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ABSTRACT

Context. The topical problem of sensitive information protection during data transmission in local and global communication
systems was considered. The case of detection of stego images formed according to novel steganographic (embedding) methods was
analyzed. The object of research is special methods of stego images features pre-processing (calibration) that are used for improving
detection accuracy of modern statistical stegdetectors.

Objective. The purpose of the work is performance analysis of applying special types of image calibration methods, namely di-
vergent reference techniques, for revealing stego images formed according to adaptive embedding methods.

Method. The considered divergent reference methods are aimed at search an appropriate transformation for cover and stego im-
ages features that allows increasing Euclidean distance between them. This can be achieved by re-projection of estimated features
into a high-dimensional space where cover and stego features may have higher inter-cluster distances. The work is devoted to analy-
sis of such methods, namely by applying the inverse Fast Johnson-Lindenstrauss transform for estimation preimages of cover and
stego images features. The transform allows considerably decreasing computation complexity of features calibration procedure while
providing a fixed level of relative positions changes for cover and stego images features vectors, which is of particular interest in
steganalysis.

Results. The dependencies of detection accuracy, namely Matthews correlation coefficient, on cover image payload and dimen-
sionality of estimated preimages for feature vector were obtained. The case of usage state-of-the-art HUGO, S-UNIWARD, MG and
MiPOD embedding methods for message hiding into a cover image was considered. Also, the variants of stego image features pre-
processing by full access to stego encoder for a steganalytic as well as limited a prior information about used embedding method
were analyzed.

Conclusions. The obtained experimental results proved effectiveness of proposed approach in the most difficult case of limited a
prior information about used embedding method and low cover image payload (less than 10%). The prospects for further research
may include investigation of applying special methods for features preimages estimation in a high-dimensional space for improving

detection accuracy for advanced embedding methods.

KEYWORDS: digital image steganalysis, adaptive embedding method, image calibration, dimensionality reduction.

ABBREVIATIONS
ASM is an adaptive steganographic method;
Cl is a cover image;
CNN is a convolutional neural network;
DI is a digital image;
DR is the divergent reference calibration method;
FJLT is the Fast Johnson-Lindenstrauss transform;
GMM is the Gaussian Mixture model;
HPF is a high-pass filter;
JLL is the Johnson-Lindenstrauss lemma;
MCC is the Matthews correlation coefficient;
SD is a stegdetector;
SI is sensitive information.

NOMENCLATURE

A, is a cover image payload;

pii(*) is a cost function for estimation CI alteration due
to individual stego bit hiding into (,/)" pixel of CI;

u, v, w are weights;

C() is an image calibration operator;

C is the set of three-elements cliques for four-pixels
adjacency directions;

D is an array of differences between adjacency pixels
values;

D(X Y ) is an empirical distortion estimation func-

tion;
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3 represents brightness range for 8-bits grayscale im-
age;

k is the number of parameters for the SPAM model,;

M is a binary message to be embedded;

M, M’ are adjacency matrices for Markov model by
scanning grayscale image from left-bottom to right-top
and from right-top to left-bottom directions respectively;

M¢, M? are adjacency matrices for Markov model by
scanning grayscale image from left-top to right-bottom
and from right-bottom to left-top directions correspond-
ingly;

P, is the detection error;

Pr, is the probability of false alarm during detection
(assignment cover image as stego one);

Pyp is the probability of missed detection (assignment
of stego image as cover one);

T is a threshold;

X is a cover image;

Y is a stego image;

Pr(a) is the probability of event a.

INTRODUCTION
Ensuring the reliable protection of sensitive
information, which is processed in the critical information
infrastructure  of public institutions and private
organizations, is extremely important and urgent task
today. Particular attention is paid to counteracting to SI
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leakage during data exchange in communication systems,
in particular the detection of latent (steganographic)
transmission of SI embedded in multimedia cover files,
such as digital images [1, 2]. The solution of this problem
is significantly complicated by the widespread usage of
attackers the advanced adaptive steganographic methods.
The feature of these methods is the minimization of cover
image statistical parameters alteration during message
embedding, which leads to a significant reduction of
modern stegdetectors accuracy.

The object of study is methods for revealing of stego
images according to modern ASM. These methods are
based on analysis of differences between statistical, spec-
tral and structural parameters of the current DI and avail-
able examples of cover or stego images.

Ensuring high accuracy of stego images detection re-
quires usage enormous ensembles of high-pass filters in
order to detect weak (anomalous) changes in statistical,
spectral and structural parameters of the CI, caused by
stegodata embedding. The high complexity of the forma-
tion of these ensembles to minimize a stego image detec-
tion error in the case of limited a priori data about used
ASM determines the urgency of the problem of finding
pre-processing (calibration) methods of DI that can relia-
bly detect weak distortions of CI.

The subject of study is methods for DI calibration
aimed at detecting weak changes of image’s parameters
alterations caused by message hiding according to ASM.

