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ABSTRACT

Context. The problem of synthesis of an optimal neural network model for diagnostics of aircraft parts after operational proc-
esses is considered. The object of the study is the process of synthesis of neural network diagnostic models for aircraft parts based on
the results of operational processes

Objective is to synthesize neural network diagnostic models of aircraft parts after operational processes with a high level of ac-
curacy.

Method. It is proposed to research the use of two approaches to the synthesis of neural network diagnostic models. So, using a
system of indicators, the topology of the neural network is calculated, which will be trained using the method of Backpropagation
method in the future. The second approach is based on the use of a neuroevolutionary approach, which allows for a complete synthe-
sis of the neural network, dynamically modifying the topology of the solution in addition to the parameters. the final decisions are
compared in the accuracy of work on the training and test data set. This approach will allow to determine the possibility and correct-
ness of using neuroevolutionary methods for the synthesis of diagnostic models.

Results. Neuromodels for diagnostics of aircraft parts based on the results of operational processes have been obtained. The ob-
tained results of comparing the methods used for synthesis made it possible to form recommendations for the implementation of neu-
roevolutionary methods in the synthesis of diagnostic neuromodels.

Conclusions. The results obtained during the experiments confirmed the operability of the mathematical software used and al-
lowed us to form recommendations for further use of the considered methods in practice in order to synthesize diagnostic neuromod-
els. The prospects for further research may consist in expanding the input data sets in order to synthesize and study more complex
topologies of neural network models.

KEYWORDS: diagnostics, aviation parts, synthesis, training, neuroevolution, data sampling, operational processes.

ABBREVIATIONS
ANN is an artificial neural net;
CPU is central processing unit;
FDI is fault detection and identification method;
MGA is modification genetic algorithm;
SSD is solid-state drive;
UAE is United Arab Emirates.

| is number of neurons at the network input;

m is number of dependent (categorical) features of
sample instances;

N; is multiple neurons at the network input;

N;, is neuron at the network input;

N, is multiple neurons at the network output;

NOMENCLATURE
€ 1is discrepancy, which is the difference between the
real and calculated outputs;
d is error of the neurons in the output layer;
0 is error of the neurons in the hidden layer;
1 is the learning rate;
6, 1s yield strength;
6, is tensile strength;
comp is separate component of system;
char is separate characteristic of component;
DV is vector of desired outputs;

f4 is activation function;

FB is recurrent connections in ANN;
k is number of components at system,;

NOp is neuron at the network output;

N}, is a multiple neurons of the hidden network layer;
Np, is hidden network layer neuron;

NN is a neural network;

NNyt 1s structure of neural network;

p is number of neurons at the network output;

I is number of neurons in the hidden network layer;
status is main defect characteristic of component;
Sample is data set;

System is general information about aviation system;
Xp 1s independent attribute of the sample instance;

X' is input vector of perceptron;
Wih is coefficient of the input and hidden layers;

T

© Leoshchenko S., Pukhalska H., Subbotin S., Oliinyk A., Gofman Ye., 2022
DOI 10.15588/1607-3274-2022-2-7

69



e-ISSN 1607-3274 PapioenexTpoHika, iHpopmaTuka, ynpasminss. 2022. Ne 2
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 2

Wh,o, is coefficient of the hidden and output layers;

WM is matrix of coefficients of the input and hidden
layers;

W is matrix of coefficient of the hidden and output
layers;
Ym is value of the dependent variable (attribute) of

the sample instance;
Y is output vector of perceptron.

Ym is the vector of parameters calculated using the

analytical model;
Yreal is the vector of the output parameters; of the en-

gine obtained by measuring using sensors.

INTRODUCTION

At present, when the plane crashes have become a
global problem, the problem of early detection of mal-
functions of aircraft parts and systems has become par-
ticularly relevant [1, 2]. Traditionally, the process of di-
agnosing malfunctions of aviation systems is carried out
using analytical models based on physical patterns, as
well as by statistical processing of flight monitoring data.
Specialists dealing with this problem install sensors that
measure the parameters of aircraft engines during flights
[1-3]. The flight monitoring data file usually contains
parameters such as [1-3]:

— flight number;

— flight date;

— total engine operating time;

— temperature and air pressure at the engine inlet;

— temperature and gas pressure behind the turbine;

— temperature of the blades;

— oil level and temperature in the oil block;

— Mach number, etc.

The number of flight parameters can reach hundreds
or more units.

After performing a certain number of flights, the en-
gine, blades, transmission and other parts are removed
from the aircraft and subjected to bench disassembly, dur-
ing which a number of defects are identified and elimi-
nated [1-4].

The task of the diagnostic engineer is to use flight
monitoring data to identify system defects before they fail
or before preventive disassembly. As already noted, tradi-
tionally this problem is solved by applying techniques
based on physical laws: each defect causes certain devia-
tions of certain parameters of work, physical characteris-
tics, etc., therefore, analyzing their nature of change, it is
possible to make assumptions about the appearance of
defects that cause these changes. It is clear that due to the
significant amounts of information and the complexity of
the existing relationships between defects and measured
parameters, the task of analyzing flight monitoring data
and detecting defects is far from trivial and in many cases
is not solved reliably and qualitatively enough [4].

