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ABSTRACT

Context. Among the variety of tasks solved by robotics, one can single out a number of those for the solution of which small
dimensions of work are desirable and sometimes necessary. To solve such problems, micro-robots with small dimensions are needed,
the mass of which allows them to move freely in tight passages, in difficult weather conditions, and remain unnoticed. At the same
time, the small dimensions of the microrobot also impose some indirect restrictions; therefore, it is better to use groups of
microrobots for the solution of these problems. The efficiency of using groups of microrobots depends on the chosen control strategy
and stochastic search algorithms for optimizing the control of a group (swarm) of microrobots.

Objective. The purpose of this work is to consider a group of swarm algorithms (methods) belonging to the class of
metaheuristics. The group of these algorithms includes, in particular, the ant colony algorithm, the possibilities of which were
investigated to solve the traveling salesman problem, which often arises when developing an algorithm for the behavior of a group of
microrobots.

Method. At the first stage of the study, the main groups of parameters were identified that determine the flow and characterize
the state at any time of the ant colony algorithm: input, control, disturbance parameters, output parameters. After identifying the main
groups of parameters, an algorithm was developed, the advantage of which lies in scalability, as well as guaranteed convergence,
which makes it possible to obtain an optimal solution regardless of the dimension of the graph. At the second stage, an algorithm was
developed, the code of which was implemented in the Matlab language. Computer experiments were carried out to determine the
influence of input, control, output, and disturbance parameters on the convergence of the algorithm. Attention was paid to the main
groups of indicators that determine the direction of the method and characterize the state of the swarm of microrobots at a given time.
In the computational experiment, the number of ants placed in the nodes of the network, the amount of pheromone, the number of
graph nodes were varied, the number of iterations to find the shortest path, and the execution time of the method were determined.
The final test of modeling and performance of the method was carried out.

Results. Research has been carried out on the application of the ant algorithm for solving the traveling salesman problem for test
graphs with a random arrangement of vertices; for a constant number of vertices and a change in the number of ants, for a constant
number of vertices at different values of the coefficient Q; to solve the traveling salesman problem for a constant number of vertices
at different values of the pheromone evaporation coefficient p; for a different number of graph vertices. The results showed that ant
methods find good traveling salesman routes much faster than clear-cut combinatorial optimization methods. The dependence of the
search time and the found optimal route on the values of control parameters are established using the example of test networks for a
different number of graph vertices and iterations.

Conclusions. The studies were carried out to make it possible to give recommendations on the application of the ant colony
algorithm to control a group (swarm) of microrobots.

KEYWORDS: swarm robotics, ant colony optimization algorithm, salesman problem.

ABREVIATIONS INTRODUCTION
ACO is a ant colony optimization algorithm. One of the current problems is the natural increase in
the complexity of management systems, which, in turn, is
NOMENCLATURE determined not only by increasing production
I; is a input parameters; productivity, speed of processing operational information,

but also the commissioning of increasingly complex
distributed technical and technological systems (transport,
information, energy, etc.). Effective operation of the latter

Hy is a perturbation parameters;

O, is a output parameters;

C; is a control parameters; depends on purposeful activities related to obtaining the
a is a control parameter; best results under appropriate conditions. Ultimately, such
B is a control parameter; activities are reduced to solving the problems of
Q is a control parameter; continuous global optimization.

p is a control parameter; Usually, scientific publications on robotics address
m is a number of ants; issues related to the use of a single robot. Such a robot is
N is a number of vertices; equipped with a powerful onboard computer, a large
t is a time. supply of onboard energy, and, as a rule, a significant set
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of working bodies. This configuration leads to an increase
in the size and weight of the robot, which in turn
significantly limits the possible scope of its application.
At the same time, among the variety of tasks that are
solved by robotics, we can identify a number of those for
which small dimensions of the work are desirable and
sometimes necessary. These include the task of
reconnaissance of territories and waters in the face of
organized enemy resistance, the task of finding victims in
debris after natural or man-made disasters, the task of
finding and disposing of explosive devices in anti-terrorist
operations in dense urban areas, the study of surfaces of
other planets and others.

To solve such problems requires micro-robots with
small dimensions, the mass of which allows you to move
freely in narrow passages, difficult weather conditions, to
remain unnoticed. Such works are characterized by lower
costs for transportation of the technical complexity of
equipment to the place of work. However, the small size
of microrobots imposes some restrictions: 1) complicated
movement in unprepared space, because relatively small
protrusions and depressions on the surface can impede the
movement of microrobots; 2) it becomes more difficult to
perform tasks on the movement of large bodies (for
example, victims in the earthquake zone, or rock samples)
by a single microrobot.

The small size of the microrobot also imposes some
indirect restrictions: 1) a small stock of onboard energy;
2) small size and power consumption of means of
communication lead to limitation of the maximum radius
of radio communication; 3) significantly a limited number
of available working tools.

These restrictions apply to a single microrobot.
Therefore, the obvious solution to these problems may be
the use of a group of microrobots that can combine efforts
to solve complex problems. Microrobots can help each
other to overcome obstacles [13], to transport large bodies
together [21]. Information exchange in a group of robots
allows expanding the information available to each work
about the environment. In this case, some tasks can be
distributed between microrobots and run in parallel. For
example, while some group work collects environmental
data, others collect soil samples.

The need to use a large number of different work tools
requires the use of a heterogenecous group, ic a group
consisting of robots of different designs (for example, the
Swarmanoid project [6]). At first glance, it seems that the
advantages of using a group of microrobots compared to
using a single robot, which is equipped with a sufficient
number of functional elements, are not obvious. But do
not forget that when used in groups, microrobots retain all
the above advantages of small robots: primarily the ability
to move in confined spaces, lightweight, and size. Group
use of microrobots reduces the risk of task failure because
damage to one or more group microrobots in the general
case (especially in swarm and collective management
strategies, discussed later in the article) does not disrupt
the task, although it reduces the effectiveness of the
group. At the same time, damage to individual units of a
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single robot can lead to disruption of work, and attempts
to duplicate the most important functional units of the
robot lead to increased weight, size, cost of work, but
does not increase efficiency (even reduces due to large
size and weight).

