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ABSTRACT

Context. We investigate the Kolmogorov-Wiener filter weight function for the prediction of continuous stationary telecommuni-
cation traffic in the GFSD (Gaussian fractional sum-difference) model.

Objective. The aim of the work is to obtain an approximate solution for the corresponding weight function and to illustrate the
convergence of the truncated polynomial expansion method used in this paper.

Method. The truncated polynomial expansion method is used for the obtaining of an approximate solution for the Kolmogorov-
Wiener weight function under consideration. In this paper we used the corresponding method on the basis of the Chebyshev polyno-
mials of the first kind orthogonal on the time interval on which the filter input data are given. It is expected that the results based on
other polynomial sets will be similar to the results obtained in this paper.

Results. The weight function is investigated in the approximations up to the eighteen-polynomial one. It is shown that approxi-
mations of rather large numbers of polynomials lead to a good coincidence of the left-hand side and the right-hand side of the Wie-
ner-Hopf integral equation. The quality of the coincidence is illustrated by the calculation of the corresponding MAPE errors.

Conclusions. The paper is devoted to the theoretical construction of the Kolmogorov-Wiener filter for the prediction of continu-
ous stationary telecommunication traffic in the GFSD model. The traffic correlation function in the framework of the GFSD model is
a positively defined one, which guarantees the convergence of the truncated polynomial expansion method. The corresponding
weight function is obtained in the approximations up to the eighteen-polynomial one. The convergence of the method is illustrated by
the calculation of the MAPE errors of misalignment of the left-hand side and the right-hand side of the Wiener-Hopf integral equa-
tion under consideration. The results of the paper may be applied to practical traffic prediction in telecommunication systems with

data packet transfer.

KEYWORDS: Kolmogorov-Wiener filter weight function, continuous telecommunication traffic, truncated polynomial expan-

sion method, GFSD model, Chebyshev polynomials of the first kind.

ABBREVIATIONS

GFSD is the Gaussian fractional sum-difference;

ARMA is an autoregressive moving average;

ARIMA is an autoregressive integrated moving aver-
age;

FARIMA is a fractional autoregressive integrated
moving average;

MAPE is a mean absolute percentage error.

NOMENCLATURE

T 1is a time interval on which the input process data
are observed;

z is a time interval for which the forecast should be
made;

h(t) is the Kolmogorov-Wiener filter weight function;

H is the Hurst exponent;

R(t) is a traffic correlation function in the GFSD

model;
I'(x) is the gamma function;
0 € (0,1) is a constant which depends on the packet

arrival rate;
d is a fractional differencing parameter of the model,;
a,b are auxiliary constants;
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n is a number of polynomials in the corresponding
approximations;
g, are the coefficients multiplying the polynomials;

S, (t) are the Chebyshev polynomials of the first kind
orthogonal on t €[0,T];

T,(x) are the Chebyshev polynomials of the first kind
orthogonal on x e[-1,1];

Left(t) is the left-hand side of the Wiener-Hopf inte-
gral equation;

Right(t) is the right-hand side of the Wiener-Hopf in-
tegral equation;

G,, are the integral brackets;

B, are free terms in the linear set of algebraic equa-
tions in g;

N is a number of points in the numerical integration.

INTRODUCTION
The problem of telecommunication traffic prediction
is an urgent problem for telecommunications. For exam-
ple, it is important for the optimization of network re-
sources, for the detection of cyber-attacks and for network
planning, see [1-3].
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There are many approaches to telecommunication traf-
fic prediction, which are used in different situations. In
fact, the traffic may be treated as a time series. For exam-
ple, the so-called gray model approach [4] may be used
for the monotone, nonnegative and smooth time-series
prediction, the ARMA model may predict stationary and
some special non-stationary time series [1]. More sophis-
ticated approaches, for example, such as ARIMA,
FARIMA approaches and neural networks, may be used
in more complex cases [2, 3].

However, another approach that may be applicable to
the prediction of stationary and rather smooth telecom-
munication traffic is the approach based on the Kolmo-
gorov-Wiener filter. The investigation of such an ap-
proach and its applicability may be of interest because of
its simplicity in comparison with many approaches known
in the literature. As far as we know, the investigation of
the Kolmogorov-Wiener filter approach is not enough
developed in the literature.

