sets have different disjoint classes pre-
sented. Thus, it might be reasonable to expect that only
the last layers of the network should be changed to adapt
to the new tasks and classes. This is exactly what we see
in the case of 5-way classification as is shown on Fig. 2.
However, such a statement contradicts to the experiment
results from Fig. 3. By examining the original CIFAR-
100 dataset, we can see that image labels (classes) form
larger coarse groups. For instance, coarse class (or super-
class) “aquatic mammals” contains “beaver”, “dolphin”,
“otter”, “seal”, “whale”. Other examples of superclasses
include “fish”, “large carnivores”, “household electrical
devices”, etc. The training itself is performed on finer
classes. From the examples we have picked, it becomes
obvious that instances of different classes have a signifi-
cant variation in color. Images of aquatic mammals and
fish typically contain blue and gray colors, while large
carnivores might have more yellow and green. Thus, in
case of 2-way classification it is more probable that both
classes will be picked from a single or several similar
superclasses than in case of 5-way classification. Conse-
quently, we suggest that updating the first layer of a neu-
ral network in a 2-way few-shot learning scenario adjusts
the feature distribution to the one expected by the follow-
ing neural network layers. We see this as an analogy of
how a human eye works: it adjusts the amount of light
coming to the retina by expanding or contracting the pu-
pil, so that it becomes easier to see the details.

From Table 3 we see that keeping the inner layers
stale is the most fruitful way to improve the performance,
with little to no quality loss. A substantial increase in ad-
aptation speed has been achieved with a target quality loss
set to 7% relative to the original pattern A = {1,1,1,1,1}
and P = 10 adaptation steps. The actual quality loss turns
out to be even smaller as we have skipped slightly faster,
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but worse pattern A = {0,1,1,1,1}. Thereby, with the best
A" ={1,0,1,1,1} and P =3 adaptation steps, we achieve a
factor of 3.0 speed improvement. Our quality losses are
the following: 1-shot 2-way is 0.78%, 5-shot 2-way is
1.97% 1-shot 5-way is 4.86% and 5-shot 5-way is 0.71%.
Even smaller quality losses can be achieved by consulting
table 3. Note, that these are relative quality losses. If the
losses are computed in absolute terms, they become even
more negligible. Thus, we state that have achieved a sig-
nificant adaptation time reduction with small-enough
quality loss.

We also discuss a way to improve algorithm quality
by selecting a pattern A. In an extreme case of single ad-
aptation step, avoiding to update the inner layer has
helped to improve the overall model quality as is shown
in table 4. We have also been able to find such a pattern
for each of the few-shot learning configurations such that
it improves the model performance for P =1 adaptation
step in table 5. It is curious that no such behavior is ob-
served in cases when P > 1. To the best of our knowledge
such behavior has not been previously observed and
should be further investigated.

CONCLUSIONS

MAML is an optimization-based few-shot learning
method that is able to learn an arbitrary neural network by
using only a few samples per class. Many algorithms fol-
low the learning scheme proposed in MAML. In this work
we solve the problems of 1) long adaptation time, and 2)
poor performance in cases when a single adaptation step
is used.

The scientifical novelty of obtained results is that the
method of reducing number of gradient computations
during MAML adaptation phase has been introduced via
the newly proposed A patterns. By selecting an appropri-
ate adaptation pattern, we have significantly improved the
method in the following areas: 1) long MAML adaptation
time has been decreased by the factor 3 with minimal
accuracy loss; 2) accuracy for cases when only a single
adaptation step is used has been substantially improved.

The practical significance of obtained results is that
an improvement of adaptation time of the widespread
MAML algorithm will enable applicability of the algo-
rithm on less powerful devices and will in general de-
crease the time needed for the algorithm to adapt to new
tasks.

Prospects for further research are to investigate a
way of a more robust automatic pattern selection scheme
for an arbitrary training dataset and network configura-
tion.
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YK 004.93
MPUCKOPEHHS ®A3U ATATITAII ONITAMI3AIIIITHOTO META-HABUAHHSA
Xabapaak K. C. — acnipant kapenpu CucTeMHOro aHanizy Ta yrnpapiiHHS HaumioHaqbHOro TEXHIYHOTO YHiBEpCHTETY «JIHim-
poBcbKa motitexHikay, J{Hinpo, Ykpaina.