The main directions determining the improvement of
the quality of information technologies for diagnosing the
technical condition of aviation should be considered the

intellectualization of information processing processes in-
volving data mining methods [2]. Such an approach is ca-
pable of improving the quality of recognition of the techni-
cal condition under the action of the above defined (meas-
urable) and uncertain factors, as well as the integration of
information processes (distributed local databases and
knowledge into a global database and knowledge) [1, 3].

Data analyzing methods represent a new direction that
complements and develops classical statistical research
methods, often referred to in domestic and foreign litera-
ture as Data Mining and knowledge discovery. Data Min-
ing uses modern intelligent technologies, including neural
networks, fuzzy logic, expert systems. These technologies
are used in this work to solve a wide range of problems of
diagnostics of the technical condition of complex techni-
cal systems and their components [4].

In this article, it is proposed to solve this problem us-
ing a neural network basis, for example, using a multi-
layer perceptron with sigmoid activation functions. First
of all, it should be noted that in the input vector X of the
perceptron, places should be provided for all monitoring
parameters, the values of which are affected by the ap-
pearance of detected defects. Possible defects of the air-
craft engine can be encoded in the output vector Y , for
example, using zeros and ones. Vectors of desired outputs
are compiled DVj based on the results of bench disas-

sembly of engines [1-4].

The object of study is the process of using a model
based on a neural network to diagnose aircraft parts after
operational processes with high accuracy.

To test and investigate various approaches to the syn-
thesis of neural network diagnostic models.

The subject of the study is a neural network model
for the diagnosis of aircraft parts after operational proc-
esses, characterized by high accuracy.

Using information about operational processes and
fixed traces of these processes to synthesize neural net-
work diagnostic models.

The purpose of the work is to build and study a di-
agnostic neuromodel for aircraft parts after operational
processes.

1 PROBLEM STATEMENT

The task of diagnosing aircraft parts based on the re-
sults of operational processes can be presented as a diag-
nostic task where it is necessary to determine whether the
part is serviceable or not.

Thus, let’s imagine an aviation system as a set of indi-
vidual components
System = {compl,compz,comp3,...,compk}, where Kk is

the number of components (parts) of the system. Each
component has a number of characteristics of features that
can be measured with bench measurements or in real time
using specialized sensors
comp = {char,char,,chars....,char;status} , and in addi-
tion to physical (or chemical) characteristics, the compo-
nent also has a characteristic of its defect: status. Thus,
to train a diagnostic neuromodel NN, a sample is ob-
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tained: Sample=<X,Y>, where X the set of input fea-
tures consists of the characteristics of the part
X ={x =char,x, =char,,x; = chars,...,x; =char }, and
the set of output features consists of the characteristics of
the defect of the part Y ={y = status} .

Then the diagnostic neuromodel of an aircraft part can
be represented as an ANN: NN, consisting of structural
elements and a set of parameters NN = (struct, param).
The structure of such a neuromodel is determined by sets
of computational nodes — neurons and connections be-
tween them: struct ={N,c},N ={N;,N,N,},c={c}. In
turn, the aggregates of many neurons are divided into
Nj = NG Ni NG, 1= 120N
neurons of the input layer,
No = {Ng, No, s No_ } p=12,...|No| output and hidden

subsets by layers:

Ny, = {Nhl,th""’Nhr },r =1,2,...,|Nh|. It should be noted

that the neurons of the input layer take values from the set
of input features X , so their number is equal. The subset
of links consists of the links themselves and their weight-
ing coefficients: C= {01,02,...Ck },k = 1,2,...,|C| , W= {Wk }
Accordingly, the task can be presented as a synthesis
of ANN with optimal structure and accuracy
NN =(struct, param), based on a sample of initial, ex-
perimental data about the object

Sample=<X,Y> . For further automation of the process

under study

of diagnostics of aircraft parts based on the results of op-
eration, as a particular classification task.

2 REVIEW OF THE LITERATURE

The analysis of works in the field of automation of the
process of diagnosing the condition of aircraft parts based
on analytical models, including ANNs [1-4], demonstrates
that today such work is being carried out extremely ac-
tively. However, it is worth noting that a number of such
works are poorly covered due to a number of factors: se-
crecy, military or corporate secrecy, narrow specialization
of the tasks being solved. A number of works do not cover
engineering solutions or give only general theoretical and
practical recommendations for solving such problems.

The use of the FDI method is recognized as a common
approach in similar tasks [5—8]. This methodology for
solving problems of automation of diagnostics of the
technical condition of aircraft parts is based on the princi-
ple of comparing the measurement results of physical (or
chemical) parameters of a real part (system) with the cal-
culated parameters calculated on the basis of a mathe-
matical model [5-8].

