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ABSTRACT

Context. Various risks are inherent to practically all types of human activities. Usually the risks are characterized by availability
of multiple risk factors, uncertainties, incompleteness and low quality of data available. The problem of mathematical modeling of
risks is very popular with taking into consideration possible uncertainties and interaction of risk factors. Such models are required for
solving the problems of loss forecasting and making appropriate managerial decisions.

Objective. The purpose of the study is in development of multivariate risk modeling method using specialized copula functions.
The models are developed in the form of multivariate distributions.

Method. The modeling methodology is based upon exploring the special features of various copula functions that are helpful to
construct appropriate multivariate distributions for the risk factors selected. The study contains formal description of selected copu-
las, analysis of their specific features and possibilities for practical applications in the risk management area. Examples of practical
applications of the copula based approach to constructing multivariate distributions using generated and actual statistical data are

provided.

Results. The results achieved will be useful for further theoretical studies as well as for practical applications in the area of risk
management. The distributions constructed with copula create a ground for solving the problems of forecasting possible loss and

making appropriate decision regarding risk management.

Conclusions. Thus the problem of constructing multivariate distributions for multiple risk factors can be solved successfully us-

ing special copula functions.

KEYWORDS: multivariate stochastic processes, risk estimation, special copula functions, modeling multivariate distributions,

combined marginal distributions.

ABBREVIATIONS
EVT is an extreme value theory;
MEVT is an multivariate extreme value theory.

NOMENCLATURE
C is -increasing function;
fi is a function of density for marginal distributions;
& is the parameter that characterizes form of the dis-

tribution;

H is n-dimensional joint distribution function with
marginal distributions;

B is additional scaling parameter;

N, is a number of observations that exceed the
threshold;
Fi(_l)(ui) is inverse function to the function of mar-

ginal distribution;
p is symmetric positively defined matrix with the

unity main diagonal;
¢ is the function of standard scalar normal distribution;

¢ is the function of multivariate standard normal dis-

tribution with correlation matrix p ;

C is a number of coordinated couples;
D is a number of non-coordinated couples;
N is a number of observations.

INTRODUCTION

The studies related to risk analysis and management
are very popular in the world today practically in every
area of human endeavors due to widely spread necessity
of various risk estimation, management, and minimization
of possible loss. The risk management theory supposes
mathematical modeling of risks themselves (including
risk factors), and application of the models created to es-
timation and forecasting possible loss for a time horizon
selected. One of the key elements of mathematical model-
ing is taking into consideration the interactions between
risks and risk factors. Such interaction may serve as an
amplifier for risk effects and it often results in increasing
possible loss. Thus, it is important to take into considera-
tion in the risk management procedures not only isolated
risks but also their interaction and integrated estimates in
the form of some portfolio risk. That is why the use of the
results of former studies in the area, concentrated on the
extreme value theory (EVT), in a scalar case imposes
substantial restrictions on practical applicability of the
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results because of focusing attention on separate risk fac-
tors and their influence [1-6]. In practice of risk manage-
ment more often the problem arises in correct application
of risk estimation procedures that would take into consid-
eration complicated, very often asymmetric, non-
stationary and nonlinear interaction between risk itself
and risk factors. Correct mathematical and statistical de-
scription of the processes involved in the risk analysis
procedures is the key point for solving the problems of
making effective managerial decisions regarding risk
management, for example regarding avoiding risk, its
diversification, and minimization.

The natural approach to generalization and improve-
ment of existing risk analysis methodology is the use of
multivariate extreme value theory (MEVT) that considers
modeling of tails for the multivariate distributions [7-9].
However, the use of extreme values only for correspond-
ing vectors as it is done by scalar EVT, i.e. the vectors
containing extreme values in each coordinate, provides
the possibility for correct processing relatively small
number of measurements. Taking into consideration that
of basic interest are only about 3%—5% of observations
the simultaneous threshold overcoming for each variable
will be taking place very rarely. The more variables will
be considered simultaneously the less number of coincid-
ing extreme values will be met. Here the known problem
of high dimensionality will not provide the possibility for
reaching reliable data processing results when the number
of observations is low.

For a long time as widely accepted measure of de-
pendency between two random variables served well-
known statistical correlation coefficient. According to the
known hypothesis of normality for financial random vari-
ables the correlation coefficient was considered as neces-
sary and sufficient measure in the case of multivariate
normal distribution. However, in risk management prob-
lems very often the data does not correspond to the nor-
mality hypothesis, and the criticism arises regarding the
correlation coefficient as inadequate measure for analysis
of risks dependency [10—13]. The correlation coefficient
does not provide appropriate formal description for the
dependency structure between the risks, especially in the
tails of distributions (Fig. 1). Thus, completely dependent
random variables may exhibit the correlation coefficient
distinctive from 1 or —1, and zero correlation coefficient
does not support the hypothesis of risks independence.
For example, this is true in the case of normally distrib-
uted risk, X, and completely dependent on its sequence

of values X 2. The linear correlation is also not invariant
to transformations of random variables.