The effectiveness of the use of groups of microrobots
depends on the chosen control strategy. Scholars usually
distinguish between centralized and decentralized
management strategies [3]. In centralized management
strategies, there is some central control device, which has
access to information about the state of all robots in the
group and the environment. The control device assesses
the current situation and decides on the actions of the
group’s robots [24]. The central control device can be
located outside the group (for example, on the operator’s
control panel), or onboard one of the robots of the group.
In the latter case, talk about centralized control with a
master device. Centralized management strategies show
good results with a small number of robots in a group. As
the group size increases, the load on the communication
channel and the computing means of the control device
increase. One way out is to apply hierarchical control
strategies in which a group of robots is divided into
subgroups, each with its leader (usually a group of
robots), and subgroup leaders are controlled by a central
control device onboard one of the robots or outside the
group. Hierarchical management strategies complicate the
nature of communications between the work of the group,
resulting in  serious requirements for onboard
communication  equipment. Obstacles in  the
communication channel have an extremely negative
impact on the work of the group in centralized
management strategies. In addition, the failure of a robot
that performs the functions of managing a group or
subgroup leads to serious problems — the connection with
all the work under its control is lost.

Decentralized management strategies for groups of
robots include collective, team, and swarm management
strategies. In a collective management strategy, each
robot in the group receives information from all other
robots in the group and transmits the information they
collect about the environment and their condition to the
communication channel so that this information is
available to all other robots in the group. Thus, the
information exchange in the group of robots in collective
management is carried out on the principle of “everyone
with everyone”. Due to this, each robot can independently
assess the current situation and decide on the need for
further action. Collective management strategies allow the
team to maintain performance in the event of failure of
one or more robots of the group. The load on the
communication channel increases in direct proportion to
the increase in the number of groups of robots. The load
on the onboard computing devices of robots is also
increasing because they need to process the received
contact information.

The upper limit of the allowable group size in
collective management methods is on average higher than
in centralized ones, but the scaling of these methods
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leaves much to be desired. In cohesive control strategies,
there is no dedicated communication channel for the
exchange of information between robots, each robot
collects information about the environment independently
and also independently decides on their next steps to
contribute to the group task. Lack of communication
between group work in team management strategies
allows you to successfully solve only those tasks that can
be easily divided into independent unrelated subtasks. The
main advantage of cluster control strategies is scalability:
as the number of robots increases, the computational
complexity of control tasks does not increase, which
allows the use of cluster strategies to control very large
groups of microrobots.

Thus, the objective of the article is to study the
optimization possibilities of swarm robotics algorithms.

The object of research is the ant colony optimization
algorithm.

The subject of the research is the use of the ant colony
optimization algorithm for solving the traveling salesman
problem.

1 PROBLEM STATEMENT

Let the list of input variables be specified: 1) m is a
number of ants; 2) n is a number of vertices; 3) a, B, O
and p — control parameters. The task at the time was to
determine the effect of input, control, perturbation
parameters on the convergence and time performance of
the ant colony algorithm (ACO) when solving the
traveling salesman problem (TSP). List of output
variables: 1) ¢ is a time; 2) the number of iterations to find
the optimal solution; 3) the length of the best way (tour).
Limitations: number of iterations of the algorithm 300;
the coordinates of the vertices were taken in the range
from 0 to 100; the number of vertices varied from 20 to
200; number of ants from 5 to 400.

2 REVIEW OF THE LITERATURE

At the end of the twentieth century, stochastic search
engine optimization algorithms became the most popular
in solving swarm control problems. This article focuses
on the group of swarm algorithms (methods) that belong
to the class of metaheuristics. The group of these
algorithms includes: 1) the ant colony algorithm; 2) bee
algorithm; 3) particle swarm algorithm; 4) stochastic
diffusion algorithm; 5) cuckoo algorithm; 6) bacterial
optimization algorithm; 7) gravity search algorithm;
8) algorithm of water drops [18].

In these algorithms, individuals that are part of the
swarm (ants, bees, bacteria, etc.), in practice, are
implemented in the form of software agents. The general
scheme of swarm algorithms is based on the following
stages: 1) in the field of search in a certain way creates
some initial approximations to the desired solution — the
initialization of the population of agents; 2) with the help
of some set of migration operators (specific tactics for
each of the swarm algorithms) agents move in the search
area so that, in the end, approach the desired extremum of
the objective function; 3) check the condition of the end
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of iterations. If the last condition is met, the calculations
are completed. In this case, the best of the found positions
of the agents is taken as an approximate solution. If the
condition is not met — Return to stage 2. Widespread
practical application in the class of metaheuristics has
acquired algorithms of the ant colony, which allow
finding approximate solutions to search problems on
graphs for polynomial time.

Swarm intelligence methods [5] are used to solve
many practical problems of Swarmanoid [10], can be used
to control large groups of robots, which led to the
emergence of a separate direction Swarm Robotics [1].
Each robot in the group interacts only with some
neighboring robots that fall within the range of visibility,
which is limited by the range of its telecommunications
devices (or artificially limited). Each robot independently
decides on further actions based on simple local rules
(simple rules, local rules). The work is available
information about the environment, which he collected
himself, as well as information about the environment and
the state of some of the robots of the group, which was
passed to him by neighboring works. The robot transmits
the collected information about the environment, as well
as about its state to the communication channel. This
information becomes available to those robots in the field
of view of which this robot falls (in the case of the same
radii of the field of view — it’s neighboring work). Thanks
to this approach, works receive more information about
the environment than with team management strategies,
and the information available to them relates to the
environment, ic the most relevant. This preserves the
scaling — increasing the number of groups does not
increase the load on onboard computers.

Methods of swarm intelligence open wide
opportunities for the development of microrobots of mass
use, allowing the successful use of large groups of
microrobots. A reasonable question arises: why swarms of
microrobots are still not found in practice, and the
achievements of swarm robotics are limited to several
experimental projects (Swarm-bot [16], Swarmanoid [6],
[-SWARM [18]) and some theoretical works.

One of the obvious obstacles to the development of
swarm robotics is the fact that the objects of control in it
are numerous groups of microrobots, which implies the
presence of inexpensive mass production of microrobots.
Technologies of such products are based on the most
modern technical achievements. Progress in the field of
microelectronics, mechatronics, and nanotechnology
gives reason to hope that soon mass production of
microrobots will be not only possible but also
economically feasible.