Fig. 1 shows the general scheme of using the FDI
method to automate the task of automatic technical diag-
nostics. So in the diagram, where X is the vector of con-
trol actions; Yy, is the vector of parameters calculated

using the analytical model of the part (system); Y gq is
the vector of the output parameters of the engine obtained

by measuring using sensors; €=Yeq — Yy the discrep-
ancy, which is the difference between the vectors Y, and

Yreal -

As a category of work, he suggests using ANNs as an
analytical model of a technical part (or system) [9, 10].
The range of tasks solved using such a model within the
framework of the FDI method is quite wide: from the
tasks of monitoring and diagnosing the technical condi-
tion to debugging parameters [9, 10].

The main stages of the engineering methodology for
building an INS model include [9, 10]:

1) preliminary data analysis at the stage of setting the
task and choosing the neural network architecture;

2) data transformation (preprocessing) to build a
more efficient network setup procedure;

3) the choice of neural network architecture;

4) selection of the neural network structure;

5) selection of the learning algorithm;

6) neural network training and testing;

7) analysis of the accuracy of the neural network so-
lution;

8) making a decision based on the results obtained.

The analysis of the published works devoted to the use
of ANNs for diagnosing the parameters of aircraft parts
shows that in these works the main trends and characteris-
tic features of solving the problems of diagnostics of parts
based on ANN are highlighted. At the same time, they are
devoted, as a rule, to solving particular problems, for ex-
ample [11-14]:

— diagnosing the condition of the turbine blades of a
gas turbine engine;

— formation of a space of diagnostic signs of the state
of a gas turbine engine for the construction of a neural
network classifier;

—indirect measurement of the temperature of gases
behind the combustion chamber based on the ANN to
diagnose the thermal condition of the engine.

They do not contain instructions on the choice of ar-
chitecture, structure and methods of ANN training; there
is no engineering methodology for designing such net-
works in relation to the tasks of diagnosing the technical
condition of aircraft engines. Neural network methods for
solving problems of diagnostics of aircraft parts are inves-
tigated below in order to identify the main patterns of
their use and develop appropriate methods and techniques
for the implementation of diagnostics of technical condi-
tion based on ANN [9, 10].

3 MATERIALS AND METHODS

In general, an ANN is a mathematical model, as well
as its software implementation (or imitation), working on
the principle of the human brain: it runs input data
through a system of neurons: computing nodes interacting
with each other, after which it outputs a certain result of
calculations based on this interaction [15-19]. Also, in
more complex architectures of such models, previous
experience and mistakes of past launches play an impor-
tant role in decision-making. This behavior of the model
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leads to the thesis about a certain level of self-learning of
the ANNSs as an artificial intelligence system [15-19].

Today, ANNs solve a wide range of tasks: from digital
image processing to forecasting financial processes. Ac-
cordingly, in some tasks, models based on ANNs can re-
place experts: in medicine the doctors, in technical tasks
the operators, etc. [15-19].

The main advantage of ANNSs is their ability to study
patterns in training data and how best to associate it with
the target variable that needs to be determined (or fore-
casted). From an analytical point of view, ANNs are ca-
pable of recreating any function and have proven them-
selves as a universal approximation device, that is, the
emulation of some objects into other, more simplified
ones [15-19].

The Multilayer Perceptron is one of the simplest ANN
models that emulates a primitive model of the biological
brain within the framework of machine learning and can
be used to solve complex computational tasks such as
classification or prediction. To put it simply, it can be
noted that a perceptron is a model of a single neuron,
which was the predecessor of larger and more complex
ANNSs capable of more accurately emulating brain func-
tion and using more natural approaches to model learn-
ing [15-19].

The basic computing nodes (perceptron blocks) are ar-
tificial neurons, simple computing blocks that have
weighted input signals and generate an output signal using
the activation function. The parameter of the weighting
coefficient of such a neuron is similar to the coefficients
used in the equation from the theory of linear regression
[15-19]. Similar to linear regression, each neuron also has
bias, which can be considered as an input weight, by de-
fault equal to one. For example, a neuron may have two
input data sources, in which case three weights are re-
quired: one for each input source and one for the weights.
Weights are often initialized with small random values,
but more complex initialization schemes can be used for
more complex ANNSs topologies [15-19]. As in linear
regression, large weights indicate an increased complexity
of the model. It is desirable that the weights in the net-
work are small, then regularization methods are applica-
ble. The weighted input data is summed up and transmit-
ted via an activation function, sometimes called a transfer
function. This is a simple display of the summed
weighted input and output of a neuron. The function de-
termines the threshold at which the neuron is activated
and the strength of the output signal. Nonlinear activation
functions are traditionally used. This allows the network
to combine input data in a more complex way and, in
turn, expand the capabilities of the functions that they can
model [15-19].