The purpose of the study is in following:

— to perform analysis of a construction procedure for
the class of special copula functions that are suitable for
the formal description of multivariate distributions;

— to consider the special features of copula parameter
estimation procedures using existing estimation tech-
niques namely maximum likelihood method,;

— to estimate the possibilities for practical applications
of the copula families for performing statistical analysis
of economic, financial, and other risk types represented
by the extreme values of respective distributions.

1 PROBLEM STATEMENT
Let we have n independent random variables,

X{se.s X, for which the following relation is true:
P(X{ < X{50es X < Xp) = P(X] < %)) ..o P(X < %) . t means
that the knowledge regarding one of the random variables
does not provide the knowledge related to others. Study-
ing the dependency between variables it is of interest to
get information related to one random variable using the
information about other variable and to compare the mu-
tual dependences between the pairs of random variables.
The dependency is inverse characteristic to independence
of random variables but the ways of its identification can
be different in different cases and is determined by spe-
cific problem statement.

This work is focusing on constructing of a class of
special functions, copulas that are suitable for the formal
description of multivariate distributions, and estimation of
the possibilities for practical application of the copula
family to statistical analysis of financial and other types
of risk data represented by extreme values of correspond-
ing distributions.
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Figure 1 — Two multivariate observations with similar normal
marginal distributions and coefficients of about, p =0.14, but

with different dependency structures

In the risk management procedures, especially regard-
ing financial risks, withdrawing of marginal risk distribu-
tions for separate financial instruments from the depend-
ency structure is a natural requirement. On one side each
random variable has its scalar distribution but on the other
side it is necessary to take into consideration existing de-
pendences between random variables.

Such approach helps to improve the model adequacy
and consequently enhance quality of final result — risk
estimation. Here the copula notion is useful that allows
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for clearly separation the information related to structure
of the dependency and to produce its appropriate formal
description. Now consider some theoretical formulations
necessary for understanding basic material of the study
[14, 15].

2 REVIEW OF THE LITERATURE
Before considering possible ways of describing de-
pendency first return to the general definition of depend-
ent random variables.
Definition 1: Distribution function is such a function
F with the domain of definition, [—o0,00], that F is non-

decreasing and having marginal the values of: F(—o0)=0
and F(x0)=1.

Definition 2: Distribution function of random variable
X is such function, F, that for all, X €[—o0,], the fol-

lowing relation is true: F(x)=P[X <x].
Definition 3: The function H of n arguments is
called n -increasing if for any n-dimensional interval,

B= [5,5] , such that [5,6] belong to the domain of defini-
tion of the function H with a<b , the following is true:
Vi (B)=A2H(x) =A% A% H(X)20.

a n 1

Definition 4: Joint distribution function is such a func-
tion H with the domain of definition, [—o0,]" , that H
is n-increasing, and H(X,...,Xj_j, =%, Xj11,Xy) = OVi,
H (—o0,0) =1.

Definition 5: Joint distribution function for the ran-
dom variables Xj,...X,, 1is such a joint distribution func-
tion H with the domain of definition, [—o0,00]", that
H (X[, X0) = PLX| < X, X X010

From the given definitions we have that distribution

function for random variable X; is marginal distribution

function for joint distribution function of random vari-
ables,

X],...,Xn:
F(x)=P(X;<x)= lim H(t,....t;_,X)" (D

The complete description of dependence or independ-
ence for  random  variables, X15e - Xp s is
P(X1 X5, Xy £X), 1.e. their joint distribution func-
tion, H(Xy,...,Xp) . But it also contains excessive informa-

tion regarding marginal distribution for each random vari-
able. In solving practical problems it is necessary to ob-
tain information regarding the dependency structure sepa-
rately.

Definition 6: The function, C :[0,1]" —[0;1] is called
n -copula if the following conditions are true.
C(Fy,....Fy) =0, if there exists such | that Fj =0

C(l..,R,L..)=F;

Theorem 1: Sklar theorem [15]: Let H is
n -dimensional joint distribution function with marginal

distributions, Fy,...,F, . Then there exists such n-copula

that for all, xeR" , the following relation is true:
H(Xp.s Xn) = C(F (X))o, Fn (X)) - (2)

If F....,F, are continuous, then C is unique, other-
wise the functions C are uniquely determined over the

space, Rng[F]x..xRng[F,]. And vice versa: if the
functions F,...,F, represent continuous distributions,
and C is n-copula, then H(x,..,X,) is joint

n -dimensional distribution function with marginal distri-
butions, Fy,...,F, .