AHOTALIA

AxTyanbHicTs. Heliponni Mepexi nmorpeOyroTs 6arato po3MideHUX NaHUX JUIS HaBYaHHS. AJTOPUTMH MeTa-HaBYaHHS IPOIO-
HYIOTH CIIOCi0 HaBUaTHCS JIMIIE 3a AeKUIbKoMa mpuKiIagaMu. OfuH 3 Hal3HAYHIMINX aJTOPUTMIB ONTHMI3aIifHOTO MeTa-HaBUYaHHS —
e MAML. Opnak, #oro mporeaypa afanTaiii 0 HOBUX 3a/a4 € JOCUTh MOBUIEHOI. O0’€KTOM JOCHTIJDKEHHS € MpOoIleC MeTa-
HaByaHHs Ta (a3a aganTaiii B TOMy BUIIISLAL, K 11 BU3Ha4YeHo B anroputmi MAML.

Meta. MeTo10 1aHOi poOOTH € CTBOPEHHS MiIXOIY, IO A03BOJHTE: 1) 3MEHIINTH Yac BUKOHAHH afanTamii anroputMmy MAML;
2) MOKpAIIUTH SKICTh aNrOpUTMY B psili BunanakiB. [loka3aTu pe3ysnbTaTu TECTyBaHHS Ha MyOJiYHO JAOCTYITHOMY HAa0Opi AaHHUX IS
Meta-HaBuaHHsA CIFAR-FS.

Mertopa. B naniii po6oTi 3anponoHOBaHO MOKpAICHHs alroputMy MeTta-HaBuanusi MAML. TIpouenypa meta-HaBYaHHs BU3HAYA-
€ThCS Yepe3 Tak 3BaHi «3afadi». B pa3i kmacudikarii 300paxkeHb KOKHa 3aa4a € cipoOo0 HABYUTHCS Kiacu(iKyBaTh 300paskeHHs
HOBHX KJIACiB JIMIIE 33 JeKiJIbKOMa HaBYaTbHUMH NpHKiIagamu. B anropurmi MAML Bu3HaueHO 2 KPOKH MpOLEAypH HaBYaHHI: 1)
aJlanTaiis 10 HOBOi 3aadi; 2) OHOBJIEHHS MeTa-lapaMeTpiB Mepexi. Bes TpeHyBanbHa mpornenypa motpedye oOUKCIeHHs reciaHy,
0 POOHUTH METOJl O0YHCITIOBANBHO CKiIagHuM. [1icis HaB4aHHS MepeXka, 3a3BHYaid, OyJe BUKOPUCTOBYBATHCS UL afamTamii 1O HO-
BHX 3aj1a4 Ta HACTyNHOI Kiacugikanii Ha HUX. TakuM YMHOM, HOKpAIEHHS Yacy afanTalii Mepexi € BaxIuBoIo npobdiemoro. Came
Ha 1iit mpo6iemi Mu pokycyemocs B naHii poboru. Hamu 3anpornoHoBano mabiaoH A (JisiM07a) 3a JOIOMOTOIO SIKOTO MU 0OMexye-
MO, SIKi apaMeTpHU MEpPEeKi CJiJl OHOBIIOBATU Wi Yac KPOKy amantariii. JlaHui miaxia 103BOJIsE HE OOYMCIIOBATH TPAIi€HTH IS
o0OpaHuX MapaMeTpiB Ta TaKMM YMHOM 3MEHILHUTH KUIBKICTh HeoOXigHUX oOuucieHb. [labnoH oOupaeThest B MexKax mapamerpy J10-
3BOJICHOT'O 3MEHIICHHs sIKOCTi Meperxi. Cepen mabIoOHIB, 110 BiMOBIAAIOTH 33laHOMy KpHTepito, 00upaeThes HanmBuammii. OqHaxK,
sk OyJe MOKa3aHOo Aalli, B ACSAKHX BHIAJKaX TAaKOXX MOJKIIMBE ITiIBUILEHHS SKOCTI 3a JONOMOIOI0 MPAaBWIBHO OOPAHOTo IIabIOHY
ajanranii.