Neurons are organized into a network. A number of
neurons are called a layer, and one network can consist of
several layers. The architecture of neurons in a network is
often referred to as network topology. The initial input
layer, which accepts input data from a dataset, is called

visible because it is an open part of the network [15-19].
The layers after the input are called hidden because they
are not directly exposed. The simplest network structure
is to have a single neuron in the hidden layer that directly
outputs the value [15-19]. With the availability of com-
puting power and efficient software libraries, it is possible
to build neural networks of deep learning, which means a
lot of hidden layers. The last hidden layer is called the
output layer, and it is responsible for the output of values
or their vector in the appropriate format. After setting up,
the neural network needs to be trained on your data-
set [15-19].

One of the most common methods of ANNs training
is the Backpropagation method [20, 21]. Having a simple
perceptron, as in Fig. 2, it is noted the input layer, where
data is received by one hidden layer, and the output layer
[20, 21]. The input layer contains the number of neurons
corresponding to the input data of the neuron, one of
which is called the displacement neuron. The displace-
ment neuron always contains the same value, for example,
one and is designed to supply a constant displacement to
all subsequent neurons with which it is connected, it can
be disabled by setting it to 0. Next comes a hidden layer
consisting of a given number of neurons, again one of
which is a displacement neuron. Note that it is connected
only to the subsequent output layer, no connections are
received from the input layer, since it does not change its
state. The result of the network is calculated on the output
layer, in which the number of neurons is determined be-
forehand. As a rule, this number depends on the number
of target variables [20, 21].

Each subsequent layer is connected to the previous
layer by links with certain weight coefficients. There may
be several hidden layers in the network. The network is
called a direct distribution network because the first layer
is connected to the second, the second to the third, and so
on, and there are no feedbacks, for example, from the
output layer to the input. Networks with feedbacks are
called recurrent networks and are more complex and re-
source-intensive in operation [20, 21].

For convenience, in all cases, the displacement neuron
number is assumed to be zero. The coupling coefficients
of the input and hidden layers can be denoted as Wy, ,

and the matrix of these coefficients is denoted by win,
Thus, w;p, it determines the connection of the input lay-
er displacement neuron with the first neuron of the hidden
layer, and Wj,p, sets the connection of the third neuron of
the input layer with the second neuron of the hidden layer
[20, 21].

The coupling coefficients of the hidden and output
layers can be denoted as Whyo, » and the matrix of these

coefficients will be called W ™ large.
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Figure 1 — Implementation of FDI method
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Figure 2 — General implementation of Backpropagation method
Win  Wih, Wi, Wi The )\(/alu;s of ;clhe inlput layer can be representeﬁgc}il a
Wi Win Wih o . Wih vector X = N;. The values of the neurons of the hidden
wih Win  Win Win o Wi | (1) layer Ny, they make up a vector N}, , and the output val-
ues NOp are a vector N, . The information is processed
Win,  Win,  Wihy - Win sequentially, first the values of the hidden layer N, are
calculated, then the values of the output layer N, [20, 21].
Whoo,  Whyo, - Whyo The formula for calculating the values of the hidden
who - Who,  Who, - Who @ layer is indicated by a number:
W, W e W —
ho, ho, ho Nhr = fa ' % :\lil *Wip |- (3)
i=0...
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Each neuron calculates a combined input consisting of
the sum of the products of the input value by the corre-
sponding weight, and then the result is run through the
activation function of this neuron f,.

By analogy with the previous layer, the formula (4) is
compiled to calculate the output values. The combined
input is the sum of the products of the values of the inter-
mediate layer by the values Njp  of the weights Wiyo, -

The result is fed to the activation function [20, 21].

No = fa zNhr'Whro : “4)
P h=0...r P

The essence of the method is that when submitting a
training set of examples, the result of the network is com-
pared with the target value, errors in the output layer are
determined as & (Fig. 2), and then these errors are propa-
gated in the opposite direction and the errors of the neu-
rons of the hidden layers are calculated as 6, and at the
last step, the values of all weights are adjusted based on
the values errors found [20, 21].

It is necessary to use the general (5), in which the dif-
ference between the target NOp and real values y, is

multiplied with the value of the derivative of the activa-
tion function:

55 =lyp—No, ) falnet,). )

Next, we will find the errors of the neurons of the hid-
den layer: 0. The error for the displacement neuron is not
calculated:

0r = fa(net;) 2.8p - Who - (6)
p=1..p

Thus, the error of a hidden layer neuron is a combina-
tion of the errors of all the neurons that it affects. The
larger the connection Wheo, » the more the error of the

output layer & affects the error of the neuron of the hid-
den layer. Thus, the error is propagated backwards from
the network output to its hidden layers [20, 21].

The final stage is the adjustment of the weights of the

arrays W and who [20, 21]:
Wip = Wip, + AW = Wiy + N 0, (7
Who = Who +AWhg = Wpo +HNp 8, )

where p is the learning rate, which is set in the range
[0.1,0.4].