Definition 7: The density distribution for copula C is
the following function:

GRS

c(F,F,....Fy) OF,0F,,.OF 3)
yeers OFp

The joint density distribution function can be repre-
sented in the form:

h(X15 X255 Xn) = C(F (X)), F2 (X200, Fn (X)) - 4)

An important role for risk analysis is the copula fea-
ture of invariance to increasing transforms.
Theorem 2 [15]: Consider the transforms Zi,...,Z,

that are increasing in corresponding domains of defini-
tions of random variables Xi,..., X, with continuous

marginal distribution functions and n-copula, C. Then
random variables Z;(Xy),...,Zp(Xy,) have the same

n-copula, C .

3 MATERIALS AND METHODS

Constructing marginal distribution function. When
copulas are used for modeling dependences between ran-
dom variables it is necessary to construct separate model
for marginal distributions for the variables. For the prob-
lems of risk management of particular importance are es-
timates of values that belong to the tails of distributions.
For the formal description of right tail of loss distributions
is recommended the use of the method of overriding
based upon the generalized Pareto distribution. And the
distribution for the other observations (that are closer to
mathematical expectation of a sample) it is recommended
to describe with normal distribution using the results of
application of the central limit theorem and the experience
of using the distribution in the problems of risk manage-
ment. To separate the two parts of data sample it is neces-
sary to estimate the empirical distribution quintile for a
threshold selected. In the computational experiments car-
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ried out by multiple researchers the threshold was selected
at the level of 95 % according to the existing practice of
risk management.

The sample mathematical expectation of normal dis-
tribution is estimated on all observations available. And
the standard deviation should be estimated in a way so
that the values of normal distribution function at the
threshold point were equal to the value of empirical dis-
tribution function. Such approach to the computations
allows for orienting the model to adequate formal descrip-
tion of the tail observations. Besides, this method of per-
forming the computations provides for the continuous
form of the combined distribution function the right part
of which is constructed using the method of overriding.
The distribution function constructed by the use of this
method is equal to the empirical distribution function at
the threshold point according to the constructing proce-
dure selected. The continuity of the marginal distribution
functions points out to the existence of unique copula in
expression (1).

Definition 8: Let random variable, X;j, has distribu-
tion function, Fj, and right final point Xjz <o . For a
fixed value, U < Xje , the distribution function of exceed-

ing values for U is called the following one:

Fiu () = P(Xj —uj x| Xj > U),X+U < XiE ; )
and the function:

e(u)=E[X -u|X >u]:JXiFm

U 1-FX)’ ©

is called the function of mean exceeding.
Denote, z* =max(z,0), and let card{A} is a number

of elements in the set A. An empirical estimate for the
function of mean exceeding is the following one:

1
e(u) = - - x
card{j: Xij >U, j=1..,N}

Q)

N
X Z(Xij —U)*,U >0.
j=1

For the distribution function of the values exceeding
selected threshold there exist an analogue of the Fisher-
Tippet-Gnedenko theorem, i.e. Pikands-Balkema-de Haan
theorem.

Theorem 3: Pikands-Balkema-de Haan theorem [3]:

1
m IR g € e,

8
uTxe 1-F) exp(—X).E=0 ®)

where, 1+&x >0, for some positively defined function

).

From (2) and definition of the distribution function for
exceeding values we have a model for distributions of
threshold exceeding values: the function of generalized
Pareto distribution:

1
GPD(x)=1{1-(1+&X) ©,&=0, ©)
1—exp(—X),£=0,
B

where, p>0, and x>0 with £>0, and Osxg_? with

£<0.

The model for tail data distribution is constructed by
the method of threshold exceeding that is based upon the
marginal distribution law for the exceeding values (3) and
includes the following steps.

1. For sample {x}; of power, N, the threshold u is

selected. Then the observations X; ..., X are determined
exceeding the threshold, and respective exceeding values
are computed: y; = Xi; —u >0, where N, is a number of
observations that exceed the threshold.

2. Then the function F,(y) (distribution of exceeding
values, yi,...,yy, in the form of (3), GPDgg(x), is esti-

mated, i.e. the parameters of form and scale are com-
puted.

3. The distribution function for the tail region, X is
estimated as follows:

Fi(y +u)—Fi(u)

R () =(1-F)F;(y)+Fu), (10)
= Nu
Fi(u)= N
i.e. we have:
= - Nu Ny
F()=( N YRy (y)+ N (11)

Copula family constructing. The Sklar theorem guar-
anties copula existence and its uniqueness for definite
conditions but it does not provide the method for its con-
structing. Consider some methods for copula constructing.

1. The method of inverse function

The idea of the method is in the following: from the
Sklar theorem for joint distribution function, H , and con-
tinuous marginal distributions, F,...,F,, copula, C, is

defined as follows:

C(Uppenstin) = HETD U, TP () - (12)

The most widely spread in modeling random variables
are elliptical distributions and more exactly multivariate
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normal distribution. If we apply to the distribution inverse
method then we will get multivariate normal copula or
Gaussian copula.