There are many mathematical models that may de-
scribe telecommunication traffic, see [5]. Our recent pa-
pers [6—8] were devoted to the theoretical construction of
the Kolmogorov-Wiener filter for telecommunication
traffic in the power-law structure function model and the
fractional Gaussian noise model. In this paper we investi-
gate the corresponding filter for the traffic prediction in
the GFSD (Gaussian fractional sum-difference) model
proposed in [9].

The object of study is the Kolmogorov-Wiener filter
for the prediction of continuous stationary telecommuni-
cation traffic in the GFSD model.

The subject of study is the weight function of the
corresponding filter.
The aim of the work is to obtain the weight function

on the basis of the truncated polynomial expansion meth-
od.

1 PROBLEM STATEMENT
As is known [10], the Kolmogorov-Wiener weight
function for the prediction of continuous time series obeys
the Wiener-Hopf integral equation

]dth(t)R(t—r):R(t+Z). (1)

The problem statement is as follows: to obtain the un-
known filter weight function as an approximate solution
of the Wiener-Hopf integral equation (1) on the basis of
the truncated polynomial expansion method.

2 REVIEW OF THE LITERATURE
The GFSD (Gaussian fractional sum-difference) mod-
el for mathematical traffic description was proposed in
paper [9]. In [9] it is stressed that the corresponding mod-
el gives a good mathematical description of live packet
traces for traffic in both directions of 3 Internet links:
Auckland, Leipzig, and Bell.
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Our previous papers [6—8] were devoted to the theo-
retical construction of the Kolmogorov-Wiener filter for
telecommunication traffic in the power-law structure
function model and the fractional Gaussian noise model,
but we don’t know any papers devoted to the Kolmo-
gorov-Wiener filter investigation for telecommunication
traffic in the GFSD model. This fact justifies the scientific
novelty of this paper.

In this paper we solve the integral equation (1) on the
basis of the truncated polynomial expansion method. This
method is a special case of the Galerkin method [11] and
in this paper this method is based on the Chebyshev poly-
nomials of the first kind orthogonal on the time interval
t €[0,T]. Of course, another polynomial system may also

be chosen. But, for example, in [8] three different poly-
nomial systems (Chebyshev polynomials of the second
kind, Chebyshev polynomials of the first kind, and poly-
nomials orthogonal without weight) were investigated for
two different traffic models, and it was shown that the
results for all three polynomial systems are, in fact, simi-
lar. Therefore, we expect that the results for other poly-
nomial systems will also be similar in the framework of
the GFSD model.

3 MATERIALS AND METHODS
The traffic correlation function for the discrete GFSD
model is as follows [9]:

70002

(1-d) r(t+d) (51
r(d) r(t-d+1°

2
X

2

the value d =0.31is chosen [9]. First of all, we should
propose an expression for R(t) for te(0,1). For t>1 it

is natural enough to require the correlation functions in
the discrete and continuous cases to be the same. How-
ever, expression (2) is obviously not applicable for R(t)

for t €[0,1] because it is not convergent at t=1-d and
the inequality |R(t)| < R(0) fails. In [9] the corresponding
model is written for the traffic with a variance equal to 1,

so we propose to define the correlation function for
te[0,1] as

R(t)=at’+1 3)

where the constants a and b are calculated on the basis
of the joining conditions

dr

o =Rlio
t=1-0 =140 Gy

_dR

R| =
t=1-0

4)

t=1+0
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In such a case the inequality |R(t)| <R(0) holds, the

process variance R(0) =1, the function R(t) and its de-
rivative are continuous on the time axis. It should also be
stressed that if T > 1, then the leading order in the inte-
grals calculated in the paper is given by the interval
t €[1,T] rather than the interval t €[0,1], so the choice of
R(t) for t €[0,1] may not have any significant effect on
the paper results. For example, for the value 6 =0.8 the
following  values  are  obtained: a=-0.845,
b =-0.206 (rounded off to 3 significant digits). It is also
known that the correlation function of a stationary random
process is even one. Therefore, finally, we propose the
following form of the correlation function R(t) in the

continuous case:

alt] +1LJt[<1
gy 2=d)t -(1-d)”
R(t)=4(1-6) eisay (5)
r(1-d) r({t+d) s
r(d) r(|t|—d+1)’||_

the constants a and b are given by expressions (4).