However, analyzing the above method, it can be con-
cluded that in general, the training of the model based on
the ANN is reduced to iterative iteration of trial and error,
since the Backpropagation method does not involve the
selection and fine-tuning of the architecture, but works
with the already selected topology. Moreover, a number
of papers note problems in the areas of local optima.

Therefore, since the 2010s, more and more attention has
been paid to neuroevolutionary methods of ANN synthe-
sis [22, 23]. Such approaches existed before, but it was
with the growth of computational capabilities that they
began to show better results in comparison with gradient
learning methods [22, 23].

The neuroevolutionary approach to the synthesis of
INS uses evolutionary methods to create an ANN: the
selection of its parameters, topology and rules. Neuroevo-
lution is usually used as part of the reinforcement learning
paradigm, and it can be contrasted with traditional deep
learning methods that use gradient descent in a neural
network with a fixed topology. Due to more flexible set-
tings of synthesis parameters, the process allows fine-
tuning and selecting the ANNSs architecture for each task,
avoiding the problem of retraining [22, 23].

Of course, this approach involves the use of large
computing and time resources. So the synthesis process
begins with the installation of metaparameters and the
synthesis framework: the accuracy of the ANN, the num-
ber of epochs, the learning rate and topological complex-
ity. The complexity can be set by limiting the number of
hidden layers and neurons in them, the presence of feed-
backs in the neurons of the hidden layer, etc. [22, 23].

As a neuroevolutionary method, consider a MGA. So,
at the beginning, restrictions are set on the structural
complexity of the final solution: the presence of feed-
backs (FB=0| FB=1), the number and depth of hidden

layers (|Nh|) and stopping criteria. After that, a popula-

tion is generated from simple ANN, and their genetic in-
formation is encoded based on interneuronal connections.
Further, relying on the mechanisms of selective pressure
and smart crossover, the main stages of GA are per-
formed: crossing, mutation of a new generation and selec-
tion of individuals into the parent pool [23]. In general,
the method can be represented schematically as in Fig. 3.

Population initialization

v

Evaluating individuals

v

Fine-tuned additive mechanisms

\ 4

. Selective
Selection
pressure
Two-point crossover

Variations Mechanisms of
— —|— power and rate
mutagenesis

QolutiQR

Figure 3 — General scheme of MGA method
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4 EXPERIMENTS

The blades of the first stage of the compressor of the
Klimov TV3-117 engine, having operational damage to
the feather of the blades of the engines, were selected as
the object of research [24]. In the studies, engines that
were in operation in different countries were observed,
respectively, the physical characteristics of the opera-
tional processes differed. From this it can be concluded
that aircraft parts have different operating time and, ac-
cordingly, different degrees of damage to the blades. The
engines were operated and observed in the following
countries and enterprises: Yemen, India, UAE, Peru, Cy-
prus, Utair (Tyumen), Algeria, Spain [24].

Table 1 shows an example of sampling input data.

The table shows that X, is the average temperature in
the region where the operational process took place; X,
and X3 are the values of the chord, in sections A2—-A2 and
AB-AS; X, is HB, the hardness of the initial blade, HRC;
Xs is ©y,, yield strength, MPa; X is ©, tensile strength,
MPa; X; is the frequency of natural vibrations of the
blades, Hz.

y;: T total operating time; Yy,: T2 operating time up to
first repair.

For the experiments, a workstation with the following
characteristics was used: Intel Core i5-8250U CPU (1.60—
3.40 GHz (Intel Turbo Boost 2.0), 4 cores and 8 threads),
16 Gb RAM (dual-channel mode), SK hynix SC308 128
GB SSD (M.2), the Java programming language.

5 RESULTS

Table 2 shows the selected information features with
their weight coefficients.

Table 3 shows a comparison of the results of the two
methods. So the work of the methods was compared ac-
cording to the following parameters:

— work time: time spent on the synthesis of ANN;

—accuracy of work on the training sample: accuracy
of the model during training;

— accuracy of work on the test sample: accuracy of the
model during testing.

Tables 4 and 5 shows the neural network models ob-
tained.

Table 1 — Example of fragment from data set

Self-
Blade number | VS8 M- | pige A2 A2 | Blade AS-AS | HRC 60> 6, frequency T, T,
perature of natural
vibrations
Index X1 X2 X3 Xg X5 Xe X7 Yi Yo
India-1 24.6 26.7 28.2 38 970 1180 603.2 1652 724
India-2 24.6 26.55 28.22 38 970 1180 617.1 1652 724
India-3 24.6 26.73 28.1 38 970 1180 631.8 1652 724
India-4 24.6 26.75 28.09 38 970 1180 623.9 1652 724
India-5 24.6 26.59 28.12 38 970 1180 634.9 1652 724
India-6 24.6 26.56 28.22 38 970 1180 624 1652 724
India-7 24.6 26.6 28.13 38 970 1180 629.9 1652 724
India-8 24.6 26.53 28 38 970 1180 637.2 1652 724
India-9 24.6 26.83 28.2 38 970 1180 615 1652 724
India-10 24.6 26.3 28.28 38 970 1180 625.4 1652 724
Yemen-20 20.5 26.63 28 990 451 32 950 1100 627.4
Table 2 — Results of feature selection
Y2 Y3

