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ABSTRACT

Context. The problem of image classification algorithms vulnerability to destructive perturbations has not yet been definitively
resolved and is quite relevant for safety-critical applications. Therefore, object of research is the process of training and inference for
image classifier that functioning under influences of destructive perturbations. The subjects of the research are model architecture
and training algorithm of image classifier that provide resilience to adversarial attacks, fault injection attacks and concept drift.

Objective. Stated research goal is to develop effective model architecture and training algorithm that provide resilience to
adversarial attacks, fault injections and concept drift.

Method. New training algorithm which combines self-knowledge distillation, information measure maximization, class
distribution compactness and interclass gap maximization, data compression based on discretization of feature representation and
semi-supervised learning based on consistency regularization is proposed.

Results. The model architecture and training algorithm of image classifier were developed. The obtained classifier was tested on
the Cifar10 dataset to evaluate its resilience over an interval of 200 mini-batches with a training and test size of mini-batch equals to
128 examples for such perturbations: adversarial black-box Lo-attacks with perturbation levels equal to 1, 3, 5 and 10; inversion of
one randomly selected bit in a tensor for 10%, 30%, 50% and 60% randomly selected tensors; addition of one new class; real concept
drift between a pair of classes. The effect of the feature space dimensionality on the value of the information criterion of the model
performance without perturbations and the value of the integral metric of resilience during the exposure to perturbations is
considered.

Conclusions. The proposed model architecture and learning algorithm provide absorption of part of the disturbing influence,
graceful degradation due to hierarchical classes and adaptive computation, and fast adaptation on a limited amount of labeled data. It
is shown that adaptive computation saves up to 40% of resources due to early decision-making in the lower sections of the model, but
perturbing influence leads to slowing down, which can be considered as graceful degradation. A multi-section structure trained using
knowledge self-distillation principles has been shown to provide more than 5% improvement in the value of the integral mectric of
resilience compared to an architecture where the decision is made on the last layer of the model. It is observed that the dimensionality
of the feature space noticeably affects the resilience to adversarial attacks and can be chosen as a tradeoff between resilience to
perturbations and efficiency without perturbations.

KEYWORDS: image classification, robustness, resilience, graceful degradation, adversarial attacks, faults injection, concept
drift.

ABBREVIATIONS e

CE is a Cross-Entropy Function;

CIFAR is a Canadian Institute for Advanced Research
dataset;

CMA-ES is the covariance matrix adaptation of decision rules;
evolution strategy optimization algorithm;

CNN is a Convolutional Neural Network;

GAN is a Generative Adversarial Network; By 1s a false negative rate for -th class;

FIFO is a First In, First Out queue organization;

MED is a Median value of array;

IRQ is a Interquartile Range value; D, is a true negative rate or specificity for k-th
KL is a Kullback-Leibler divergence function.

. is a &) -th parameter which impacts on feature

representation;
e, is a &, -th parameter which impacts on efficiency

o, is a false positive rate for k-th class;

D, ;. is a true positive rate or sensitivity for k-th class;

class;
NOMENCLATURE Z ?s a functlor? of information crlten’a; ’
Dy, is the unlabeled images for training and testing; J is a class-wise averaged value of information-based

. . .. . classifier efficiency criterion;
Dy is the labeled images for training and testing; Y

Jo is a performance at normal functioning that

introduced for mapping integral metric of resilience to a
value between 0 and 1;

n is a number of unlabeled examples;
K is a size of set of classes;
ny is a number of labeled examples of &-th class;
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T, control time period which can be set a priori and
estimated as the mean time between adverse events or
maximum allowable recovery time;

G a search domain for optimal parameter values;

T a confidence threshold;

n a coefficient to regulate
performance without perturbation and resilience under
perturbations;

1, membership function that represent confidence in

tradeoff between

the forecast of input sample belonging to the £ -th class;

Zj

is a binary feature representation of i -th example
at the feature extractor output;

dist(:) is a Euclidean Squared distance;

z; is atrainable k -th class prototype;

N is a dimension of high-level feature space;
r, is a trainable scale factor for radius of
hyperspherical decision boundary (container) of k -th
class, 1, €(0;1);

is a loss function based on information

Ling
criterion;

H, is a priori entropy for two alternative decision

systems;