The second obstacle is the lack of general theory and
approaches in the creation and development of swarm
management methods in groups of robots. Currently,
much of the research is devoted to the use of natural
analogs of swarm intelligence methods to solve technical
problems: ants [2], bees [11], flocks of birds and shoals of
fish [14], immune systems [19], [8]) became prototypes
for creating various methods of swarm intelligence.
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Here, individuals who are part of the swarm (ants,
bees, immune bodies), in practice, are implemented in the
form of software agents. The general scheme of swarm
algorithms is based on the following steps.

1) In the field of search in one way or another creates
some initial approximations to the desired solution — the
initialization of the population of agents.

2) With the help of some set of migration operators
(specific tactics for each of the swarm algorithms), the
agents move in the search area so that, in the end, they
approach the desired extremum of the target function.

3) Check the condition of the end of iterations. If this
condition is true, the calculations are completed. In this
case, the best of the found positions of the agents is taken
as an approximate solution. If the condition is incorrect —
return to step 2.

Differences in the tasks and capabilities of natural and
technical systems make it difficult to find and adapt
natural algorithms to solve technical problems. Some
studies are carried out to create artificial methods of
swarm intelligence, which are designed solely to solve
practical problems. Unfortunately, the lack of a unified
approach complicates these studies. Each new task is
solved every time almost “from scratch”.

Danielli A. Lima [12] propose an inverted ant cellular
automata (IACA) model for swarm robots performing the
surveillance task. A new distributed coordination strategy
is described, which was designed with cellular automata-
based modeling and using a repulsive pheromone-based
search.

David Payton [15] describe how a robot swarm can
become a distributed computing mesh embedded within
the environment, while simultaneously acting as a
physical embodiment of the user interface. With this
simple peer-to-peer messaging scheme, many coordinated
activities can be accomplished without -centralized
control.

An inverted ant cellular automata model called IACA-
DI is proposed for the coordination of a swarm of robots
performing the surveillance task [20]. The swarm
communicates  indirectly  through the repulsive
pheromone, which is available as neighborhood
information. The pheromone is deposited at each time
step by each robot over its neighborhood.

Schroeder [17] propose a control law for efficient area
coverage and pop-up threat detection by a robot swarm
inspired by the dynamical behavior of ant colonies
foraging for food. They are performance metrics that
evaluate area coverage in terms of characteristics such as
rate, completeness, and frequency of coverage are
developed.

The design of robot swarms inspired by self-
organization in social insect groups is currently an active
research area with a diverse portfolio of potential
applications. Deshpande [3] propose a control law for
efficient area coverage by a robot swarm in a 2D spatial
domain, inspired by the unique dynamical characteristics
of ant foraging.
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Dimidov [4] analyze the efficiency of random walk
patterns for a swarm of Kilobots searching a static target
in two different environmental conditions entailing a
bounded or open space. They study the search efficiency
and the ability to spread information within the swarm
through numerical simulations and real robot
experiments.

Fricke [8] use a robot swarm to evaluate the
effectiveness of a Lévy search strategy and map the
relationship between search parameters and target
configurations. They show that the fractal dimension of
the Lévy search, which optimizes search efficiency,
depends strongly on the distribution of targets but only
weakly on the number of agents involved in the search.

Using computer simulations, Fujisawa [9] that the
Lévy walk-like searching strategy can maximize the
group foraging efficiency of the swarm robots using
pheromone trails (mimicking ant group foraging), as well
as maximize individual searching area.

Efremov [7] reviewed approaches to a swarm of
simple robot behavior design for solving the more
complex problem of foraging.

3 MATERIALS AND METHODS
In the given work the generalized algorithm of the
organization of swarm interaction based on the dynamic
behavior of a colony of ants is offered. The indicators of
the effectiveness of the method of covering the territory
based on virtual pheromones are considered (Fig. 1).

B

v

Parameter Initialization

v

Ants search for the path

v

A 4

Update pheromone level

Termination
condition

End

Figure 1 — Flow chart of ant colony optimization algorithm

The authors of this study propose to consider the
process of the behavior of a swarm of agents in such a
way as to obtain the selection of the main groups of
parameters that determine its course and characterize the
state at any time. This approach is used to solve
optimization problems, for example, in the field of
chemistry. According to this approach, it is possible to
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select the following groups of parameters for the behavior
of an ant colony.

1) Input parameters Ii,iel,_m. The values of this

group of parameters can be measured, but they cannot be
influenced. When solving the salesman’s problem, this
group should include quantitative characteristics of the
search area (for example, dimension and weights of the
adjacency matrix).

2) Control parameters C;, j eﬁ These parameters

should be considered as variables that can be directly
influenced to control the process itself. Such adjustable
parameters for solving the salesman’s problem can be, for
example, the initial values of the parameters a, B, O, p,
and m.

3) Perturbation parameters Hy,k E The values of

these variables change over time randomly. As a rule, the
values of the perturbation parameters are not available for
measurement. For the salesman’s task, these parameters
can be the characteristic of the “desire” of the agent n;;,

the amount of pheromone t;;

ij » Ctc.

4) Output parameters O,z € I,_n For these variables,

the values are determined by the mode of the swarm
behavior. These parameters describe the state of the
process resulting from the total action of input, control
parameters, and perturbation parameters. The initial
parameters can be considered the number of iterations that
are performed to find the solution, the proximity of the
found solution to the optimal, etc.

4 EXPERIMENTS
After identifying the main groups of parameters that
determine the course and characterize the state at any time
of the ant colony algorithm (ant colony optimization
algorithm), computational experiments were performed to
influence the input, control, perturbation parameters,
output parameters on the convergence of the algorithm.

The advantage of the algorithm is its scalability, as well
as guaranteed convergence, which allows you to get the
optimal solution regardless of the dimension of the graph.
The only drawback is that the convergence rate of the
algorithm is unknown.

In the experiments, the number of ants placed in the
nodes of the network varied: 1-5, 10, 30, 50. During the
random experiments, different network topologies were
generated, and the number of iterations at which the
optimal cycle was achieved was recorded.