Given the mentioned limitations of usage ensembles
of HPF to detect stego images formed according to the
advanced ASM, it is of interest to investigate the effec-
tiveness of special calibration methods usage. In particu-
lar, there is presented limited information in the literature
about calibration methods aimed at increasing the dis-
tance between the multidimensional vectors (statistical
parameters) of cover and stego images [3]. These methods
allow increasing the differences between the statistical
parameters of the cover and formed stego images without
the need to use compute-intensive procedures for high-
frequency filtering of a DI in order to extract components
that are usually used for message hiding.

The purpose of the work is performance analysis of
applying special types of image calibration methods to
improve the detection accuracy for stego images formed
according to ASM.

1 PROBLEM STATEMENT
For a given set of cover X, and stego Y, images
(X,,Y,)e 3", i €[1;Q] the task of stegdetector training

can be presented as the optimization problem [4, 5]:

P, =Igin(P|:A+PMD(PFA))/2‘ ()

FA

Solving of (1) is done under constrain of applying to
images a predefined image calibration transformation
C(): gMN 5 gMN,
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Selection of calibration transformation C(-) should be
done according to known a priori information about used
embedding method. Nevertheless, this information is lim-
ited or even absent in most cases. Therefore, the choice of
appropriate transformation C(-) that allows solving prob-
lem (1) in case of limited a priori information about steg-
anographic method remains an open question.

The work is devoted to performance analysis of usage
special types of image calibration methods that are based
on image’s vectors (statistical features) preimages estima-
tion into a high-dimensional space in order to emphasize
differences between features of cover and stego images.

2 REVIEW OF THE LITERATURE

The feature of advanced methods for message embed-
ding into a cover image is preserving minimal impact on
cover’s statistical features [4, 5]. This is achieved by care-
fully selection of cover’s pixels to be altered with usage
of empirical functions D(X,Y) for estimation cover image
alterations. Detection of these alterations is non-trivial
task due to limited information about used functions
D(X,Y). Therefore, special attention is paid on images
pre-processing (calibration) methods that allow revealing
mentioned alterations for further analysis.

One of most effective methods for image calibration
was proposed for SRM statistical model of a cover image
[6]. Feature of such methods is usage of redundant set of
HPF for image’s context suppression. Despite high detec-
tion accuracy, practical usage of SRM-based models is
limited due to high computation complexity and necessity
to update set of HPF for minimization stego image detec-
tion error for each embedding method.

Further evolution of SRM-based model is applying of
modern convolutional neural networks for learning ap-
propriate filters (convolutional kernels) during SD tuning
[7, 8]. Applying of well-known backpropagation method
allows considerable reducing time-consuming manual
selection of an appropriate HPF for minimization of de-
tection error. In spite of CNN’s high detection accuracy,
they remain vulnerable to differences between statistical
features of training and testing sets of DI (domain adapta-
tion problem). Therefore, applying of computation-
intensive transfer learning methods is required for preven-
tion negative impact of this problem.

Given mentioned limitation of modern methods for DI
calibration, it is of interest to use special types of image
calibration methods, namely the divergent reference
methods [3]. These methods are aimed at increasing the
distance between the distributions of statistical parameters
of cover and stego images by applying of an appropriate
transformation for features vectors. Modern approaches to
the design of such calibration methods require usage of a
priori data about statistical parameters of cover and stego
images in order to choose an appropriate transformation
method [8, 9]. As a result, the presence of complete / par-
tial overlap of clusters of vectors (statistical features) of
cover/stego images leads to a significant reduction in the
effectiveness of such calibration methods. To overcome
this limitation, we proposed to use methods for image’s
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vectors (statistical features) preimages estimation from a
high-dimensional space while preserving theirs relative
positions. Therefore, the work is devoted to performance
analysis of such approach to image calibration for im-
proving performance of modern SD.

3 MATERIALS AND METHODS

The development of effective and computationally
cheap image calibration methods requires review and
classification of known approaches to solving this
problem. This allows establishing the advantages and
identifies limitations in the practical application of known
calibration methods.

The classification of modern calibration methods for
digital images was proposed in the work [3]:

1. Parallel reference — usage of calibration methods
leads only to a parallel shift of vectors for cover and stego
images, which does not increase the accuracy of the SD;

2. Divergent reference — aimed at enhancing the
differences between cover and stego images by increasing
distance metric between these vectors;

3. Eraser — as a result of usage of such methods the
distance between vectors of cover/stego images
considerably decreases, up to their full alignment;

4. Cover estimate — are aimed at estimation features of
cover images from the current (noised) image.
Correspondingly, applying of such methods preserves
minimal changes of cover’s images, while leads to
considerable changes of stego ones;

5. Stego estimate — are aimed at detection and
extraction image’s alterations caused by message hiding.
Therefore, usage of such methods preserves minimal
changes of stego images, while features of cover image
are changed significantly.

The schematic representation of the mutual positions
of vectors corresponding to cover/stego statistical features
by applying of considered calibration methods is shown in
Fig. 1.