Xi 0.2153 —0.1901

X2 —0.0323 —0.0030

X3 —0.3629 —0.0191

X6 0.7211 0.4971

X7 0.0844 0.0336

Table 3 — Results of using different methods for neuromodels synthesis
Target variable Method The synthesis time. s Accuragy_ of work on the Accuracy of work on the
training sample test sample
Backpropagation 15.3726 0.0002 0.00025
y MGA 64.2397 0.00017 0.00024
Backpropagation 15.2863 0.0001 0.0001
v MGA 52.6493 0.00014 0.0001
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Table 4 — Coefficients matrices of resulting neuromodels for y,

o Number of layer | Number of neuron at layer 0 Numbtir of input O; neuron 3
5]
“53 1 —40.2890 | 64.2278 —1.2651 | 152.6108
s _ 2 -8.7750 —7.2652 0.0004 | —104.6105
g > 1 3 10.5814 11.9088 0.0000 92.3337
f‘% 4 222327 | -9.9015 0.2474 130.9445
M 5 —37.1694 | -34.9135 | 0.0009 57.2398
2 1 17.5119 | —10.0749 | 0.0060 —42.5008
Number of layer | Number of neuron at layer 0 Numbe;r of input ogneuron 3
1 —10.3678 | 3.9329 0.1771 44,4167
S - 2 -42.0171 | 0.0407 0.0058 | 0.3170
S > 1 3 —79.2515 | 0.2169 0.1018 -85.1717
4 20.4838 0.5891 —-0.0395 | 10.0486
5 21.3511 0.1410 0.0512 9.8286
2 1 37.8691 —-3.0681 0.8152 41.7886
Table 5 — Coefficients matrices of resulting neuromodels Y,
Number of layer | Number of neuron at layer 0 Numbf r of input 02f neuron 3
=
8 1 -2.3766 | —2.7395 | -2.7277 5.7025
% - 2 1.8790 0.0000 1.7174 0.0000
53 = 1 3 —-15.9818 | 0.0000 —-15.2190 | 0.0000
El 4 —7.6228 1.7200 —7.7104 0.8612
2 5 37.7405 0.0000 36.0519 0.0000
- 2 1 —7.1881 1.8330 —7.0854 4.2028
Number of layer | Number of neuron at layer 0 Numble r offinput Ozf neuron 3
1 13.5323 -9.2208 | 5.8346 —15.7445
é o 2 —0.6086 —-0.6000 | 0.4055 0.4643
S > 1 3 —4.1636 | —4.1129 | 2.0460 -106.7364
4 7.7830 —2.6386 | 4.4783 —13.5350
5 8.0768 —2.3306 | 2.9106 -13.5143
2 1 —2.3971 —4.4495 | 6.9384 —-3.2805
6 DISCUSSION proportionally increasing time spent on training complex

For the operating time in both cases, the combination
of informatively important features is the same. And in
both cases, the frequency of natural vibrations of the
blades is an important sign.

When initializing the synthesis process using MGA,
restrictions were set on the absence of feedbacks and ex-
cessive growth of hidden layers. Based on the assessment
of the complexity of the task, the optimal number of neu-
rons in the hidden layer was chosen 4 [25]. During neuro-
evolutionary synthesis, this number of neurons was con-
firmed.

Comparing the operating time, it can be noted that the
MGA method worked much slower, this is due to the fact
that the method worked in single-threaded mode and
completely synthesized a new network architecture, oper-
ating with a population of non-network models. From this
we can conclude that in simple tasks, neuroevolutionary
methods may need increased time resources. At the same
time, the higher accuracy of the synthesized solution
(which has been confirmed experimentally) may not fully
justify such time expenditures.

However, in complex tasks, when the process of input
data preprocessing is not possible or is largely difficult
and the accuracy of the model is extremely important,
neuroevolutionary methods can show great efficiency.
This is due to the lower dependence of the operation of
such methods on the noise of the input data, as well as the

topologies using iterative methods.

CONCLUSIONS

The urgent scientific and applied problem of synthesis
of an optimal neural network model for diagnostics of
aircraft parts after operational processes has been solved.

The scientific novelty lies in the fact that it is pro-
posed to use different methods for the synthesis of neu-
romodels. Thus, the Backpropagation method was used to
train a predefined ANN structure based on an assessment
of the complexity of the simulated task. The MGA
method was also used for neuroevolutionary synthesis of
the model. As a result, both methods presented similar
perceptron topologies with the same structures.