Table 1 shows the dependence of the search time and
the optimal route found on the example of randomly
generated test graphs shown in Figure 2 with the number
of iterations 300. The coordinates of the vertices of the
graphs were generated using the function Randi ():

x=randi(100,1,20);

y=randi(100,1,20);

Table 1 shows the dependence of the search time and
the optimal route found on the values of the control
parameters on the example of the test networks shown in
Fig. 2.

Table 2 shows the dependence of the search time and
the optimal route found on the number of ants on the
example of a graph with the number of vertices 20 with
the number of iterations 300. The coordinates of the
vertices of the graph were chosen arbitrarily:

x=[82 91 10 19 63 15 28 55 96 87 15 98 96 49 80 14
42 92 89 43];

y=[630851968 1675396679 7132749 836821
95 3];

According to the results obtained, the following
conclusions can be drawn:

1) with a constant number of vertices n and a change
in the number of ants m and iterations t, time costs change
according to the estimate of time complexity O (m - 1 - n’);

Table 1 — Application of the ant algorithm for solving the salesman problem for test graphs with a random arrangement of vertices

S R

Ne Number of )4 o B 0] 2 ;E_,) 2 ~§ i § g Result Time, s
networks ants g 5 g EE 53

z z 2
1 40 0.1 1 1 1 20 104 385.6315 22.847178
2 40 0.1 1 1 1 20 29 340.9843 22.458717
3 40 0.1 1 1 1 20 272 405.6638 22.755844
4 40 0.1 1 1 1 20 136 376.4947 22.737581
5 40 0.1 1 1 1 20 246 384.7575 22.546910
6 40 0.1 1 1 1 20 91 336.088 22.494738
7 40 0.1 1 1 1 20 230 342.5689 22.420198
8 40 0.1 1 1 1 20 239 368.5756 22.860189
9 40 0.1 1 1 1 20 162 325.4138 22.602328
10 40 0.1 1 1 1 20 75 347.0352 23.463464
11 40 0.1 1 1 1 20 230 366.0119 22.635822
12 40 0.1 1 1 1 20 37 385.2827 22.472831
13 40 0.1 1 1 1 20 24 291.521 22.500305
14 40 0.1 1 1 1 20 232 448.2383 22.488642
15 40 0.1 1 1 1 20 93 414.5459 22.417555
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Figure 2 — Graphs to table 1

Table 2 — Application of the ant algorithm to solve the salesman problem for a constant number of vertices and change the
number of ants

Sy | Blews
Ne Number of )4 o B o 2 E 2 -§ = E E Result Time, s
networks ants g B g EE 83
z z g ”
1 5 0.1 1 1 1 20 232 395.5417 15.992249
2 10 0.1 1 1 1 20 75 400.1229 14.405423
3 15 0.1 1 1 1 20 235 400.6502 16.202756
4 20 0.1 1 1 1 20 187 396.1515 16.977871
5 25 0.1 1 1 1 20 261 395.5417 19.182736
6 30 0.1 1 1 1 20 137 395.5417 23.441613
7 35 0.1 1 1 1 20 157 395.5417 25.109654
8 40 0.1 1 1 1 20 106 395.5417 26.945276
9 60 0.1 1 1 1 20 185 395.5417 33.179504
10 80 0.1 1 1 1 20 62 395.5417 43.445270
11 100 0.1 1 1 1 20 99 395.5417 47.043559
12 150 0.1 1 1 1 20 153 395.5417 62.791894
13 200 0.1 1 1 1 20 94 395.5417 80.507522
14 300 0.1 1 1 1 20 21 395.5417 113.99703
15 400 0.1 1 1 1 20 53 395.5417 143.40482

2) changing the parameter m affects the time cost, but
does not guarantee a better result. This is due to the
probabilistic approach to the choice of peaks by ants.

The values of the control parameter Q are selected in
the same order as the length of the optimal route. O
depends on the length of the path to the destination: the
shorter the path, the greater should be the value of Q:
1 <0 <10000.

A computational experiment showed (Table 3) that
changing the control factor O does not have a significant
effect on finding the optimal solution.
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Parameters a and B set the weight of the pheromone
trace and visibility when choosing a route. They vary
within 0 <a <5; 1 <B <5. The computational experiment
allowed us to identify the optimal combinations of
parameters used in the ant colony algorithm (Table 4).

In case of unsuccessful selection of parameters, the
following situations may occur:

1. Large values of the parameter a, at which ants enter
a dead-end without finding solutions.

2. At small values of the a-parameter, ants can find the
path from the starting point to the end, but this path is not
optimal.
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Table 3 — Application of the ant algorithm for solving the salesman problem for a constant number of vertices at different values of
the coefficient O

G G O
S8 C223E
Ne Number of )4 o B (0] 2 g 283 § E Result Time, s
networks ants g 5] EE S 5%
> S £5& 903
z Z3
1 40 0.1 1 1 1 20 152 395.5417 25.516824
2 40 0.1 1 1 650 20 88 395.5417 22.386155
3 40 0.1 1 1 1300 20 139 395.5417 22.359020
4 40 0.1 1 1 2000 20 246 396.1515 22.053672
5 40 0.1 1 1 2600 20 195 395.5417 22.323921
6 40 0.1 1 1 3250 20 202 395.5417 22.714128
7 40 0.1 1 1 4000 20 34 395.5417 23.427087
8 40 0.1 1 1 4600 20 50 396.1515 22.297267
9 40 0.1 1 1 5250 20 207 395.5417 22361742
10 40 0.1 1 1 6000 20 136 395.5417 22.536203
11 40 0.1 1 1 6650 20 106 395.5417 22.382881
12 40 0.1 1 1 7300 20 163 395.5417 22.254868
13 40 0.1 1 1 8000 20 84 395.5417 22.217386
14 40 0.1 1 1 9000 20 23 395.5417 22.793634
15 40 0.1 1 1 10000 20 296 395.5417 23.697207

3. In the third case, it is possible to find the optimal
solution (Table 4).

Table 4 — The optimal set of o and B parameters

o parameter

B parameter

0.5

0.5

5.0 5.0
1.0 1.0
5 RESULTS
The results obtained in the process of the

computational experiment can be explained as follows:
the parameter a allows taking into account the experience
of previous generations of ants, while f is focused only on
the path length. Only with the right combination of
parameter values is it possible to find the optimal route.
Initial experiments with the ant colony algorithm
found that ants come to a decision quickly and spend little
time exploring alternative pathways. To force ants to do
more research and to prevent premature convergence, the
pheromone on the links is allowed to “evaporate” in each
iteration of the algorithm before they increase based on

the newly constructed pathways (2). The evaporation
coefficient of pheromone p varies within 0.1 < p < 0.99.
The constant p determines the rate at which pheromones
evaporate, causing ants to “forget” about previous
decisions. In other words, p determines the degree of
influence of the search history. For large values of p, the
pheromone evaporates rapidly, while small values of p
lead to a slowing of the evaporation rate (Table 5). The
more pheromones evaporate, the more random the search
becomes, which improves intelligence. For p = 1, the
search is completely random.