The calibration methods that relates to parallel
reference and eraser cases are rarely used today due to
considerable decreasing of stegdetector performance. The
image calibration methods based on applying of
ensembles of HPF are related to the stego estimation case
due to detection and extraction of DI alterations caused by
message hiding [10-12]. On the other hand, cover
estimation calibration methods are not widely adopted in
SD today due to theirs “aggressive” characters —
removing both internal noise and alterations caused by
message hiding [13].

In general, current researches of stego images
calibration methods is aimed at finding methods
belonging to the DR case (Fig. 1) — the search of methods
that enhance the differences between features of
cover/stego images, namely to cluster corresponding
multidimensional vectors in different parts of the feature
space. Therefore, these calibration methods make it
possible to use simple (linear) methods of features
classification and preserving low detection errors.
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Figure 1 — Schematic representation of cover and stego images
features shift caused by calibration methods applying.
According to paper [3]

The DR-based calibration methods can be
implemented by projections of the corresponding vectors
from current to a higher dimension space. Thus, despite
the relatively small differences between these vectors in
the current space, their preimages from a higher
dimension space may have significantly greater
differences.

Therefore, it is represent the interest to investigate
performance of modern methods for vectors re-projection
into a higher dimension space. These methods can be
represented as  “inversion” of the well-known
dimensionality reduction techniques that are aimed at
preserving relative location of features. One of the most
known methods for solving this task is based on Johnson-
Lindenstrauss lemma concerning low-distortion embed-
dings of points from high-dimensional into low-
dimensional Euclidean space [14]. The feature of JLL is
preservation of projected clusters relevant structure that
makes it promising method for wide range of
dimensionality reduction technique. Also, the JLL is
based on construction the projection matrix that can be
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inverted with usage of Moore-Penrose method [15].
Therefore, the JLL can be adapted for the estimation of
cover and stego images feature vectors preimages that
take special interest for improving SD performance.

By the Johnson-Lindenstrauss lemma [16], » points in
Euclidean space can be projected from the original d di-
mensions down to lower & = O(g >logn) dimensions while
just incurring a distortion of at most (+¢€) in their pairwise
distances, where 0<e<l. Based on the JLL, Alion and
Chazelle [17, 18] proposed the Fast Johnson-
Lindenstrauss transform for a low-distortion embedding
of lpd into lpk (p equals 1 or 2).

The FILT is based on preconditioning of a sparse pro-
jection matrix with a randomized Fourier transform. Note
that we will only consider the /, case (p = 2) because of
processing two-dimensional matrices of pixels brightness.
For the /; case, please refer to [17].

The FJLT is denoted as ®,,=FJLT(n, d, €), that can
be obtained as a product of three real-valued matrices:

D@y =Pyr-Hyr-Dyr,

where matrices P and D, are random and matrix H; 7
is deterministic [17, 18], namely:

— Matrix Pj;r is a k-by-d matrix whose elements P;
are drawn independently from Normal distribution
N(0, ¢ ") with zero-mean and variance ¢ with probabil-
ity ¢, and equal zeros with probability (g—1), where

q :min{clog2 n/d,l}

for a large enough constant c.
— Matrix Hy;7 is d-by-d normalized Hadamard matrix
with the elements as

Hy = R (_1)<i—1,j—1> ,

where <i,j> is the dot-product of the m-bit vectors of (i,))
expressed in binary format.

— Matrix Dy; 7 is a d-by-d diagonal matrix, where each
diagonal element D; is drawn independently from {-1,
+1} with probability 0.5.

Therefore, the FILT output is a k-by-d matrix, where
d is the original dimension number of the data and & is
the lower dimension number, which is set to be
(c's * log n). Here, n is the number of data points, ¢ is the
distortion rate, and ¢’ is a constant. Given any data point
X from a d-dimension space, it is intuitively mapped to
the data point X' at a lower k-dimension space by the
FILT and the distortion of their pairwise distances could
be estimated with JLL [17, 18].

We considered usage of standard SPAM statistical
model of DI for estimation images statistical features. The
SPAM model is based on usage Markov chains theory for
estimation cross-correlation of adjacent pixels brightness
[19]. The calculation of SPAM-features starts by compu-
tation the difference array D by processing an image in
row- and column-wise orders. For example, the array D
for the case of row-wise processing (left-to-right pixels
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scanning) of the grayscale image U with size M'N pixels
can be calculated as [19]:

.
D;j=Ui;=Uiju,

UeSM'N,ie[l;M],je[l;N—l].

Then, the array D is modelled with usage of first-order
and second-order Markov processes that produces F; and
F, features respectively [19]. For the considered example,
it leads to:

M, :Pr(D_’ L =u D =v),

i,j+

M—)

_ —> _ e _ - _
wvw = PT(Di,_;'+2 =u|D; =Dy = W),

u,v,we[—T;T],TeN.