Definition 9: Let p is symmetric positively defined

matrix with the unity main diagonal. Then the following
function is called Gaussian multivariate copula:

C(F,Faes Fnp) = 0 (01 (Fp )i 01 () - (13)

Fig. 2 (below) shows tree-dimensional distribution on
the basis of normal copula.

The density of multivariate Gaussian copula is defined
as follows [14]:

1 1 _
C<F1,F2...,Fn,p)=Texp(—5<cp LR,
p

14
qf%ﬁ)} o

-1 -1
¢ (Fa)x(p —l)X[ »
o (Fp)
Thus, the Gaussian normal copula is completely de-
fined by the correlation matrix, p, and its parameters can

be easily computed.

According to its constructing procedure the Gaussian
copula can be naturally used for modeling multivariate
normal distributions, and it can be hired in the risk man-
agement procedures for constructing meta-normal distri-
butions. This multivariate distribution is created in the
way of modeling the dependences between random vari-
ables using normal copulas, and marginal distributions are
built with some other distributions appropriate for each
variable under consideration.

Another type of copula that is constructed with the
method of inverse function from elliptical distribution is
Student’s copula that corresponds to the multivariate Stu-
dent’s t -distribution. The form of this copula looks to
some extent like the normal one in its central part, and
approaches even more to this form in the tail part where
the number of degrees of freedom for Student’s t-
distribution is growing. Fig. 3 shows three-dimensional
distribution of this type for 5 degrees of freedom. How-
ever, in the risk management problems the Student’s cop-
ula can find its extended application due to substantial
difference in modeling of dependences in the tail of dis-
tributions far from the central part.

The t -copula that is derived from t -distribution with

v degrees of freedom and positively defined matrix Z ,
has the following density function:

cOOT((v+d)/2)/T(v/2(v)* |3 D). (15)

As it can be seen, the elliptical copulas also have the
advantage that they can be easily computed for large, N .
2. The Archimedean copulas

Definition 10: Let ¢ is continuous strictly increasing
such that,

¢(1)=0. The pseudo-inverse for ¢ is such function

function defined on region 1 of [—0;0]

(p[_l] with Dome =[0,00] :
(16)

-1
o (t) = {cp (),0<t<¢(0),
0,p(0) <t <oo.

Note, that (p[_l] is continuous and non-decreasing
function over the domain of, [0;00], and strictly decreas-

ing over [0;p(0)]. Moreover, (p[fl]((p(u)) =u over, 1, and

£,0 <t < ¢(0)

9(0),0(0)<t <o’ (17)

-1
ot ](t))={
If ¢(0)=o0, then ¢ '.
Lemma 1: Let ¢ is continuous strictly decreasing
function in the domain 1 over the interval, [0;o0], and
such that, ¢(1)=0, and let (p[_l] is pseudo-inverse for,

¢, and function, C, with, I2, defined over | for the
function, @, is defined as follows:

Cu,v) = o M (ou)+o(v)). (18)

Then, C, satisfies the existing restriction conditions
for a copula.
Proof: Here the

Cu,0) = o (o) +0(0) =0,

cuD = oW +e1) = ooy =u.
If ¢(0)=o0, then ¢, is considered as a strict generat-
[-1]

function,

and,

ing function. In this case, ¢'~ ! = (p_1 , and

cuv) = o o) +ov), (19)
is considered as a strict Archimedean copula.

All the copulas that can be represented in the form
(18) are called Archimedean. In this case

The function ¢ is called copula generator. This cop-

ula class is one of the most often used in practice due to
the fact that it includes a substantial number of parametric
copulas reflecting a variety of structural mutual depend-
ences. Besides, the constructing procedure for the copulas
is relatively simple.

For example, consider, ¢(t) =(— lnt)e , where 0>1. It

is clear that @(t) is continuous with @(1)=0; and

o(t)=-0 that is, ¢ is strictly decreasing

t(~Int)*1’
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function from | defined over domain [0;o0]. Further on,

(p(t)t: 26(9_1)912 +0 3 ! 3 120 from,
t“(=Int)" t“(=Int)""

thus ¢ is convex. Moreover, ¢(0)=o, and thus ¢ can

I, and

be considered as a strict generating function. Now, from
(6) we have:

exp = ((—Inu)+(-Inv)). (20)

This copula family is called Gumbel copula in the
case of describing two variables. The Archimedean copu-
las also include Frank copula family in the case of de-
scribing two variables:

C(F1,F2)=-1/Bx

 In(L+ (e(-BFR D) ~ D)(e(-BF 2) - 1)) 1)
e(-p-1
and Clayton copulas also in the case of two variables:
C(KLF2)=max((F1(-B)+ F2(-B)-1)x )

x (=1/P),0)p €[~1,0]{0}).