In the calculation process, the execution time of the
algorithm was recorded depending on the number of
vertices of the graph (Table 6, Fig. 3). A number of
iterations 500.

Analysis of the obtained time characteristics of the
route calculation shows that as the number of vertices in
the graph increases, the time required to find the route
increases (Fig. 4).

Table 5 — Application of the ant algorithm for solving the salesman problem for a constant number of vertices at different values

of the pheromone evaporation coefficient p

Ne Number of 2.8 B 5% =58
- umber o p a B 0 £ %6 E ETE L‘; £ § £ Result Time, s
networks ants Z: S E 82 g3
1 40 0.10 1 1 1 20 96 395.5417 22.665959
2 40 0.16 1 1 1 20 80 395.5417 22.389597
3 40 0.22 1 1 1 20 69 395.5417 22.574964
4 40 0.28 1 1 1 20 216 395.5417 22.288871
5 40 0.34 1 1 1 20 42 398.6139 22.282747
6 40 0.40 1 1 1 20 19 395.5417 22.303454
7 40 0.46 1 1 1 20 186 400.1162 22.171169
8 40 0.52 1 1 1 20 43 395.5417 22.197507
9 40 0.57 1 1 1 20 102 395.5417 22.340538
10 40 0.63 1 1 1 20 265 395.5417 22.165415
11 40 0.69 1 1 1 20 241 395.5417 22.264250
12 40 0.75 1 1 1 20 54 397.184 22.521302
13 40 0.81 1 1 1 20 147 398.474 22.347847
14 40 0.87 1 1 1 20 243 395.5417 22.887289
15 40 0.99 1 1 1 20 86 395.5417 22227174
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Table 6 — Application of the ant algorithm for solving the salesman problem for different numbers of graph vertices

) 5 3 5 £w = g
netgz)rks Nur:r?tesr of P @ B Q é E % g E .‘é % ‘J:") %E Result Time, s

z > z £= 9532
1 40 0.1 1 1 1 20 158 361.2807 25.662532
2 40 0.1 1 1 1 33 173 443.1308 29.997125
3 40 0.1 1 1 1 46 257 602.3146 39.447256
4 40 0.1 1 1 1 59 299 647.2844 45.851241
5 40 0.1 1 1 1 71 76 798.1173 52.468550
6 40 0.1 1 1 1 84 289 830.3252 63.123333
7 40 0.1 1 1 1 97 264 910.8729 69.387167
8 40 0.1 1 1 1 110 290 982.5124 78.692760
9 40 0.1 1 1 1 123 299 1064.4672 | 89.291780
10 40 0.1 1 1 1 136 267 1105.5601 99.569191
11 40 0.1 1 1 1 149 296 1196.1199 | 116.750170
12 40 0.1 1 1 1 161 214 1255.0331 | 129.761123
13 40 0.1 1 1 1 174 276 1262.4144 | 139.675033
14 40 0.1 1 1 1 187 266 1344.9961 | 154.827335
15 40 0.1 1 1 1 200 298 1515.7214 | 168.314706

T s T 84 123 148 ¢ 200
Figure 3 — Some graphs to table 6: with 33, 84, 123, 149, and 200 vertices
16000 methods. All this allows us to recommend the use of ant
14000 Z algorithms to solve complex combinatorial optimization
17000 //—/ problems and their application, in particular, to the
10000 optimization of group robotics algorithms.

=—t—lnute length

—;-Time

200,0

BN

4000

00,0

00

Figure 4 — Dependence of the time of the ant algorithm and
the length of the found route on the number of vertices in the
graph at 300 iterations

6 DISCUSSION

The study identified the main groups of parameters
that determine the course and characterize the state at any
time of the ant colony algorithm and performed
computational experiments to influence the input, control,
perturbation parameters, output parameters on the
convergence of the algorithm.

Ant algorithms are an example of an adequate
mathematical model of ant colony activity, which is
suitable for creating computer methods for the
probabilistic solution of some combinatorial problems.

The basic idea behind the ant colony algorithm is to
use a positive feedback mechanism to help find the best
approximate solution to complex optimization problems.

The efficiency of ant algorithms increases with an
increasing dimension of the optimization problem. Ant
algorithms provide solutions to other combinatorial
problems no worse than general metaheuristic
optimization technologies and some problem-oriented

© Vakaliuk T. A. , Kukharchuk R. P., Zaika O. V., Riabko A. V., 2022
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The paper investigates the application of the ant
algorithm for solving the salesman problem for test
graphs with a random arrangement of vertices; for a
constant number of vertices and a change in the number
of ants, for a constant number of vertices at different
values of the coefficient O; to solve the problem of the
salesman for a constant number of vertices at different
values of the evaporation coefficient of the pheromone p;
for different numbers of graph vertices. The analysis of
the obtained time characteristics of the route calculation
was also performed. The computational experiment
allowed us to identify the optimal combinations of
parameters used in the ant colony algorithm.

It is known that most likely it will not be possible to
construct an exact polynomial algorithm for the traveling
salesman problem. Apparently, these simply do not exist.
Therefore, it is necessary either to go beyond the scope of
polynomial algorithms, or to seek approximate solutions
to the problem. But the ant colony optimization algorithm
approach may not be simpler than the exact solution of
the problem. This algorithm can be applied to a relatively
small number of ants and graph vertices.