In what follows, we solve the integral equation (1)
with the correlation function (5) as follows. The unknown
weight function is sought in the form of the truncated
polynomial expansion:

n-1

h(t)=29.5, (7). (6)

s=0

where
5,91, 3-1). )

see [8] and the definition of T, (X) in [12]. After substi-
tuting (6) into (1), multiplying by S, (t) , and integrating
over t, one can obtain the following expression for the
coefficients g, in the n-polynomial approximation:

-1
9 Goo Gm T GO,n—l Bo

91 _ G:m G:n Gl,:n—l | i (8)
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Gy =H‘drdt8k (1)S, ()R(t-1),
00 ] 9)
B, = [dts, ()R(t+2).

On the basis of the fact that R(t) is an even function
and on the basis of the properties of the Chebyshev poly-
nomials, one can derive the following properties of the
integral brackets G :

G.=G

G, =0 if k and s are of different parities,

sk >

(10)

see a similar derivation for another polynomial system in
[6]. The properties (10) significantly reduce the computa-
tion time.

Let us discuss the calculation of the integral brackets
(9) in detail. In this paper they are calculated in the Wolf-
ram Mathematica package as follows. Unfortunately, the
package fails to calculate the integral brackets on the ba-
sis of the explicit expression (9) with account for (5), so
expression (9) is rewritten on the basis of the following
change of the variables:

Gks =

Sy S——

]‘drdtSk (t)S, (1)R(t—71) =

{x=t-1,y=t+1}=
_1—e]1dxz(1—d)x2—(1—d)2 rg-d)
25 x-(1-dy  T(d)

_ X+2T _
. I(-x+d) jdysk(x yjss(x+yj+

[(—x-d+1) ° 2 2
+1—9]0')(2(1—(1)%—( ~d)’ r(-d)
297 X-(1-dy  T(d)

2T —x
LD e (ﬂjs [u}
C(x-d+1) 3 2 2
1% b
+E:[ldx(a~(—x) +l)><
2T +x X—y X+y
dyS, | —= S.| —
<] yk( 2 j[ 2 }
ex(ax) a2 (22
2 2 2L 2 )

0

X

(I

the integral brackets are calculated in the Wolfram Math-
ematica package on the basis of the explicit expressions

(11).

4 EXPERIMENTS
We investigate the results for the following numerical
values of the parameters:

T=100, z=3, d=0.31, 6=0.8. (12)
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The integral brackets G,, are calculated on the basis
of (11), the free terms B, are calculated on the basis of

(9), for each polynomial approximation the coefficients
multiplying the polynomials are calculated on the basis of
(8), the result for the corresponding weight function is
given by (6). In order to justify the proposed algorithm,
we compare the left-hand side and the right-hand side of
the Wiener-Hopf integral equation (1) by calculation of
the MAPE errors:

Left(t) = ]dth(T)R(t—T)a
Right(t) =R(t+2), (13)

MAPE =

1 ]~|Left(t) ~Right(t
0

1009
T | Right(t) |dt 100% .

In this paper the MAPE error is roughly estimated as

Left (J’Ij —Right (ﬂj‘
-100% ,

. jiT
Right| —
= (Nj ‘

N=10".

1 N-1
MAPE =—>"
N j:0

(14)

It should be stressed that Left(t) is calculated on the

basis of the Wolfram Mathematica package using the fol-
lowing explicit expressions:

(15)

where

o o)
r(1-d) I(-x+d)
r(d) T(x—d+1)

+i h(t- x)(a(—x)b +1)dx+

x(l—e)

(16)
+Z|;h(t—x)(axb +1)dx+
t 2(1-d)x* ~(1-d)’
+!dxh(t—x) e (d) x
r(1-d) T'(x+d)
r(d) r(x-d+1)’

><(1—9)

© Gorev V. N., Gusev A. Yu., Korniienko V. 1., 2022
DOI 10.15588/1607-3274-2022-3-3

34

L, (t)= jt h(t- x)(a(—x)b +l)dx+

+Jh(t—x)(axb +1)dx+

0

¢ 2(1-d)x* - (1-d)’ 1n
+'1[dxh(t—x) xz—(l—d)z x
r(i-d) r(x+d)
=)@ Txdrn)”
T ahitox 2(1—d)x2—(l—d)2X
L(1)= [ axh(t-x) (0
(1 I(1-d) I(-x+d) .
(=0T @) Tox—d+n s

+ih(t—x)(a(—x)b +1)dx+
+jh(t—x)(axb +1)dx .