If probabilities Pr(ij.:v) or Pr(D?

p— = p—
i = VD= W)

H - -
are equal to zero, corresponding values M, and M,
equal to zero as well. The same approach can be used for

estimation F; and F, features for other scanning direc-
tions, namely ¢ € {—), -, T,J/} .

Finally, estimated features F; and F, are averaged for
decreasing dimensionality of SPAM-features. This proce-
dure is based on the standard assumption that statistics in
natural images are symmetric with respect to mirroring
and flipping [19] is used. Thus, we can separately averag-
ing matrices for horizontal, vertical and diagonal direc-
tions to form the final features:

F . :(M_> +MC M MY )/4,

b . d
By o = (M7 +MP MM ) 4,

Number of parameters for the first-order SPAM model
is &=(2T+1)?, while for the second-order one — k=(27+1)°.

4 EXPERIMENTS

Performance analysis of proposed method for images
features DR-calibration was performed on ALASKA
dataset [20]. The sub-set of 10,000 grayscale images with
size 512-512 pixels was pseudo randomly chosen from the
dataset. The case of message embedding into CI with us-
age of advanced adaptive embedding methods HUGO
[21], S-UNIWARD [22], MG [23] and MiPOD [24] was
considered. The CI payload A, was changed in the fol-
lowing range — 3%, 5%, 10%, 20%, 30%, 40%, 50%.

The feature of considered embedding methods is
minimization of total cost by a binary message

Me {O,I}K hiding into a cover grayscale image X [25]:

‘M‘:const

D(X,Y)=3, .pi;(X.Y) min. )
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Ideally, cost function p(-) in (2) can estimate both CI
alteration due to changing of individual pixel, and non-
linear interaction between these changes [25]. The former
estimation can be done with usage of widespread statisti-
cal models of CI [1], while the latter one requires com-
pute-intensive analysis of pixels changes combinations
that becomes intractable even for short messages M
(about 100 bits) [25]. Therefore, the simplified function
p() that estimate only CI distortions caused by individual
stego bit embedding is used in most real cases.

The HUGO embedding method is based on minimiza-
tion of CI distortion under constrains of message length
by alteration of pixels brightness levels [21]. On the other
hand, the S-UNIWARD method uses similar approach by
manipulation of CI decomposition coefficients, obtained
after two-dimensional discrete wavelet transformation
[22]. In contrast, the MG and MiPOD embedding meth-
ods use Gaussian Mixture model for estimate statistical
features of CI intrinsic noises [23, 24]. Usage of GMM
allows both estimation alterations of CI statistical features
caused by message hiding, and tracking of expected de-
tection accuracy for formed stego images.

In most cases, selection of cover image pixels to be
used during message embedding (2) is performed by heu-
ristic rules. These rules assess noise level in a local
neighborhood of (i,/)™ pixel [25] that allows achieving
close to state-of-the-art security of formed stego images
and preserving computation effective optimization meth-
ods for cost estimation.

The stegdetector was tested according to cross-
validation procedure by minimization of detection error
P, (1) [26]. The dataset was divided 10 times into training
(70%) and testing (30%) sub-sets during cross-validation
for estimation averaged values of P.. The SD includes
ensemble classifier with Fisher Linear Discriminant base
learner [26] trained with second-order SPAM model [19]
with threshold parameter 7=3, leading to 686 features.

The SD performance significantly depends on fraction
F, of cover-stego images features pairs utilized during
training stage [27]:

|{(X’Y) : (Xi’Yi )’i € Strain}

F, = -100%, (3)
|Strain|
where S;., — set of images used during training of

stegdetector; Y; — stego images formed from the i cover
image X,.

The F, parameter varies from 0% (absent of cover-
stego images pairs in training set) to 100% (training set
consists only from cover-stego images pairs). The former
case corresponds to the situation when steganalytic does
not have access to stego encoder and may use only col-
lected stego images. The latter one relates to the situation
when steganalytics have access to stego encoder and they
can generate a stego image for any CI.

The Matthews correlation coefficient was used as per-
formance metric for trained SD [28]:

© Progonov D. O., 2022
DOI 10.15588/1607-3274-2022-2-16

mcc = Frefin = Frp - Fry
Nucce
Nyree =(Prp + Prp)-(Prp + Pry ) %

x(Pry + Pep)-(Poy + Pry )

where Prp, Pry are probabilities of correct classification
of stego and cover images; Prp, Pry are probabilities of
false alarm (misclassification of cover image as a stego
one) and miss detection (misclassification of stego image
as a cover one). The value of MCC index (4) varies from
(-1), which corresponds to the case of incorrect
classification of cover images as stego ones and vice
versa, to (+1), which corresponds to the correct
classification of both cover and stego images. The special
case is value MCC = 0, which corresponds to the case of
assigning the studied image to cover/stego images classes
randomly (Prp= Pry).