PesyabTaTn. byno peanizoBaHo, HABYCHO Ta MEPEBIPEHO SKicTh poboTH anroputMy MAML i3 mabnoHoM aaanTamii A Ha Bij-
kputomy Habopi nanux CIFAR-FS, mo poOute oTprMaHi pe3yabTaTH JISTKO BiITBOPIOBAHUMHU.

BuchHoBku. [IpoBeseHi ekcriepuMEHTH MOKa3yIOTh, IO 13 BHOOPOM HIa0JIOHY A MOXKIIMBE 3HAYHE MOKpameHHs merony MAML B
HACTYIHHUX O0JIACTAX: Yac afanTauii OyJio 3MEHIICHO B 3 pa3u 3a MiHIMaJIbHUX BTPAT sAKOCTi. L{ikaBo, 110 U1 OJHOKPOKOBOT afamnTa-
il SKiCTh 3HAYHO BHPOCIA 32 YMOBU BHKOPHCTAHHS 3allPONOHOBAHOTO MIa0OHY. [lepcrieKTHBY mojaibmnX DOCTIHKEHb MOXYTh
TIOJIATATH B po3po01Ii 6116 poOACTHOTO METOy aBTOMAaTHYHOTO BHOOPY IIA0IOHIB.

KJIFOYOBI CJIOBA: npuctpinkoBe HaB4aHHs, MeTa-HaB4aHH:A, Model-Agnostic Meta-Learning, MAML, yac aganTauii, IBu-
JIKICTh aJarlTarii, ONTUMI3aliifiHe MeTa-HaBYaHHs.

YK 004.93
YCKOPEHUE ®A3bI AJAIITAIIUN OITUMU3ALIMOHHOI'O META-OBYUYEHUS
Xabapaak K. C. — acriupanTt kadenpst CucTeMHOTO aHayiu3a M ylpapieHHs HannoHaabHOrO TEXHHYECKOTO YHHBEPCHTETa
«/InenpoBckas nonuTrexHuka», Jnenp, Ykpauna.

AHHOTALNUA
AKTyalabHOCTB. HelipoHHbIe ceTH TpeOyroT OOJBIIOro KOJMYECTBa Pa3MEUCHHBIX JIAaHHBIX Uil 00ydYeHHs. AJTOPUTMBEI METa-
00y4YeHHs MPeJIararoT Crocod 00y4aThes NI 0 HECKOJIBKUM mpuMepaM. OTHIM U3 HanOoJiee BBIIAFONINXCS alTOPUTMOB OIITH-
MH3AI[MOHHOTO MeTa-00y4deHus sisisercss MAML. OmHako, ero mporeaypa alanTalid K HOBBIM 3a/1a4aM JIOCTATOYHO MeJUICHHAS.
OOBEKTOM HCCIICIOBAHNUS SIBIIAETCS MPOIecC MeTa-00yueHus 1 (hasa aganTaiuu B BUjC, Kak OHa onpejeicHa B anroputme MAML.

Mean. Lenp nanHO# paboThl — CO3aHUE NMOAXO0A, KOTOPHIX MO3BOJIUT: 1) yMEHBUINTH BPEMsI BHIOJIIHECHUS IANTALIMH alTOPHT-
Ma MAML; 2) yJyuIInTh KauecTBO aIrOPUTMa B psijie ciry4aeB. IIoka3aTh pe3ysIbTaThl TECTUPOBAHHS Ha OTKPHITOM HabOpe JaHHBIX
st meta-o0yuenns CIFAR-FS.