The practical significance lies in the fact that the ra-
tionality of approaches to the synthesis of neuromodels
has been investigated. So for y, and Yy,, MGA worked
slower by 23.93% and 29.03%, respectively. At the same
time, the accuracy of the resulting models differed by
0.3-0.1 percentage points. From this we can form a rec-
ommendation: for such tasks, the use of neuroevolution-
ary methods may not be justified precisely in the case of
the time resources spent. However, for more complex
tasks, where accuracy is more important, the neuroevolu-
tionary approach will be preferable.

Prospects for further research are to expand the
dataset of input characteristics of aircraft parts to use

© Leoshchenko S., Pukhalska H., Subbotin S., Oliinyk A., Gofman Ye., 2022

DOI 10.15588/1607-3274-2022-2-7

76



e-ISSN 1607-3274 PapioenexTpoHika, inpopmaTuka, ynpasmainss. 2022. Ne 2
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 2

complex ANN topologies and monitor the accuracy of
their operation.
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AHOTAIIA

AKTyaibHicTb. PO3IIIsSIHYTO 3aBIaHHS CHHTE3Y ONTHMAJIbHOI HEHPOMEPEKEeBOi MOJIEII JUIsl JIarHOCTHKY aBiallifHuX JeTasel mi-
CIIsl eKCIuTyaTaliiHux npouecis. O6’€KTOM JOCHIIKEHHS € MIPOLEC CHHTE3Y HEHPOMEPEeKEBHUX JIarHOCTHYHUX MOJIeNIeH JUls aBiarii-
HUX JieTaliell 3a pe3yJIbTaTaMH eKCIUTyaTal[iiHUX MpPOLECiB.

Merta podoTn nomsirac B CHHTE31 HEHPOMEPEIKEBUX JIarHOCTHYHUX MOJIENeH aBialifHuX aeraneil micis eKCIUTyaTaliiHuX mpo-
1LIECiB 3 BUCOKUM PIiBHEM TOYHOCTI.

MeTtopa. 3anporoHOBaHO JOCTIANTH BUKOPHCTAHHS IBOX MMIAXOIIB O CHHTE3Y HelipoMepekeBUX AiarHOCTHYHHX Moneineil. Tak
BHKOPHUCTOBYIOUH CHUCTEMY 1HAWKATOPIB, OOYHCITIOETHCS TOMOJIOTIS HEHPOHHOI MepesKi, SKka B MOJalbIoMy OyJe HaBYCHA 3 BUKOPH-
CTaHHAM METOJy 3BOPOTHOTO IOIIMPEHHS MOMIIKH. J{pyTuif ske MiaxiJ IPyHTY€eThCsl HA BUKOPUCTAHHI HEHPOEBOIIOLIIHOTO MiIX0-
Iy, SIKHI JTO3BOJISIE 3pOOUTH MOBHMI CHHTE3 HEHPOHHOI Mepexi, AMHAMIYHO MOAN(IKYIOUH KpIM ITapaMeTpiB 1 TOIOJIOTII0 PillleHHSI.
ITiICYMKOBI PillIeHHSI OPIBHIOIOTHCS B TOYHOCTI pOOOTH Ha HAaBYAIILHOMY 1 TeCTOBOMY HaOopi maHuX. Takuit miaxix 103BOIUTH BH-
3HAYUTU MOXJIMBICTD 1 KOPEKTHICTh BUKOPHUCTAHHS HEHPOECBOIIOLIHHNX METO/IB JUIsl CHHTE3Y JIarHOCTUYHHUX MOJIEIICH.

PesyabraTn. OTprMaHo HelpoMoneni Ui AiarHOCTUKH aBiallilHUX Jerajell 3a pe3ysbTaTaMd eKCIUTyaTalliiHUX MPOLECiB.
OtpuMaHi pe3yJibTaTH MOPIBHAHHS BUKOPUCTOBYBAHMX I CHHTE3Y METOIB J03BOJIWIN cHOPMYBaTH PEKOMEHAANIT Ul IMITIEMEH-
TaIii HeHPOEBOIOIIHUX METOIB B MMPOLIECH CUHTE3Y NiarHOCTHYHHUX HEHPOMOENei.

BucHoBok. OTprMaHi B XOJi €KCHEPHUMEHTIB PE3yJNbTaTH MiATBEPIMIN Mpale3l1aTHICTh BUKOPHUCTOBYBAHOTO MAaTEMAaTHYHOTO
3a0e3neyeHHs i JO3BOIWIN c(OPMYBATH PEKOMEHAAMIT IJIsI TOAATBIIOT0 BUKOPUCTAHHS PO3TIISHYTHX METOJ(IB HA NPAKTHII 3 METOIO
CHHTE3y IiarHOCTHYHUX Helipomozereil. [lepcrekTHBr NofaIbIINX JOCTI/PKEHb MOXYTh MOJIATAaTH B PO3MIMPEHHI BXiTHUX HaOOpiB
JIAHUX 3 METOKO CHHTE3Y 1 JOCIIKCHHS OUIBII CKJIAIHUX TOMOJIOTIH HEHPOMEPEKEBUX MOJICIICH.