0

The calculation of all the integrals in this paper is
made on the basis of the NIntegrate function built in the
Wolfram Mathematica package.

5 RESULTS
The obtained results for the MAPE are given in
Table 1.

Table 1 — MAPE for the approximations of N polynomials
rounded off to two decimal places

n MAPE, %
1 26.59
2 17.95
3 11.44
4 8.43
5 5.92
6 4.65
7 3.51
8 2.93
9 235
10 2.11
11 1.79
12 1.67
13 1.47
14 1.41
15 1.27
16 1.24
17 1.14
18 1.14

In order to illustrate the coincidence of the left-hand
side and the right-hand side, we build the corresponding
graphs for the 18-polynomial approximation, see Fig. 1.
Therefore, it may be concluded that the truncated poly-
nomial expansion method is convergent for the problem
under consideration, and approximations of rather large
numbers of polynomials are rather accurate.



e-ISSN 1607-3274 PagioenexTpoHika, iHpopmaTuka, ynpasiinss. 2022. Ne 3
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 3

5
=)
1

=]
=}
@

-==-=Left(?)
——Right(1)

£
=
T

0041

The left-hand and the right-hand
sides of the integral equation (1)
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Figure 1 — Comparison of the left-hand and right-hand sides
of eq. (1) for the parameters of (12) for the eighteen-
polynomial approximation

6 DISCUSSION

The Kolmogorov-Wiener filter weight function for the
prediction of continuous stationary telecommunication
traffic in the GFSD (Gaussian fractional sum-difference)
model is investigated. The truncated polynomial expan-
sion method based on the Chebyshev polynomials of the
first kind is used in a search for an approximate solution
of the Wiener-Hopf integral equation. The method is real-
ized on the basis of the Chebyshev polynomials of the
first kind orthogonal on the required time interval. The
traffic correlation function in the GFSD (Gaussian frac-
tional sum-difference) model is a non-negative one, which
justifies the convergence of the proposed method. Ap-
proximations up to the eighteen-polynomial one are in-
vestigated, and the method convergence is illustrated by
the calculation of the corresponding MAPE errors of mis-
alignment of the left-hand side and the right-hand side of
the Wiener-Hopf integral equation under consideration. It
is shown that approximations of a large number of poly-
nomials are rather accurate.

In [8], the truncated polynomial expansion method is
investigated for three polynomial systems (Chebyshev
polynomials of the second kind, Chebyshev polynomials
of the first kind, and polynomials orthogonal without
weight) for two different traffic models (powel-law struc-
ture function model and fractional Gaussian noise model),
and it is shown that the results for all the three polynomial
sets are, in fact, the same. It should also be stressed that
the structures of the correlation function for t>>1 are
similar in the fractional Gaussian noise model and in the
GFSD model (see [9]). Therefore, it is expected that the
results of the truncated polynomial expansion method will
be almost the same for different polynomial systems for
the traffic in the GFSD model.

CONCLUSIONS

The Kolmogorov-Wiener filter weight function for the
prediction of continuous stationary telecommunication
traffic in the GFSD (Gaussian fractional sum-difference)
model is calculated on the basis of the truncated polyno-
mial expansion method. Aproximations up to the 18-
polynomial one are investigated. It is shown that ap-
proximations of rather large numbers of polynomials lead
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to a good coincidence between the left-hand side and the
right-hand side of the Wiener-Hopf integral equation.

The results of this paper may be useful for the practi-
cal prediction of telecommunication traffic in systems
with data packet transfer.

The scientific novelty of the paper is the fact that for
the first time the Kolmogorov-Wiener filter weight func-
tion is calculated for the telecommunication traffic predic-
tion in the GFSD (Gaussian fractional sum-difference)
model.

The practical significance is that the obtained results
may be applied to the practical prediction of telecommu-
nication traffic in systems with data packet transfer.

Prospects for further research are to obtain a practi-
cal prediction on the basis of the obtained results and to
investigate the solutions for the weight function on the
basis of a non-polynomial orthogonal function system.
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AHOTALIA

AxTyanbHicTs. Jlocnimpkeno BaroBy ¢yHkuito ¢instpa Konmmoroposa-Binepa aist mporHo3yBaHHS HEIIEPEPBHOIO CTAlliOHAPHO-
ro TenekomyHikamiHoro Tpadiky y GFSD (Gaussian fractional sum-difference) moneni.