The estimated features were calibrated with usage of
inverse FILT by increasing of features dimensionality up
to 10% in comparison with initial SPAM features — from
686 to 761 with step of 5. The transformation matrix T for
estimation preimages of features was performed with us-
age of Moore-Penrose procedure [29]. Due to stochastic
nature of FJLT, the SD performance was estimated by 10
times generation of transformation matrix 7" and using of
median values of detection error P, (1).

5 RESULTS
After testing of stegdetector trained with initial and
projected SPAM features the dependencies of MCC val-
ues on CI payload were plotted. The dependencies of
MCC mean values on cover image payload for considered
embedding methods HUGO, S-UNIWARD, MG and Mi-
POD for the case F,=100% are presented at Fig. 2-3.
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Figure 2 — The dependencies of Matthews correlation coefficient
mean values on cover image payload for HUGO (a) and
S-UNIWARD (b) embedding methods for the case F,=100% on
ALASKA dataset
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Usage of inverse transformation matrix T,,, leads to
negligible changes of MCC index (AMCC < 107) for all
considered embedding methods (Fig. 2-3). Therefore, we
may conclude that usage of DR-features based on features
projection into high-dimensional space does not allow
improving detection accuracy of SD.

For comparison, the dependencies of MCC mean val-
ues on cover image payload for considered embedding
methods HUGO, S-UNIWARD, MG and MiPOD for the
case F,=0% are presented at Fig. 4-5.
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Figure 4 — The dependencies of Matthews correlation coeffi
cient mean values on cover image payload for HUGO (a) and S-
UNIWARD (b) embedding methods for the case F,=0% on
ALASKA dataset.
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embedding methods for the case F,=0% on ALASKA dataset.
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In contrast to the previous case (Fig. 2-3), projection of
SPAM-features into high-dimensional space allows
improving values of MCC index (Fig. 4-5) even by
negligible changes of inverse transformation matrix T,
size. The biggest impact on MCC values was obtain for low
(less than 10%) and medium (less than 20%) cover image
payload — increasing dimensionality of used features allows
increasing MCC index up to 0.04 for advanced MG (Fig.
5a) and MiPOD (Fig. 5b) embedding methods. On the
other hand, changing of MCC for high cover image payload
(more than 20%) by usage of inverse transformation matrix
T, is much smaller (AMCC <2 - 10’2).

6 DISCUSSION

Providing reliable detection of stego images formed
according to advanced ASM requires utilization of huge
ensembles of HPS [7]. This complicates tuning of stegde-
tectors due to necessity to time-consuming preselection of
HPS for minimization detection errors. Proposed method
of DR-calibration for analyzed images allows improving
detection accuracy by search an appropriate transforma-
tion for increasing distance between clusters of estimated
features for cover and stego images. In general case, the
DR-calibration requires utilization of prior information
about used embedding method for estimation mutual posi-
tions of these clusters. This makes such methods in ap-
propriate candidates for real cases when steganalytics
have limited or even no access to stego encoder.

Proposed DR-calibration method is based on inverse
FILT for estimations preimages of cover/stego statistical
features from high-dimensional space. Usage of this
method allows preserving similar detection accuracy for
the case when steganalytics have full access to stego en-
coder (Fig. 2) and they can embed a payload for an arbi-
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trary cover image. On the other hand, applying of inverse
transformation matrix T;,, estimated by inverse FJLT al-
lows improving detection accuracy (AMCC < 4 - 107?) in
most difficult case of limited a prior information about
used embedding method (Fig. 3) — the value F,=0% (3)
corresponds to the case of limited ability of steganalytics
to form stego images for an arbitrary cover image.

Despite revealed effectiveness of applying of inverse
FILT, practical application of such method may require
compute-intensive pre-processing step. This is connected
with stochastic nature of transformation matrix T genera-
tion by FILT [18] — the probability of successful genera-
tion (matrix T preserves mutual location of features clus-
ters corresponds to cover/stego images) is at least 2/3.
This is arisen from the features random projection by JLL
and could be amplified to (1-9) for any >0, if we repeat
the construction O(log(1/ d)) times [17].

Additional increasing of detection accuracy by usage
of proposed approach can be achieved by preselection of
generated inverse transformation matrix T;,, by the crite-
rion of preserving same or increasing inter-distance be-
tween clusters of preimages for cover/stego images fea-
tures. This can be achieved by corresponding increasing
of procedure duration that may be critical for some appli-
cations, like fast re-tuning of SD.

Therefore, we may conclude that usage of proposed
inverse FJLT allows improving detection accuracy for the
most difficult cases of limited a prior information about
embedding method (F,=0%) and low cover image pay-
load (less than 10%).

The future research directions may include compara-
tive analysis of other methods for estimation features pre-
images in high-dimensional space, such as kernel princi-
pal component analysis (kernel-PCA) [30], multidimen-
sional scaling [31], matrix completion scheme [32] to
name a few. Also, it is represent the interest to estimate
performance of proposed DR-calibration method in case
of processing real digital images that characterized by
high variability of statistical and spectral features.