The Fig. 4-6 show three-dimensional joint distribu-
tions on the bases of Frank, Gumbel, and Clayton copulas
respectively.

One of natural approaches to constructing multidi-
mensional copulas supposes constructing first the families
of two-dimensional copulas exhibiting necessary features.
After this step the next procedure touches upon construct-
ing multidimensional generalization. The family of multi-
dimensional copulas belongs to generalization of two-
dimensional family if the following conditions are true:

— all two-dimensional components of the multidimen-
sional copula belong to the family of the two-dimensional
ones;

— all the two-dimensional components of order 3 and
up to n—1 have the same multidimensional form.

The problem of constructing the multidimensional
generalizations of two-dimensional copulas is not trivial.
Very often two-dimensional link functions do not have
multidimensional generalizations or they result in such
specific dependency structure that has very restricted ap-
plication.

The function C" is a result of sequential application
of Archimedean two-dimensional copulas based on the ¢

generator. Thus,
C?(uy.Up) = C(u.Up) =9 (@) +9(uy)), and  for
n>3, C"(U,Us,....uy) =CC" U uy)uy) . Let’s

stress that such approach to constructing copulas usually
does result in a success. But Archimedean copulas are
symmetric and associative what often results in copula
C" with, n>3.

Parameter estimation procedures for copulas. The

simplest copula parameter estimation method is in appli-
cation of known data sample characteristics. Using the

correlation matrix estimates it is possible to find an esti-
mate for the form parameters of elliptical copula, p. An-

other useful in this case is such concordance measure as
Kendall statistic, T, that is computed as follows:

;—2C_—D
CON(N-=D) (23)

The Kendal t can be used, for example, for estimat-

. - 2 -

ing Clayton copula parameters, 9:1—1_, and elliptical
-1

copula parameters, p:sing;. This method is rather

simple but it restricts substantially possibilities for selec-

tion of copula families.

Estimation of copula parameters for any family can be
performed with maximum likelihood method. Consider

joint distribution function, H (_)E,é) , where parameter vec-
tor includes marginal distribution and copula parameters
é:(Bl,...,Bn,&). The joint distribution function can be
represented in the following form:

H(x,0) = C(F (X1, B1), F2(X2,B2),-.,
Fn(xn»ﬁn))~
For a sample S, :{;(} of power N the likelihood

(24)

function is computed as follows:

N N
In L(Sxaﬁlv"aﬁnaa) = ZC(FI(Xl(i):Bl)a

i=1
Fy (3 (0,82 )50 Fy (%0 (1), By ), ) +

N N
+ Zln f1(%(0),B1) +...+ Zln fr (X (1),B1)-

i=1 i=1

(25)

This expression allows for application of two-stage
algorithm for parameters estimation:

(Bl"“aBn’a) = argma)_(’
BisesBn 0t

InL(Sy,Bqse->Bp»0).

(26)

At the first step we can compute the parameter esti-
mates for the marginal distributions as follows:

N
Bj :argﬁmalen fi(x; (.85,
i o=l

@7

and, at the second step it will be possible to compute the
estimates of the copula parameters:

N N
a=argmax _In f(xj(i),p;).
Bj i=l1

(28)
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It is shown in [16] that the vector parameter estimate

0= (Bl,...,Bn,&) is consistent and asymptotically normal.

An advantage of the two-step estimation procedure is in
dimension reduction what makes the numerical optimiza-
tion procedure easier, and allows for hiring extra informa-
tion necessary for parameter estimation of separate risk
distributions. It is also helpful for more complete usage of
measuring information when data samples available have
different power when new financial instruments or risk
factors come to being.

4 EXPERIMENTS

Here we consider the problem of constructing joint
distribution of risk factors for generated three-
dimensional distributions for Cauchy, t -Student, normal
data as well as three-dimensional distribution for the three
currency exchange rates of EUR, CHF, GBP against
USD. For each dataset the Archimedean copulas were
estimated from the Gumbel, Clayton and Frank families
as well as the elliptical copulas of the Student family and
Normal copula [18].

5 RESULTS
Together with estimates of marginal distributions the
computational experiment provided the possibility for
modeling the joint distribution function for the processes
under consideration. The Fig. 2—6 show graphical illustra-
tions of the joint distributions for the selected currencies
exchange rates using different dependency structures.
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Figure 2 — Graphical representation of joint distribution function
on the basis of normal copula

= S LY TS

o . " d: .

o + ¢, . !

o e AR 7 <
Q - ...'f. . .:. . 1015

o RIS o _50

b 43"

S15-10-5 0 5101520 25

X
Figure 3 — Graphical representation of joint distribution function
on the basis of Student { -copula

% ..o...vo .}?... .

o . *

I o ™, .

o - - 2[ ><
™ T 15
> o . 10

‘C_L - o. D

= “ig™

2010 0 10 20 30

X1

Figure 4 — Graphical representation of joint distribution function
on the basis of Frank copula
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Figure 5 — Graphical representation of joint distribution function
on the basis of Gumbel copula
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Figure 6 — Graphical representation of joint distribution function
on the basis of Clayton copula
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Figure 7 — Empirical joint distribution for the selected currency
exchange rates

The results of the computations performed illustrate
practical usefulness of the study performed.