MeTta po6oTu. MeToro poboTH € OTpUMATH HaOIMKEHHI PO3B’SI30K IS BiIOBiIHOT BaroBoi (yHKIIi Ta mpoigrocTpyBaTn 301k-
HICTh METOJy 00ipBaHHX PO3BHHEHb 32 IOJIIHOMaMH, III0 BUKOPUCTAHO B il CTATTi.

Metoa. Mertox 00ipBaHMX PO3BHHEHD 3a ITOJIHOMAaMH BUKOPHCTAHO IS OTPHMAHHS HAOIMKEHOTO PO3B’SI3KY UL TOCIIKyBa-
Hoi BaroBoi ¢yHkii GpineTpy Kommoroposa-Binepa. B 11iif ctaTTi HaMu BUKOPUCTAHO BiAMOBIIHUI METO/ Ha OCHOBI MOiHOMIB Ye-
OWILIOBA MEPIIOr0 POAY SKi € OPTOTOHAIBHMMH Ha YacOBOMY BiJPi3Ky Ha SKOMY 3ajaHi BXifHi aaHi ¢inbTpa. OdiKyeThbes, IO pe-
3yJIbTaTH, 5Ki 0a3yBaTHUMyThCS Ha IHIIMX IOJIIHOMialbHUX CHCTEeMax OyAyTh aHAIOTIYHHMH O Pe3yJbTaTiB, OTPHMAHHUX B IaHii
CTaTTi.

PesyabTaTn. BaroBy QyHKIif0 TOCTITKEHO Y HAOMMKECHHAX A0 BiCIMHAALATH MOJIHOMIB BKIIOYHO. [TokazaHo, 110 HaOIIKeHHS
JIOCUTP BEJIHKOI KUTBKOCTI TOJIHOMIB MPU3BOISATH IO XOPOIIOTO CITIBIIAAIHHS JIiBOT Ta IMPaBOi YaCTHH iHTErpajbHOTO PiBHIHHS BiHe-
pa-Xomnda. SkicTh criBIamiHHA IPOLTIOCTPOBAaHA OOYHCICHHSM BIAMOBITHUX CEpeIHIX aOCOTIOTHAX IIOMIJIOK HEB SI3KH.

BucnoBku. CTaTTio NPHUCBSMEHO TeOpeTHIHIN 100y 10Bi (inbTpa Konmoroposa-Binepa 11t mporHo3yBaHHs HENEPEpPBHOTO CTa-
IioHapHOTO TejekoMyHikauniitnoro tpadiky y GFSD moneni. Kopensuiiina ¢ynkuis tpadiky B pamkxax GFSD moneni € mo3utiuBHO
BU3HAYEHOIO, III0 apaHTye 30DKHICTh MeTOAy 00ipBaHMX PO3BMHEHB 3a MoJiHOMaMmu. BinnosinHa BaroBa (yHKIis OTpUMaHa y Ha-
OMMKEHHSIX 10 BICIMHIIISATH MOJIHOMIB BKJIIOYHO. 301KHICTh METO/Ly MPOLTIOCTPOBAHA OOUYHCIICHHSIM Cepe/iHiX aOCOMOTHIX TOMH-
JIOK HEeB’s13KH JIiBOT Ta MpaBol YaCTHH iHTErpanbHOro piBHsHH Binepa-Xomnda, 1o posrisaaerbes. Pe3ynbrati poboTH MOXYTh OyTH
3aCTOCOBHI JI0 MPAaKTUYHOTO MPOTHO3YBaHHA TpadiKy B TEICKOMYHIKaiHHIX Mepexax 3 MaKEeTHOO MepeIavecio TaHuX.

KJIFOYOBI CJIOBA: Barosa ¢yHskuis ¢inerpa Konmoroposa-Binepa, HerepepBHUil TenekoMyHiKamiiHui Tpadik, MeTon 00i-
pBaHHX po3BHUHEHB 32 mosiHomMamu, GFSD moens, moniHomu YeOHIioBa mepiioro poy.
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AHHOTALUST

AxTyanbHoOCcTb. MccnenoBana BecoBast ¢ynkims ¢unbrpa Konmoroposa-Bunepa iisi IporHo3upoBaHHsl HENPEPHIBHOTO CTa-
LMOHAPHOTO TEIeKOMMYHHKaOHHOTo Tpadduka B GFSD (Gaussian fractional sum-difference) monenu.