CONCLUSIONS

The topical problem of improving accuracy for mod-
ern stegdetectors in case of processing stego images
formed by adaptive embedding methods was considered.
The case of applying special types of stego image calibra-
tion techniques was investigated.

The scientific novelty of obtained results is perform-
ance analysis of special types of digital image calibration,
namely divergent reference methods. There is proposed to
use inverse Fast Johnson-Lindenstrauss Transform that
allows estimating preimages for image’s feature from
high-dimensional space for increasing Euclidean dis-
tances between features clusters correspond to cover/stego
images. Proposed approach allows improving detection
accuracy for novel embedding methods in the most diffi-
cult cases of limited a prior information about embedding
method (£,=0%) and low cover image payload (less than
10%). This allows improving performance of statistical

© Progonov D. O., 2022
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stegdetectors for revealing stego images formed according
to advanced embedding methods.

The practical significance of obtained experimental
results is estimations of stego images detection error by
usage of inverse FJLT. These results allow establishing
achievable detection accuracy by usage of DR-based
stego image calibration methods for state-of-the-art adap-
tive embedding methods HUGO, S-UNIWAR, MG and
MiPOD.

Prospects for further research are to investigate ef-
fectiveness of special methods for features preimages
estimation in high-dimensional space as well as perform-
ance analysis of DR-based stego image calibration meth-
ods by processing of real digital images that characterized
by high variability of statistical features.
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E®EKTUBHICTHh METO/IIB IIONMEPEIHBOI OBPOBKU CTETAHOTPAM, 3ACHOBAHUX HA BU3HAUEHHI

IPOOBPA3Y BEKTOPIB CTATUCTHYHHNX ITAPAMETPIB 305PAKEHB ¥V ITPOCTOPI BUIIOI PO3MIPHOCTI
IIporonos JI. O. — xaHI. TEeXH. HAYK, JOICHT, JONEHT kKadeapu iHpopmalliitHoi Oe3neku HallioHaIbHOTO TEXHIYHOTO YHIBEPCH-
tery Ykpainu «KuiBcbkuit nonitexniunuii inctutyT imeHi Iropst Cikopebkoro», Kuis, Ykpaina.

AHOTAIIA

AKTyaJbHicTb. PO3MIIAHYTO akTyansHy mpoOieMy 3axucTy KOH(DiAeHIiHOI iHpopMarii mia yac mepeaadi JaHuX y JIOKaJTbHUAX
Ta T100aJbHUX CHCTEMax 3B’sI3Ky. JlOCIiKeHO BUIAJ0K BHUSBICHHS CTEraHOTpaM, c()OPMOBAHMX 3TiHO HOBITHIX aialTUBHUX CTe-
raHorpaiqaux MeToxiB. O6’€KTOM JOCHIIIKEHHS € CHenialbHi MEeTOAN OOPOOKH CTaTHCTUYHHX ITapaMeTpiB CTEraHOTpaM, IO BUKO-
PHUCTOBYIOTBHCS JUIsI HiIBUIIEHHS TOYHOCTI pOOOTH Cy4aCHHX CTaTHCTUYHHX CTEroJleTeKTopiB. MeToto po6oTH € aHaii3 eeKTUBHOCTI
3aCTOCYBaHHs CIEL[IaJIbHIX METO/IB MONepeHb0i 00poouyn udpoBHX 300paXKeHb JUIsl MiIBUICHHS TOYHOCTI BHSBJICHHS CTEraHOTI-
pam, chopMOBaHHX 3 BUKOPHCTAHHAM aJalITHBHUX CTEraHOTpadidHUX METOLIB.

Metopa. Po3riisiHyTo BUKOPHCTaHHS METO/IB, CIPSMOBAHHX Ha 301IbIICHHS €BKJIJOBOI BiZICTaHI MK BEKTOpaMH (CTATHCTHIHH-
MH TIapameTpaMu) 300pa’KeHb-KOHTEHHEPIB Ta CTETaHOrpaM IIIIXOM BH3HAUEHHS MPOOOpa3iB aHWX BEKTOPIB 3 0araTOBUMIpHHX
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IIPOCTOPIB BAIIOi po3MipHOCTI. s BUpiNIeHHS NaHOi 3a1adi 3aIpOIIOHOBAHO BUKOPHCTOBYBATH 3BOPOTHE IepeTBOpeHHs J[KOHCO-
Ha-JlinneHmTpayca. 3alpoONOHOBaHUH METOJ| J03BOJISIE CYTTEBO 3MEHIIMTH OOYMCIIIOBAJIBHY CKIAJHICTh HNPOLEIypH IONEpeaHbol
00pOOKHU TOCTIIKYBAaHUX 300payKeHb TIPH 3a0e3MeUCHHI () IKCOBAHOTO PiBHS 3MiH B3aEMHOTO MOJIOKCHHS BEKTOPIB, SKi BiMOBIIaI0Th
300paKeHHAM-KOHTEIIHEpaM Ta CTeraHorpaMam, 110 CTAHOBUTb OCOOJIMBHUI iHTEpeC NpHU MPOBECHHI CTEroaHanizy.