6 DISCUSSION
The main goal of the analysis was in constructing the
joint distributions for risk factors and further use of the
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models for solving the risk management problems, for
example to forecast possible loss in investment problems.

The results of the study show that together with es-
timates of marginal distributions the computational
experiment provided the possibility for modeling the
joint distribution function for the processes under con-
sideration. The Fig. 2—6 show graphical illustrations of
the joint distributions. The results will also be helpful
for constructing decision support systems for financial
risk forecasting and management using appropriate
statistical data.

The copula constructed according to the method of in-
verse function from elliptical distribution is the Student
copula that corresponds to the multidimensional Student-
distribution. The form of the copula in its central part re-
sembles very much a normal one and becomes even more
alike in the tail part with growing the number of degrees
of freedom for the Student-distribution.

The proposed approaches will be used by the authors
of the article in further studies, as well as by other scien-
tists, which will allow obtaining more accurate results
using minimal costs for experiments.

CONCLUSIONS

The analysis has been performed regarding the possi-
bility of the special class of copula functions application
to formal description of multidimensional distributions in
the problems of financial risk modeling.

The scientific novelty of obtained results is that the
method of constructing combined marginal distributions
was proposed that allows for taking into consideration
heavy tails of one-dimensional risk distributions. The
marginal distributions are combined into joint distribu-
tions of risks via the dependency structure that is charac-
terized by copulas. On the basis of analysis the methods
of constructing the copula families it was proposed to use
for modeling risk several families of copulas with useful
for risk management features.

The practical significance of obtained results is that
the computational experiment has been carried out with
two generated, theoretically known tree-dimensional dis-
tributions, and one empirical three-dimensional distribu-
tion created for a formal description of selected currencies
exchange rate. The experiment demonstrated the possibil-
ity of the method proposed for modeling multidimen-
sional distribution using appropriately combined marginal
distributions and the dependency structure between them.

Prospects for further research is that In the future
studies it is planned to expand application of the copula
families and develop the methods for estimating basic risk
measures for a portfolio of financial instruments on the
basis of the multidimensional distribution model pro-
posed. It is also planned to apply the method proposed for
developing the systemic methodology for risks manage-
ment including market and credit risks. The problems
mentioned will be solved in the frames of a specialized
intellectual decision support system designed on the pur-
pose of automatizing risk modeling and management pro-
cedures and generating appropriate decision alternatives.
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MOJIEJTIOBAHHS B3AEMO/IIT ®AKTOPIB PU3HKY I OIITHIOBAHHS PU3UKY
3 BUKOPUCTAHHSAM KOITYJI
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KJagHoro cucreMuoro anamizy, HTYVY «KuiBcbknit nomitexnignuii inctTutyT im. Iropst Cikopeskoro », Kuis, Ykpaina.

Bimioxk II. 1. — 1-p Texn. Hayk, npodecop kadeapn MaTeMaTHUYHUX METOAIB CHCTEMHOrO aHalli3y, [HCTHTYT NMPUKIAJHOTO CHC-
temHoro aHaiizy, HTYY «KuiBcbkuii monitexHignuii inctutyT iM. Irops Cikopeskoro », Kuis, Ykpaina.

Manyki M. — 1-p TexH. Hayk, (aKyIbTeT NPUPOJHHYMX HAYK, HAIOHATbHHIT yHiBepcuTeT «Kneo-Morumsnchka AKagemisy,
Kuis, Ykpaina.

JleBenuyk JI. B. — marictp, acmipanTka IHctutyTy mpuknanHorocuctemuoro anaiisy HTYY «KIII im. 1. Cikopcekoro», Kuis,
Vkpaina.

AHOTAIIA

AKTyaubHicTh. Pi3HI TUIIN PU3UKIB IpUTaMaHHI IPAKTHYHO BCIM BHUJAM JIIOJCHKOI MisUIBHOCTI. 3a3BUUall PU3UKU XapaKTepU3y-
I0ThCSl HASsIBHICTIO MHOXKMHHU (DaKTOPIB PU3UKY, HEBU3HAYEHOCTSIMU, HETIOBHOTOIO 1 HM3BKOIO SIKICTIO HAasBHUX JaHHX. 3ajada mMaTe-
MaTHYHOTO MOJEIIOBAHHS PH3HKIB € JOCUTH MOIYJISIPHOI0, OEpydH A0 yBark MOXJIMBI HEBU3HAYCHOCTI i B3aEMO/i0 (aKTOPiB pHU3u-
Ky. Taxi Mozeni HeoOXiHI [U1st po3B’si3aHHS 33724 NPOrHO3YBaHHS BTPAT 1 IPHUHATTS HATEKHHUX YIPABIiHCHKUX PIllICHb.