Heas padotel. Liensio paboTHI ABISETCS MOMYyYUTh MPHOIMKEHHOE PEIIEHUE IS COOTBETCTBYIOMIECH BeCOBOH (PYHKIIMU U MPO-
WILTIOCTPUPOBATH CXOJUMOCTh METO/1a 00OPBAHHBIX PA3JIOKEHUH II0 MOJIMHOMAaM, KOTOPBIH HCIIONb30BaH B JAHHOM CTaThe.

MeTtoa. Meton 000pBaHHBEIX PA3IOKEHUH 110 MOIMHOMAM HCIIONB30BaH IS MONYYCHUs MPUOIVKCHHOTO PEIISHUs ISl Ucciie-
nyemoit BecoBoi ¢yHkuu puiabTpa Konmmoroposa-Bunepa. B 310 cTaThe HaMH UCTIOJIB30BaH COOTBETCTBYIOIIUI METO/ HA OCHOBE
noirHOMoB YeObImeBa NepBoro posia, KOTOPHIE SIBISIIOTCS OPTOrOHAJIBHBIMHU Ha BPEMEHHOM OTpEe3Ke, Ha KOTOPOM 33/IaHbl BXOIHBIE
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nanHble GuisTpa. OKUIaeTcs, 4To pe3ybTaThl, KOTOpble OyayT 0a3MpoBaThCS HA JPYTHX ITOJMHOMHAIBHBIX CHCTEMax, OymyT aHa-
JIOTHYHBI pe3yJIbTaTaM, HOJyYeHHbBIM B JAHHOH CTaTbe.

Pe3yabTaTsl. BecoBas ¢pyHKuus uccienoBaHa B IPHOIIKEHUSX 10 BOCEMHAJILATH MIOJIMHOMOB BKIIOYUTENEHO. [TokasaHo, 4To
MPUOIMKEHNS TOCTATOUHO OOJBIIOr0 YKCIa MOJMHOMOB IIPUBOIAT K XOPOIIEMY COBITAJICHUIO JIEBOU U MPaBOH yacTel HMHTErpaIbHO-
ro ypaBHeHus: Bunepa-Xonga. KauectBo coBnaaeHus: mpoMUIIOCTPUPOBAHO BBIYMCICHUEM COOTBETCTBYIOIINX CPEIHHUX abCOIIOT-
HBIX OMINOOK HEBSA3KH.

BriBoasbl. CTaThs MOCBAIIEHA TEOPETHUECKOMY MOCTpoeHuIo punbTpa Komvoroposa-Burepa it IpOrHo3upoBaHHs HEMPEPHIB-
HOTO CTAaI[IOHAPHOT'0 TeJIeKOMMYHHKamoHHoro Tpadduka B GFSD monenn. Koppensunonnas ¢ynkius tpadpuka B pamxax GFSD
MOJIEJIH TIOJIOKUTEINIFHO OIPE/IeNIeHa, YTO FapaHTUPYeT CXOAMMOCTh METo/a 0OOPBaHHBIX pa3ioKeHMH 1o noiauHoMaM. COOTBETCT-
ByIOIIasi BecoBasi PyHKIMS MONTyYeHa B MPUOIIIKEHHUIX JO BOCEMHALATH ITOJIMHOMOB BKIIOUHTEIbHO. CXOIMMOCTE METOAa IPOWII-
JIIOCTPUPOBAHA BBIYMCIICHHEM CPEIHUX aOCONIOTHBIX OIIMOOK HEBSI3KH JIEBOM M IPABOH YacTeil HCCIIeayeMOoro HHTErpajJbHOTO ypaB-
HeHust Bunepa-Xomnda. PesynpraTel paboThl MOTYT ObITh IPUMEHHUMBI K HPAKTHYECKOMY MPOTHO3HMPOBAHUIO TpadhuKa B TEIEKOM-
MYHHKAI[MOHHBIX CETAX C MAKETHOH Mepefaueil JaHHBIX.