Pe3yabraTn. OTpuMaHO 3a1€KHOCTI TOYHOCTI BUSIBJICHHS CTEraHOTpaM, a came KoediuieHta kopemnswii MeTbio3a, Bif CTyNeHs
3aIlOBHEHHS 300pa)KEHHS-KOHTEIHEPY CTETOJaHUMH IPH BUKOPHCTaHHI 3alPONOHOBAHOTO METOAY OOpOOKH 300pakeHb, a TaKOXK
(hopMyBaHHS CTEraHOTpaM 3TiTHO HOBITHIX cTeranorpagiuaux merogis HUGO, S-UNIWARD, MG ta MiPOD. BusnadeHno gocspkHi
MEKI TOYHOCTI BUSIBJICHHS CTETAaHOTpaM IPH 3aCTOCYBAHHI 3aIIPOIIOHOBAHOTO METOJY Y HaWOIIbII CKIIQJHOMY BHIIAJKY 0OMEXEHOC-
Ti anpiOPHHUX JaHUX MO0 BUKOPUCTAHOTO CTEraHOTPaiqvHOTO METOY.

BucHoBku. Pe3ynprati npoBeieHNX eKCHEPUMEHTAIBHUX JOCIIUKEHb HMiATBEPIMIN e()eKTUBHICTh 3alPOIIOHOBAHOTO IiIXOLY
HaBiTh y HaWOUIBII CKJIQ[HOMY BHIIAIKY IPOBEJCHHS CTEroaHatizy, a caMe 0OMEXEHOCTI anpiopHUX JAHUX IOJO0 BUKOPHCTAHOTO
CTeraHorpadiyHOro METoAy Ta HU3BKOIO CTYINEHS 3allOBHEHHS 300paXKeHHSA-KOHTEeHHepy crerozanumu (MeHue 10%). ITonanbummit
iHTepeC CTAHOBUTH MOPIBHUIbHUI aHasi3 eeKTHBHOCTI BUKOPUCTAHHS CIICL[iali30BaHUX METO/IB BU3HAYCHHS PO0Opa3iB BEKTOPIB
(cTaTHCTHYHHMX TapaMeTpiB) IOCHiIKYBaHHX 300pa)KCHb 3 METOIO MiJBUIICHHS TOYHOCTI BUSBICHHS CTEraHorpam, chopMoBaHHX
3TiIHO HOBITHIX CTeraHorpagigHuX METOIIB.

KJIIOYOBI CJIOBA: creroananis, mudposi 300pakeHHs, alalTHBHI cTeraHorpadidHi MeTOA!, METOIHM TIONIepeIHBO0I 00pOOKH
300pa)keHHs1, METOIAN 3MEHIICHHS PO3MIPHOCTI 6araTOBUMipHHUX BEKTOPIB.

YK 004.056
3®PEKTUBHOCTH METOJOB ITPEJABAPUTEJILHOW OBPABOTKHA CTETAHOI'PAM, OCHOBAHHBIX HA
ONPEJEJEHAA TIPOOBPA30B BEKTOPOB CTATHCTHUYECKUX MAPAMETPOB U30BPAKEHUI B
MPOCTPAHCTBE BBICHIE PASMEPHOCTH
IIporonos JI. A. — KaHJ. TeXH. HayK, TOLUEHT, JOIEHT Kaeapsl HHPOPMATMOHHOH Ge30macHocTH HannoHasHOTO TeXHIYECKO-
ro yHuBepcurera Ykpaunsl «Kuesckuil nonurexuuueckuit ”HCTUTYT uMeHd Urops Cuxopckoro», Kues, Ykpauna.

AHHOTAIUA

AKTyanbHOCTb. PaccMoTpeHa akTyanbHas mpobieMa 3alluThl KOH(GUASHINAIbHOW HHPOPMALMK TIPH Iepeaade JaHHBIX B JIO-
KaJIbHBIX M INI0OQJIBHBIX CHCTEMax CBs3M. MccnenoBaH ciayuail 0OHapyXKeHHS cTeraHorpamm, cOPMHPOBAHHBIX COIVIACHO HOBEH-
IIMM aJanTUBHBIM cTeraHorpaduueckum MetonaM. OOBEKTOM HCCIENOBAHUS SBIAIOTCS CIEIUAlbHbIE METOABI 0OPabOTKM CTaTH-
CTHYECKHX MapaMeTpoB CTETAHOTPAMM, HAIPABICHHBIC HA IOBBINIEHHE TOYHOCTH PabOTHI COBPEMEHHBIX CTETOAETEKTOPOB. Llensio
pabothl sBnsiercst aHauu3 3()(HEKTHBHOCTH MPUMEHEHHS CHENHAIBHBIX METOAOB IpEeABapUTENbHOI 00paboTku MU(POBEIX M300pa-
JKEHHUH I TIOBBIICHAS! TOYHOCTH OOHAPY)KEHHUS CTETaHOTpaMM, C(OPMHUPOBAHHBIX C HCIIOIL30BAaHUEM aIallTUBHBIX CTEraHoOrpadu-
YECKUX METOJIOB.