Metoa. B nanHoii paboTe npeioxkeHo yiaydiieHue anropurma mera-ooydeans MAML. Tlponenypa mera-o0y4enus onpenens-
eTCsl Yepe3 TaK Ha3blBaeMble «3agaunm». B ciywae ximaccudukanum m3oOpaxkeHHil Kaxaas 3ajada SBISETCS MONBITKON HayYHThCS
KJIaccu(UIUpoBaTh M300paKeHUSI HOBBIX KJIACCOB IO HECKOJBKUM oOyuaromum npumepam. B amropurme MAML omnpexneneno 2
mara B mpouexype oOydeHus: 1) amanTamus K HOBOH 3amade; 2) oOHOBJICHHS MeTa-IapaMeTpoB ceTH. Bes mpomenypa oOydeHus
TpeOyeT BHIYMCIICHHE TeCCHaHa, YTO JEeIAeT METO/] BBIYMCIUTEIBHO CI0KHBIM. ITocine 00y4yeHus ceTb, Kak MpaBuiio, OyAET UCIIOJb-
30BaThCA JUIS aallTallid K HOBBIM 3a/iad U MOCIeqyIomel Kiaccu(UKay Ha HUX. TakuM o0pa3oM, yydlIeHHe BpeMeHH aJanta-
IUH CETH ABJIAETCS BaXHOW mpobiemoil. VimeHHO Ha 3TOi mpobiieMe MBI M OKyCHpyeMcsl B JaHHOH pabore. Hamm mpemsoxkeHo
mabiaoH A (JsM06/1a), ¢ TOMOIIBIO KOTOPOTO MBI OTPaHUYHMBAEM, KaKHE MapaMeTphl CETH ClieyeT OOHOBISTH BO BpeMsI LIara aJanTa-
K. JIaHHBIH TTO/IXO0/] TO3BOJISIET HE BHIYUCIIATH MPaIHEHTHI JJIsl BRIOPaHHBIX ITapaMeTPOB M TAKUM 00pa3oM YMEHBIIHTH KOJIHYECTBO
HeoOXoIuMbIX BbluucieHuil. 1l1abnon BeIOMpaeTcs B paMKax 3HAUCHHs IapaMeTpa pa3pelIeHHOro naaeHus kadectsa cetd. Cpean
11a06JI0HOB, KOTOPBIE COOTBETCTBYIOT 3aJJaHHOMY KPUTEPHIO, BbIOMpaeTcs Hanbosee ObICTpblil. OHaKo, Ak OyIeT MOoKa3aHo Jalblle,
B HEKOTOPBIX CIIydasX TaKKe BO3MOYKHO IOBBIIICHHE Ka4eCTBA C IIOMOILBIO TPABUIIBHO BHIOPAHHOTO 1IA0IOHA aJallTalliH.

Pe3yabTartsl. beuto peanusoBano, 00ydeHO M IMPOBEpeHO KauyecTBO padotsl anroputMa MAML c mabnoHoM agantamuu A Ha
otkpbiToM Habope naHHbIX CIFAR-FS, uto nenaer nomyueHHbIe pe3ysIbTaThl JIETKO BOCIIPOM3BOIUMBIMH.

BriBoasl. [IpoBeneHHbIE SKCIIEPIMEHTHI OKa3bIBAIOT, YTO C BEIOOPOM IMIaba0Ha A BO3MOXKHO 3HAYUTEIBHOE YIydIICHHE METO-
1a MAML B crnemyromux o6nacTsx: BpeMsl afanTaniy ObUIO YMEHBIICHO B 3 pa3a IMPH MUHMMAJIBHBIX IOTEpsX B KadecTse. MHTe-
PECHO U TO, YTO AJI OAHOIIArOBOH ajanTaniy KadeCTBO 3HAYUTEIHHO BEIPOCIIO IPH YCIOBHH HCIIOIB30BaHUS BEIOpAaHHOTO IabIro-
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Ha. [lepcrieKTHBBI JaTbHEHIINX HCCIENOBAHUI MOTYT 3aKIIOYaThcs B pa3paboTke Oojiee pobacTHOro MeToa aBTOMAaTHUECKOTO BBI-
6opa 1mabJI0HOB.
KJIFOYEBBIE CJIOBA: npuctpenoynoe o0y4eHue, Meta-o0ydenue, Model-Agnostic Meta-Learning, MAML, Bpems ananra-
L[M1, CKOPOCTb aJalTalliK, ONITHMHU3ALMOHHOE MeTa-00y4YeHHeE.
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