Ant Colony Optimization (ACO) refers to
metaheuristics, that is, in general algorithms that can be
applied to almost any discrete optimization problem. All
metaheuristics are iterative procedures, and for many of
them asymptotic convergence of the best found solution
to the global optimum has been established.
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The ACO idea is an attempt to imitate the behavior of
ants that have almost no sight and are guided by the smell
left by their predecessors. It should be noted that ACO is
not the optimal method for solving this problem. In the
future, it is necessary to continue to work on optimizing
algorithms used in swarm robotics.

CONCLUSIONS

The article shows how to implement the components
of the self-organization of ants in the algorithm for
solving discrete optimization problems in the example of
the salesman problem.

The scientific novelty of the research lies in the fact
that the dependence of the search time and the found
optimal route on the values of control parameters is
established using the example of test networks for a
different number of graph vertices and iterations.

The ant colony optimization algorithm was further
developed.

The practical value is that the stated variant of the
description of the process of behavior is supposed to be
extended to the whole group of swarm algorithms.

Prospects for further research are that the received
description of processes is planned to be used for further
researches — statement and carrying out computational
experiments for parametric optimization of swarm
algorithms, which are used for management of a swarm of
robots.
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YK 004.23
ONTUMIBAIIIS AJITOPUTMIB I'PYIIOBOI POBOTOTEXHIKH

Bakamwk T. A. — f10oKkTOp menaroriyHux Hayk, mpodecop, npodecop kadenpu imxeHepii mporpamHoro 3abesmnedeHHs, JlepxaBHuii
yHiBepcuTeT « ) KutomMupchka noiitextikay, JKutomup, Ykpaina.

Kyxapuyk P.II. — kaHauuar nejaroriyHuX Hayk, JOLEHT kadeapu (i3MKO-MaTeMaTH4YHOi OCBITH Ta iH(pOpMaTHku, [IryXiBChbKHi
HallloHaNbHUII efarorivnnii yauBepcuteT iMeHi Onekcanpa JlopxeHka, I'myxis, Ykpaina.

3aika O. B. — kaHaMIaT NeqarorivHuX HayK, CTaplIni BUKIanayd Kapeapu Gpi3nko-MaTeMaTn4aHOl OCBITH Ta iHGopMaTHkH, [ TyXiBChbKHid
HaIllOHaJIBHUI nefarorivHuid yHuBepcuteT iMeHi Onekcanzpa Jlopxenka, [nyxiB, Ykpaina.

Psidko A.B. — kaHauaaT mnenaroridyHUX Hayk, CTapmuil BuUKiIazad kadeapu (i3MKo-MaTeMaTH4HOI OCBITH Ta iH(OPMATHKH,
I'nyxiBchKkuil HaliOHANBHIIA Tearoriyanii yausepcuteT imeni Onekcanipa Jloxenka, [ myxis, YkpaiHa.

AHOTANIA

AxTtyanbHicTs. Cepel pi3SHOMAHITTS 3aB/JaHb, SKi BUPINIYIOTECS POOOTOTEXHIKOI0, MOJKHA BUALIUTH LMK P TaKUX, OIS BUPINICHHS
SIKUX HEBENUKi rabaputu poborta OaxkaHi, a 4acoMm i HeoOximHi. J{as BupilieHHS MOAIOHUX 3aBIaHb HEOOXIAHI MIKpOPOOOTH 3 MaluMH
rabapuTamu, Maca SKHMX JI03BOJI€ O€3NEpeIIKOAHO IepeMilllaTHCA y TICHUX NPOXOJaxX, CKJIAIHHX IIOTOJHUX YMOBaX, 3aIUINATHCA
HeroMiueHuMuU. BozxHouac, Mani rabaputu MikpopoOoTa HaK/IaJaloTh TAKOXK 1 Pl HENPSIMUX OOMEXKEHb, 10 3yMOBIIIOE 3aCTOBYBAaHHS JUIst
O3HAYEHUX 3aBJaHb IPyIH MIKpOpoOoTiB. EQeKTHUBHICTE 3aCTOCYBaHHS Ipyl MIKpOPOOOTIB 3aleKUTh Bix 0OpaHOi cTpaTerii ympaBiiHHS i
CTOXACTHYHUX MOIIYKOBUX AJITOPUTMIB ONTUMI3allii yIPaBIiHHA TPYIIO0 (POEM) MIKPOPOOOTIB.

Meta. MeToro aHHOI poOOTH € PO3MIISL] TPYIH POHOBHX alrOpUTMIB (METOMIB), SIKI BIIHOCATBCS JO Kiacy MmeraeBpicTik. Jlo rpymnu
O3HAYEHUX AITOPUTMIB BIJHOCHTBHCS, 30KpPEMa, aITOPHTM MYpANIMHOI KOJOHII, MOXIMBOCTI SKOTO NOCHTIMKYBAalMCS JUI PO3B’SI3yBaHHS
3a1a4i KOMiBOSDKEPA, SIKa 4acTO IOCTAE NPH PO3POOL aIrOPUTMY TTOBEAIHKH TPYIH MIKPOPOOOTIB.