MeTtoa. PaccMoTpeHO HCIONIB30BaHNE METO/OB, HANPABICHHBIX HA YBEJIMUCHHE €BKIMIOBOTO PACCTOSIHUS MEXIY BEKTOpaMHU
(cTaTHCTHYECKUMU MapaMeTpaMu) H300pakeHNI-KOHTEHHEPOB U CTEraHOTIPaMM, ITyTeM OIpeIeNIeHHs IPO0OPa30B JaHHBIX BEKTOPOB
U3 IPOCTPAHCTB OoJiee BHICOKOM pa3MepHOCTH. [[jis penieHus JaHHOM 3a/1a4y IPeUI0KEHO HCII0b30BaTh 00paTHOE Mpeoopa3oBaHue
JlxoHcoHa-JIunaenmTpayca. IIpeioxkeHHbI METO MO3BOIAET CYIIECTBEHHO YMEHBIIHUTH BBIYUCIUTENBHYIO CI0KHOCTD MIPOLIELY-
PBI TIpe/IBAPUTENBHON 00paOOTKH HCCIeayeMbIX H300paXKeHuit Ipu obecreueHnn (UKCHPOBAHHOTO YPOBHS M3MEHEHUI B3aUMHOTO
TIOJIO’KEHUSI BEKTOPOB, COOTBETCTBYIOMNX H300paKCHUSIM-KOHTEIfHEpaM M CTeraHOrpaMMaM, 4TO TPEACTaBISIET OCOOBIH HHTEpec
TIPY TIPOBEICHUN CTETOAHAIN3A.

Pe3yabTatsl. [loxydeHsl 3aBUCHMOCTH TOYHOCTH OOHAPY>KEHNUS CTETaHOTPaMM, a UMEHHO Ko3((HIHeHTa Koppensinui MaThro-
ca, OT CTETIEHH 3aIl0JIHEHUs H300paKeHUS-KOHTEHHEpa CTEr0JaHbIMH IPH HCIIOJIB30BAaHUH NTPEATI0KECHHOTO MeTo1a 00paboTku u30-
OpaxeHui, a Takke (GOPMHUPOBaHKs CTETAHOTPAMM COTJIACHO HOBeWImM creraHorpadudeckum meronam HUGO, S-UNIWARD,
MG u MiPOD. OnpeneneHsl JOCTHKUMBIE TPaHHUIBI TOYHOCTH OOHAPYKEHUsI CTEraHOTpaMM NP IPHMEHEHHH IpeularaeMoro Me-
TOZa B HauboJee CIOKHOM CIIy4ae OrpPaHMYEHHOCTH AIPHOPHBIX JAHHBIX OTHOCHTEIBHO MCIIOJIB30BAaHHOIO CTEraHOrpadHyecKoro
METOIa.

BobiBoabI. Pe3ynpTaTsl IPOBEICHHBIX 3KCIEPUMEHTATBHBIX HCCIEI0BAHHUI MOATBEPANIN (D (HEKTUBHOCTD MIPETAraeMoro moj-
X0/1a Jaxxe B HanOoJee CIOKHOM CITydae NMPOBEICHHS CTETOaHANN3a, @ IMEHHO OTPaHUYCHHOCTH alpPHOPHBIX JAHHBIX OTHOCHTENb-
HOTO HCIIOJB30BAHHOTO CTETaHOrPa)UuecKoro MeTojJa M HU3KOW CTENEHU 3allOJHEHMs N300paKeHUs-KOHTEHHepa CTeroJaHHbBIMU
(menee 10%). JlampHeHmuii UHTEpeC MPEACTABISICT CPAaBHUTEIBHBIN aHanmn3 3(QQEeKTHBHOCTH MPUMEHEHHS CIEeNUaTH3UPOBAHHBIX
METOJIOB OIpEeAENICHUs IIPO0OPa30B BEKTOPOB (CTATUCTHYECKUX MApaMETPOB) M3ydaeMbIX M300paKeHUH C IEIbI0 MOBBIIICHHS TOY-
HOCTH OOHapy>KEHUsI CTEraHoOTrpaMM, C(OPMUPOBAHHBIX COTJIACHO HOBEHIINM CTEraHOrpaGuiecKUM MeToaM.

KJUIIOUEBBIE CJIOBA: creroananus, uudpoBbie H300paxeHusl, aJalTUBHbIEC CTeraHOrpadHyecKiue METO/Ibl, METO/IbI IIPEe/iBa-
pUTENBHON 00pabOTKU N300paXKEHHsI, METO/Ibl YMEHBIIEHHUS PAa3MEPHOCTH MHOTOMEPHBIX BEKTOPOB.
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