Meta po6oTH. MeTOI0 IBOTO JOCHTIIKEHHA € PO3pOOKa METOAY MOJIEIIOBAaHHS 0araTOBHMIPHOTO PHU3HKY 3 BHKOPUCTAHHIM
creniarbHIX QyHKIIA Kommy. Mozesi mponoHyoThes y GopMi 6araToBUMipHUX PO3MOALITIB.

Metoa. TexHOOTIS MOJCIIOBAHHS I'PYHTYEThCS Ha BUKOPHUCTAHHI CIIEIIaJbHUX BJIACTHBOCTEH KOMYI, SIKi JArOTh MOMJIUBICTD
1o0ymyBaTH KOPEKTHI 0araTOBHMIpHI pO3MOALIN Ul BUOpaHUX (aKTOPIiB PU3MKY. Y CTAaTTi NomaHo (GopManbHHUN OMHC BHOpPAHUX
KOITyJI, aHaJi3 IX BJIaCTUBOCTEH 1 MOXKIMBOCTEH MPAKTUYHOI'O 3aCTOCYBAaHHS Y CHCTEMax MEHEIDKMEHTY pusukiB. [logaHi npukiamm
NPaKTUYHOTO 3aCTOCYBAaHHS KOITyJ 10 TOOYI0BH 0araTOBUMIPHHUX PO3IOJLIIB 3 BUKOPUCTAHHSIM 3TeHEpOBaHUX i (PaKTHYHHUX CTATH-
CTUYHUX JJaHMX.

PesyapraT. OTpuMaHi pe3ysbraTi OyayTh KOPUCHUMH JUIS HOJAJBLINX TEOPETUYHUX JOCIIDKEHb, @ TAKOXK VIS IPAKTUYHOTO
BUKOPHCTAHHS Y CHCTEMax MEHEDKMEHTY pH3MKiB. Posmoninu, moOynoBaHi 3a JOMOMOIOI KOIYJI, CTBOPIOIOTH OCHOBY IS
PO3B’s13aHHS 33124 IPOrHO3YBAHHS MOXJIMBHX BTPAT i MPUHHATTS HAJIEKHUX PillIeHb CTOCOBHO MCHEIDKMEHTY PH3HKIB.

BucnoBku. TakuM 4uHOM, 3a/a4a OOY0BH 0AaraTOBUMIPHHX PO3IOIUIIB TSI MHOKHHY (aKTOPIB PU3HKY MOXKE OYTH YCIIITHO
PO3B’sI3aHa 3aBASKH BUKOPHUCTAHHIO CHEIialIbHUX (DyHKIIIH KOITYII.

KJIIOYOBI CJIOBA: GaratoBUMipHi CTOXaCTHYHI NPOIECH, OMIHIOBAHHS PH3UKY, CIEIiadbHI (YHKIIT KOITyIH, MO/ICITIOBAHHS
0araTOBHUMIipHHX PO3IIOJ1IIB, KOMOIHOBaHI MapriHAIBHI PO3IOILIH.

YK 004.942:519.216.3

MOJIEJIMPOBAHUE B3AMMOJIEMCTBUSA ®PAKTOPOB PUCKA U OIIEHKA PUCKA
C UCITIOJIB30BAHHUEM KOIIYJI

Ky3nenosa H. B. — 1-p TexH. Hayk, ZOIEHT Kadeapsl MaTeMaTHUECKUX METOJIOB CUCTEMHOTO aHaln3a, IHCTUTYT NPUKIIaHOTO
cucremuoro ananu3a HTYY «Kuesckuil nonurexuudeckuit ”HCTUTYT uM. Urops Cuxopckoroy», Kues, Ykpauna.

I'yeskoBa B. I'. — noxrop ¢uiocoduu, crapimii npenoaBatens Kadeapbl MaTeMaTHIECKHX METOJIOB CUCTEMHOT0 aHaju3a, VH-
CTUTYT HPUKIAaJHOro cucreMHoro ananusa, HTYY «KueBckuil nonurexuudyeckuii uuctutyT um. Urops Cukopckoroy, Kues, Yk-
pauHa.

Bupiok I1. U. — 1-p TexH. HayK, npodeccop Kadeapsl MaTeMaTHIECKUX METOI0B CUCTEMHOIO aHaian3a, IHCTUTYT NpUKIaHOTO
cucremuoro ananmsza, HTYY «Kueckuii nonurexamuecknid HHCTUTYT UM. Mrops Cukopckoroy», Kues, Ykpanna.