Merton. Ha nepuiomy erami gociiikeHHs OyJio BUALICHO OCHOBHI TPyIHU MapaMeTpiB, siKi BU3HAYAIOTh NepeOir 1 XapakKTepu3yoTh CTaH B
Oyllb-sIKMA MOMEHT 4acy aJI'OpUTMY MYpAalIMHOI KOJIOHII: BXIJIHI, Kepylouu, napamerpu 30ypeHHs, BuxinHi. [licist BUIiIEHHS OCHOBHUX
IpyIl MapaMeTpiB OylIo pO3poOIEHO alNrOpHTM, IIepeBara sKOro IIOAra€ B MacIITabOBAaHOCTI, a TAKOX TapaHTOBaHIll 30DKHOCTI, IO
JIO3BOJISIE OTPUMATH ONTHMAaJbHUN PO3B’S30K HE3AJISXKHO Bif po3mipHocti rpada. Ha npyromy erami popoGnenuii anroputm ACO (ant
colony optimization algorithm) Oyno peanizoBaHo Ha MoBi Matlab. Bynu npoBeneHi KOMIT'IOTEpHI €KCIIEPUMEHTH 3 METOK BHU3HAUCHHS
BIUIMBY BXIJIHMX, KEePyIOUMX, BUXIIHMX 1 HapamerpiB 30ypeHHs Ha 30DKHICTh alroputMmy. byno NpuIiieHO yBary OCHOBHUM TIpyIiaMm
MIOKa3HHKIB, SKi BU3HAYAIOTh HAIPSAMOK CIOCO0Y 1 XapaKTepH3yIOTh CTaH POI0 MIKpOpoOOTIiB y JaHWil MOMEHT 4acy. B o0unciioBatbHOMY
SKCIICPUMEHT] BapiloBajacsl KUIbKICTh Mypax, II0 PO3MILIYIOThCS y BYy3Jax MEpPEeXi, MICTKICTh ()epOMOHA, YHMCEIbHICTh BY31iB rpada,
BU3HAYaNacs YHCENIbHICTD iTepalliil 171 pO3IIyKy HailMEHIIOro NUIAXY Ta Yac BUKOHAHHS MeToay. [IpOBEeACHO TeCT MiACYMKIiB MOICIIOBAHHS
Ta MPOJYKTHBHOCTI METOY.

PesyabTaTu. [IpoBeneHo HOCTIIKEHHS 3aCTOCYBAHHS MypPaIIMHOTO aITrOPHTMY IJIS PO3B’SI3yBaHHS 33adi KOMIBOSDKEpa JUIS TECTOBHX
rpadiB 3 BUMAIKOBUM PO3TAIlyBaHHSM BEpIIWH; JUIS MOCTIHHOI KIBKOCTI BEPIIMH i 3MiHI KiJBKOCTI Mypax, Ui MOCTIHHOI KiTBbKOCTI
BEpIIUH NPU PI3HUX 3HA4YeHHsAX KoedilieHta Q; it po3B’si3yBaHHs 3ajayi KOMIBOsDKEpa JUIsl MOCTIMHOI KiNBKOCTI BEPIIMH IPH Pi3HUX
3Ha4YeHHAX KoedilieHTa BUNApOByBaHHS (epOMOHY p; JUIL Pi3HOI KUIBKOCTI BepInH rpada. Pe3ynpraTi mokasany, Mo MypalliHi CiocoOn
3HaXOAATH XOPOLII MapIIPyTH KOMIBOsDKEpa 3HAYHO IIBHJIIE, HK YiTKi METOAM KOMOIHATOPHOI onThMi3awii. BcTaHOBICHO 3a1€KHOCTI
yacy MOIIYKY i 3HaiJEHOr0 ONTHMAJLHOTO MAapILIPYTy BiJ 3HAYCHb KEPYIOUHMX MapaMeTpiB Ha NMPHUKIAAli TECTOBUX MEpPEeX Ui Pi3HOI
KiJIbKOCTI BepIH rpada ta iTepamiil.

BucnoBku. IIpoBeneHi JOCTITKEHHS J103BOJIIOTH JJAaTH PEKOMEHAIT 010 3aCTOCYBaHHS alropuTMy MypammHoi xonoHii ACO (ant
colony optimization algorithm) juist ynpaBiiHHS rpyIo (poemM) MiKpopoOOTiB.

KJIFOYOBI CJIOBA: poii poOoTiB, aJIrOpUTM MYpAIIHHOI KOJIOHIT, 3aja4a KOMiBOsDKEpa.

VIIK 004.23

ONTUMHU3ALUSA AJITOPUTMOB I'PYIIIIOBOM PABOTOTEXHUKH
Bakamok T.A. — 10KTOp memaroruueckux Hayk, npodeccop, npodeccop kadeapsl HHKEHEPUH HPOrpaMMHOrO OOecreueHus,
I'ocynapcTBeHHbIH yHUBepcHTeT «OKuToMupckas mojautexHukay, JKutomup, YkpanHa.
Kyxapuyk P.II. — kaHmugar mefaroruveckux Hayk, JOUEHT Kadeapbl (QU3MKO-MaTeMaTHYeCKOro oOpa3oBaHHS M HH()OPMATHKH,
I'ryXoBCKMiT HAITMOHAFHBIN TEJarOTHIeCKU YHUBEpCUTET nMeHH Anekcanzpa Jlosxkenka, ['myxoB, YkpanHa.

3aumka O.B. — kaHmuaaT HegarorMYecKMX Hayk, CTaplinii mpernojaaBarenb Kadeapbl (U3MKO-MAaTEeMaTHYECKOro 00pa3oBaHHS H
nHdopmaTuky, I'TyXoBCKHI HALIMOHANIBHBIN Ie1arornueckuil yHuBepcuTeT UMeHH Asekcanzapa Jlopxenka, [ ryxos, YkpauHa.
Pa6ko A.B. — kxaHmuaT neJarormuecKUX HayK, CTaplIMi IpenojaBaTenb Kadeapsl (U3HKO-MaTeMaTHYECKOro OOpa3oBaHUS U

uHpOpMaTUKH, [ TyXOBCKHIl HAI[MOHAIBHBIN [TeIarOTHYECKUN YHIUBEPCUTET nMeHn AJiekcaHapa Jloxenka, [ myxoB, YkpanHa.

AHHOTALUSA

AxTyanbHocTh. Cpelr MHOrooOpasus 3ajad, peliaeMbIXx POOOTOTEXHHMKOH, MOXHO BBIICIHWTH LENbIH PSAA TaKuX, U PELICHHS
KOTOPBIX HEOOJIbIIINE rabapuThl PabOTa XKeIaTeNIbHbL, a Mo14ac 1 HeoOXoaAuMBI. J1J1s pemeHuns mo100HbIX 3a/1a4 HEOOXO0ANMBI MUKPOPOOOTHI
¢ MaJIbIMH TabapuTaMy, Macca KOTOPBIX MO3BOJISIET OECIPENATCTBEHHO MEPEMELIAThCs B TECHBIX MIPOX0/IaX, B CIIOXKHBIX MOTOIHBIX YCIOBHAX
M OCTaBaThCsl HE3aMEUYEHHBIMH. B TO ke Bpemsi Majble rabapuThl MHKPOpOOOTa HAKIAJBIBAIOT TAKXKE M PsIl KOCBEHHBIX OTrpaHUYCHUI,
MO3TOMY K NPUMEHEHHIO JUIS pPelleHHs YKa3aHHbBIX 3ajad JIydile HCHOJIb30BaTh TPYHIBI MUKPOPOOOTOB. D(M(PEKTHBHOCTh NMPUMEHEHHS
IPYHI MHKPOPOOOTOB 3aBUCHUT OT BHIOPAHHOH CTpaTerM YNpPaBICHUs M CTOXACTHYECKHX ITOMCKOBBIX AJTOPHTMOB ONTHMH3ALMU
YIpaBIICHUS TPYMION (PoeM) MUKPOPOOOTOB.