KJIFOYOBI CJIOBA: niarHocTyBaHHS, aBialliifHi JeTaji, CHHTE3, HABYaHHI, HEHPOCBOJIIOI, BUOIpKa TaHMX, CKCILTyaTalliifHi
MPOLIECH.
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AHHOTADIUA

AkTyasbHOCTB. PaccMoTpeHa 3ajjaua cuHTe3a ONTHMAIbHON HEHpOoCceTeBOM MOAENH AJ JUArHOCTHKM aBHALMOHHBIX AeTalei
II0CJIEe KCIUTYyaTalMOHHBIX IporieccoB. OOBEKTOM HCCIIEIOBAHUS SBIISCTCS MPOLECC CUHTE3a HEHPOCETEBBIX JUarHOCTUYECKUX MO-
Jieniel 171 aBUallMOHHBIX JeTanel 1o pe3yiabTaTaM 3KCIUTyaTallMOHHBIX IIPOLIECCOB.

Lean padoThl 3aKII049aeTCS B CHHTE3€ HEHPOCETEBBIX JUArHOCTUUECKUX MOJIENICH aBHALMOHHBIX JIeTajel 1mocie 3KCIUTyaTaly-
OHHBIX TIPOIIECCOB C BEICOKUM YPOBHEM TOUYHOCTH.

Mertoa. IIpeanoxeHo uccnenoBaTh UCIOIb30BaHUE BYX MOAXOI0B K CUHTE3y HEHPOCETEBBIX AMATHOCTUYECKHUX Mozeneil. Tax
HCTIONB3YS CHCTEMY MHIMKATOPOB, BEIYHCIISIETCS TOMOJIOTHS HEHPOHHON CeTH, KOTopas B AalbHEHIIeM OyaeT o0ydeHa ¢ MCHONb30-
BaHHMEM MeToJ[a 00paTHOTO PacIpoCTpaHeHHs OMMOKU. BTOpoi e Mmoaxox oCHOBBIBAETCS Ha MCIIOJIb30BAHUH HEHPOIBOIIOHOHHO-
IO MOAXO0/a, KOTOPHII IT03BOJISIET ITPOU3BECTH TIOJHBIH CHHTE3 HEHPOHHOW CeTH, TMHAMHYHO MOJM(UINPYS ITOMUMO ITapaMeTpoB U
TOIOJIOTHIO PEUICHHS. UTOTOBBIC PEIICHUS] CPAaBHUBAIOTCS B TOYHOCTH PabOTHI HAa 00y4YaloleM M TeCTOBOM Habope naHHbIX. Takoi
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MO/IXO0/] [TO3BOJIUT OIPEIEIUTh BOBMOXKHOCTh U KOPPEKTHOCTH HCIIOJIb30BAaHUSI HEHPOIBOIIOIIMOHHBIX METOOB Ul CHHTE3a JUarHo-
CTUYECKHUX MOJeNei.
PesyabTartel. [lonyueHsl HelipoMoaenu il TUarHOCTUKH aBUALIMOHHBIX JIETallel Mo pe3ysibTaTaM dKCIUTyaTallMOHHBIX MPOLec-
coB. [lomyueHHble pe3yiabTaThl CPABHEHHUS HMCIOIb3YEMBIX IJIsI CHHTE3a METOOB MO3BOJMIN CHOPMHUPOBATH PEKOMEHAALMH IS
HMMIUIEMEHTALUHN HEHPOIBOIIONMOHHBIX METO/IOB B IIPOLIECCH] CHHTE3a AUAarHOCTHYECKUX HEHpOMOIene.

BoiBoasl. [loryueHHbIe B X0/1€ SKCIEPUMEHTOB PE3yIbTaThl MOATBEPIMIN PaOOTOCIOCOOHOCTh HCIONb3yeMOro MaTeMaTHye-
CKOT0 00eCHeUYeHHUS U MO3BOIWIN c(HOPMHUPOBATH PEKOMEHIAINH IS JaTbHEHIIEro UCTIONB30BaHU PACCMaTPUBACMBIX METOIOB Ha
MpaKTUKE C LEJIbI0 CUHTE3a JUAarHOCTUYEeCKHX Herpomonenel. IlepcnekTuBsl AaibHEHIINX HCCIeI0BaHUM MOTYT 3aKJI04aTbCs B
paCIIMPEHUU BXOJHBIX HA0OPOB TAaHHBIX C IETBI0 CHHTE3a M UCCIICOBAaHMS 00JIee CI0KHBIX TOMOJIOTHI HEHPOCETEBBIX MOICICH.
KJIIFOUEBBIE CJIOBA: nuarHOCTHpOBaHWE, aBHAIIMOHHBIC NETAIH, CHHTE3, O0yUCHHE, HEUPOIBOIIOIHS, BHIOOPKA JTAHHBIX,
9KCILTyaTallMOHHbIE TIPOLIECCHI.
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