KJIFOUEBBIE CJIOBA: BecoBas ¢ynkums ¢uinprpa KonmoropoBa-Bunepa, HenpephIBHBIN TeIeKOMMYHHKAIMOHHBIN Tpad-
¢$uxk, MeTox 000pBaHHBIX pa3noxeHuit mo nomrHoMam, GFSD moznens, nonnHOoMB! YeObIieBa mepBoro poza.

JITEPATYPA / IUTEPATYPA 7. Gorev V. N. Approximate solutions for the Kolmogorov—
1. Liu J. X. Telecommunication Traffic Prediction Based on Wiener filter weight function for continuous fractional
Improved LSSVM / J. X. Liu, Z. H. Jia // International Jour- Gaussian noise / V. N. Gorev, A. Yu. Gusev,
nal of Pattern Recognition and Artificial Intelligence. — V. I. Korniienko // Radio Electronics, Computer Science,
2018. — Vol. 32, Ne 3. — 1850007 (16 pages). DOI: Control. — 2021. — Ne 1. — P. 29-35. DOI: 10.15588/1607-
10.1142/S0218001418500076 3274-2021-1-3
2. Efficient Prediction of Network Traffic for Real-Time Ap- 8. Gorev V. N. Kolmogorov—Wiener Filter Weight Function
plications / [M. F. Igbal, M. Zahid, D. Habib et al.] / Jour- for Stationary Traffic Forecasting: Polynomial and Trigo-
nal of Computer Networks and Communications. — 2019. — nometric Solutions / V. Gorev, A. Gusev, V. Korniienko,
Vol. 2019. - 4067135 (11 pages). DOI: M. Aleksieiev // Current Trends in Communication and In-
10.1155/2019/4067135. formation Technologies / P. Vorobiyenko, M. Ilchenko,
3. Katris C. Comparing forecasting approaches for Internet I. Strelkovska. — Cham: Springer, 2021. — Chapter 7. —
traffic / C. Katris, S. Daskalaki // Expert Systems with Ap- P. 111-129. DOI: 10.1007/978-3-030-76343-5 7
plications. — 2015. — Vol. 42, Issue 21. — P. 8172-8183. 9. Anderson D. Multifractal and Gaussian fractional sum—
DOI: 10.1016/j.eswa.2015.06.029. difference models for Internet traffic / D. Anderson,
4. Bilgil H. New grey forecasting model with its application W. S. Cleveland, B. Xi // Performance Evaluation. — 2017. —
and computer code / H. Bilgil / AIMS Mathematics. — Vol. 107. —P. 1-33. DOI: 10.1016/j.peva.2016.11.001
2021.— Vol. 6, Issue 2. — P. 1497-1514. DOI: 10. Miller S. Probability and Random Processes With Applica-
10.3934/math.2021091 tions to Signal Processing and Communications. Second edi-
5. Analysis of Self-Similar Traffic Models in Computer Net- tion / S. Miller, D. Childers. — Amsterdam: Academic Press,
works / [J. S. Al-Azzeh, M. Al Hadidi, R. Odarchenko et al.] 2012. - 598 p. DOI: 10.1016/B978-0-12-386981-4.50001-1
/I International Review on Modelling and Simulations. —  11. Polyanin A. D. Handbook of integral equations. Second
2017. — Vol. 10, N 5. — P. 328-336. DOI: edition / A. D. Polyanin, A. V. Manzhirov. — New York:
10.15866/iremos.v10i5.12009 Chapman and Hall, 2008. - 1144 p. DOL
6. Gorev V. N. Polynomial solutions for the Kolmogorov— 10.1201/9781420010558
Wiener filter weight function for fractal processes /  12. Table of Integrals, Series, and Products. Eights edition /
V. N. Gorev, A. Yu. Gusev, V. I. Korniienko // Radio Elec- [I. S. Gradshteyn, I. M. Ryzhik, Yu. V. Geronimus et al.] —
tronics, Computer Science, Control. —2019. — Ne 2. — P. 44— Amsterdam: Academic Press, 2014. — 1184 p. DOLI:
52. DOI: 10.15588/1607-3274-2019-2-5 10.1016/C2010-0-64839-5

© Gorev V. N., Gusev A. Yu., Korniienko V. 1., 2022
DOI 10.15588/1607-3274-2022-3-3

37