Manyku H. — 1-p Texn. HayK, paKyJIbTeT eCTECTBEHHBIX HAYK, HAIMOHAIbHbIA yHIBepcuTeT «KieBo-MoruusHckas AKaIeMusy,
Kues, Ykpauna.

Jleenuyk JI. B. — maructp, acnupantka MHctutyTa npukinagsoro cucremuoro ananusza HTVY «KIIM um. WM. Cukopckoroy,
Kues, Ykpauna.

AHHOTAIUA

AKTyaJlIbHOCTb. Pa3nuuHble THITBI PUCKOB MPUCYIIH NMPAKTHYECKH BCEM BHAAM UEJIOBEUECKOU AesTenbHOCTH. OOBIYHO PUCKH
XapaKTepH3yIOTCSl HAJTMIMEM MHOXKECTBa (JaKTOPOB PHCKA, HEONPEIEIEHHOCTSIMHU, HEIIOJTHOTONH M HU3KUM KadeCTBOM HMMEIOMINXCS
JaHHBIX. 3a7ada MaTeMaTHIECKOTO0 MOJSIUPOBAHUS PHCKOB JOCTATOYHO MOMYJISIPHA, YIUTHIBAs BO3MOXKHBIC HEONPENECICHHOCTH U
B3aUMOJIEHCTBHE (haKTOPOB pUcKa. Takne MoAeIN HEOOXOAMMBI IS PEIICHUs 3a/jad NPOrHO3UPOBAHUS [IOTEPh W IPHHATHUS HajIe-
JKAIINX YIPABICHUIECKHUX PEIICHUH.

Lens padorsl. Llensro 1aHHOrO HUCClICNOBAaHMS SABISIETCS pa3paboTKa METOJAa MOASIMPOBAHUS MHOIOMEPHOI'O PHCKA C UCIOJIb-
30BaHHUEM CHELHaIbHBIX (GyHKIUN Koy, Mojeny npeyiaraiorcesi B popMe MHOTOMEPHBIX PaclpeeieHHUI.

Mertoa. TexHomorust MOAEIUPOBAHUS OCHOBBIBAETCS HA HCIONB30BAHUU CIEIHANBHBIX CBOMCTB KOITYJI, TO3BOJISIONIMX MOCTPO-
UTh KOPPEKTHbIE MHOTOMEPHBIE paclpe/eNIeH s Ul BEIOpaHHBIX (akTOpoB pHcka. B craThe mpencraBieHo GopMaabHOE OMUCAHHUE
N30paHHBIX KOMYJI, aHAIN3 UX CBOMCTB M BO3MOXKHOCTEH MPAaKTHIECKOTO NMPHMEHEHUS B CHCTEMax MEHEIKMEHTa pHUCKoB. [Ipen-
CTaBJICHBI IPUMEPHI IPAKTHUECKOTO IPIMEHEHHS KOITyJI K HOCTPOSHHIO MHOTOMEPHBIX PACIIPEAEIeHNH ¢ NCIONb30BaHUEM CTeHEpH-
POBaHHBIX U (P)aKTUUECKUX CTATUCTUUECKUX JAHHBIX.
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Pe3yanTatsl. [loxyuennsie pe3yabTaTsl OyayT MOJTE3HBI U JaTbHEHIINX TEOPETHUECKUX HCCIIEMOBAaHHH, a TaKKe JUIS TIPaKTH-
YECKOr'0 MCIOJIB30BAHMS B CHCTEMaX MEHEPKMEHTA PUCKOB. PacripeienieHus, IOCTPOCHHBIE C TOMOLIBIO KOITYJI, CO3/1al0T OCHOBY ISl
pelLIeHus 3aJa4 IPOrHO3UPOBAHHS BOZMOXKHBIX ITOTEPh U MPUHSTHUS HAaUIS)KALIMX PEILICHUH 110 MCHEKMEHTY PHCKOB.

BoiBoabl. TakuMm o6pa3oM, 3a7a4a NOCTPOCHUST MHOIOMEPHBIX PACIpPEASICHUN Ui MHOXKECTBA (HaKTOPOB PHCKAa MOXKET ObITh
YCHEIIHO pelieHa Oaroiaps NCHOIb30BAHUIO CIICLUAIBHBIX (YHKINH KOIyJI.

KJIFOYEBBIE CJIOBA: MHOTOMEpHBIE CTOXaCTHUECKHE MPOLIECCH; OLEHKA PHCKa; CTICHUATbHbIC (PYHKIIMN KaITyCThl; MOJIEIH-
pOBaHHE MHOTOMEPHBIX pacIpeae/ieHIH; KOMOMHHPOBAHHBIE MAPTHHAIILHBIC PACHIPEICIICHUS.
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