Leasn. Lenpro naHHON pabOTHI SBISIETCS PACCMOTPEHHE IPYIITBI POEBBIX ATOPUTMOB (METO/IOB), OTHOCSIIMXCS K KJIACCy METadBPUCTHK.
K rpynme 3TuX airopuTMOB OTHOCHTCS, B YAaCTHOCTH, ITOPHUTM MYypPaBbHHON KOJOHHH, BO3MOXKHOCTH KOTOPOTO HCCIENOBAIMCH JUIS
pelieHus 3aJa4u KOMMHBOSDKEPA, 4aCTO BO3HUKAIOLIEH NpH pa3paboTKe ajJropuTMa MoBeAESHHs IPYIIbl MUKPOPOOOTOB.

Meron. Ha mnepBom arame wuccienoBaHusi ObUIM  BBIJEIEHBI OCHOBHBIC TPYIIbI I[ApaMETPOB, OIPEICISAIONMX TEYCHHE U
XapaKTepU3yIOIe COCTOSHUE B JIIOOOH MOMEHT BPEMEHHM alrOpuTMa MYpPaBbUHOH KOJOHMM: BXOAAIIME, YIPABISIONIME, MapaMeTphl
BO3MYLICHHMS, BBIXOJIHbIE Hapamerpbl. [locne BbIIENEHMs OCHOBHBIX TIpPYIII MApaMeTpoB Obul pa3paboTaH aaropuT™, MNPEHMMYIIECTBO
KOTOPOTO 3aKJIFOYaeTcsi B MaclITaOMPyeMOCTH, a TaK)Ke rapaHTHPOBAHHOW CXOJMMOCTH, MTO3BOJISIOIICH IMOIYYUTh ONTHMAIIBHOE pelleHHe
HE3aBUCHUMO OT pa3MepHocTH rpada. Ha BTOpoM 3Tame paspaboTaH aaropuT™, KOJ KOTOPOro ObLI peain3oBaH Ha si3bike Matlab. Beuin
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MPOBE/IEHbl KOMIIBIOTEPHBIE AKCIIEPUMEHTHl C ILENbI0 OMNPEJeICHHUs BIUSHUS BXOMIHBIX, YNpPABISAIONIMX, BBIXOJHBIX U IapaMeTpoB
BO3MYILIEHHUS HAa CXOAMMOCTb AJTOPUTMA. BBUIO yzeleHO BHMMaHME OCHOBHBIM TpyNIaM IIOKa3aTenell, onpeiensiolX HarpaBlIeHHEe
cmocoba M XapaKTepH3YIOIIHX COCTOSHHE pOsi MHKPOPOOOTOB B JAaHHBII MOMEHT BPEMEHH. B BBIYHMCIMTENBHOM O3KCIICPUMEHTE
BapbUPOBANOCH KOJIMYECTBO MyPaBbEB, Pa3MEIAeMbIX B y371aX CETH, KOJIUUECTBO (PepOMOHa, YUCIO0 Y3110B rpada, Onpeaesaock KOJIUUECTBO
uTepauil 11 HOMCKa KpaTyalIlero ImyTH U BpeMs BBINOJIHEHUs MeToza. [IpoBe/ieH UTOTOBBIi TECT MOASIUPOBAHUS M TIPOU3BOIUTEILHOCTH
METoJa.
PesyabTatel. [IpoBeneHs! HccneOBaHNA IPHUMEHEHUS MypPaBbHHOTO aITOPUTMA I PEIICHHs 3a4adll KOMMHBOSDKEPA UL TECTOBBIX
rpadoB cO cCilydaifHBIM PACIOJOKEHUEM BEpIIMH; Ul TOCTOSHHOTO KOJMYECTBAa BEPIIMH M M3MEHEHUs KOJUYECTBA MYypaBbEB, I
MOCTOSIHHOTO KOJIMYECTBA BEPIIMH IIPU pa3HbIX 3HaueHHs X Kodduumenta Q; mis pelieHus 3ajaud KOMMHBOSDKEpA UIS MOCTOSIHHOTO
KOJIMYECTBA BEPIINH IPH PA3HBIX 3HAYCHUAX Kod(punueHTa ucnapeHus GpepoMoHa p; UL pa3sHOro KOJIUYeCTBa BepunH rpada. PesynpraTst
MI0Ka3aJli, 4YTO MypPaBbHHbIE CIIOCOOBI HAXOAT XOPOLINE MapIIPyThl KOMMHUBOSKEpA ropas/io ObICTpee, YeM YETKHEe METO bl KOMOMHATOPHOM
ONTHMH3AIMU. YCTAaHOBJIEHA 3aBHCHMOCTb BPEMEHH IOMCKAa W HAWIEHHOrO ONTHMAJBbHOTO MapLIpyTa OT 3HAUYEHUH YIpaBIIsIOMIUX
IIapaMeTpoB Ha IIPUMEPE TECTOBBIX CETEH Ul pa3sHOro KOJIMYECTBA BEPIINH Ipada 1 HTepaIHii.

BoiBoasl. IIpoBeneHHbIe HCCleNOBAaHUS MO3BOJAIOT AaTh PEKOMEHAAIUM O HPUMEHEHHIO ANTOPUTMA MYPaBbHHOH KOIOHHM I
yIpaBIeHUs TPYMIOH (PoeM) MUKPOPOOOTOB.
KJIFOYEBBIE CJIOBA: poii po60TOB, alnroputM MypaBbUHON KOJIOHHH, 3a/la4a KOMMUBOSIKEPA.
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