H, is a posteriori entropy, which characterizes the

residual uncertainty after decision-making;

TP, is a numbers of true positives for decision rule of
k -th class;

TN}, is a numbers of true negatives for decision rule
of k -th class;

FP, is a numbers of false positives for decision rule
of k -th class;

FN,, is a numbers of false negatives for decision rule
of k -th class;

¢ is a constant added for numerical stability,
e=10"° ;

¥; 1is class labels for i-th example after one-hot
encoding;

nyp 1s a size of mini-batch;

¥; is the value of the smoothed membership function

for the i-th sample to each class;

relu 1s an activation function RELU;

© is the component-wise multiplication
(Hadamard product);

sign

d is the averaged value of the normalized distance
between the prototypes of the classes;

7 is the averaged value of the scaling factor of the
radius of the class container;

z' is a feature presentation of the first augmented
version of the input sample x; ;

"

z" is a feature presentation of the second augmented
version of the input sample x; ;

q,t‘ () is an assessment of the probability of belonging

the feature representation of input image to the & -th class
container;

T is a temperature parameter that controls the
dynamic range of the similarity function;

g/ () is an assessment of the probability of

belonging the feature representation of input image to the
to k -th class;
S number of sections of multi-sectional classifier

model;

e is a column matrix of ones, e=[1,1, ..., l]T ;

Hadamard 1is a square matrix whose entries are
either +1 or —1 and whose rows are mutually orthogonal;
Apnr 18 a coefficient for regulating the influence of

the information criterion based component to the resulting
loss;
Accr 1s a coefficient for regulating the impact of

contrastive-center loss to the resulting loss;
Ac is a coefficient for regulating the impact of

average distance between class prototypes and average
radius of separate hypersurface class boundaries
(container) to the resulting loss;

Apsp is a coefficient for regulating the impact of

feature-level self-knowledge distillation to the resulting
loss;
Acsp 18 a coefficient for regulating the impact of

classifier-level self-knowledge distillation to the resulting
loss;
Ap is a coefficient for regulating the impact of

discretization error of feature representation to the
resulting loss;

kf/”CtE is a coefficient for regulating the impact of
consistency regularization based on unlabeled examples
which hits out of class containers to the resulting loss;

X?JICE is a coefficient for regulating the impact of

consistency regularization based on unlabeled examples
which hits into class containers to the resulting loss;
Ayro is a regularization coefficient for regulating the

impact of Euclidean distance between feature
representations from last layer and intermediate sections
to the resulting loss.

INTRODUCTION

Image classification is one of the most widespread
tasks in the field of artificial intelligence. Classification
analysis of visual objects is often a component of safety-
critical applications, such as autopilots of public transport
and combat drones and medical diagnostics. It is used in
production processes, monitoring traffic flows, inspection
of infrastructure and industrial facilities and other similar
tasks. Therefore, there is a need to ensure the resilience of
artificial  intelligence  algorithms to  destructive
perturbations such. In the case of artificial intelligence for
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image classification, specific perturbations such as
adversarial attacks or noise, faults or fault injection
attacks, as well as concept drift and out-of-distribution
increase aleatoric and epistemic uncertainty and its
involve a decrease in the productivity of the intellectual
algorithm [1-3].

The resilience of the image classifier to perturbations
is primarily ensured by achieving robustness for
absorption of a certain level of destructive influences and
implementing the graceful degradation mechanism to
achieve the most effective behavior in conditions of
incomplete certainty [1]. Data analysis models need to be
continuously improved to take into account the non-
stationary environment and new challenges. That is why
the ability of the model to quickly recover performance
by adapting to destructive effects and improve to increase
the efficiency of subsequent adaptations are equally
important components of resilience [2]. Recovery and
improvement mechanisms are developed within the
framework of the continual learning and meta-learning
frameworks [4, 5].

Achieving a certain level of resilience is predicated
upon the introduction of a certain resource and functional
redundancy into the system, but in practice there are
always resource constraints [6]. When designing and
operating resilient systems taking into account resource
constraints, the principles of rational resilience
(affordable resilience) are often used. This involves
achieving an effective balance between the system’s
lifecycle costs and the technical characteristics of the its
resilience [7]. Researchers are trying to improve the
resource efficiency of the inference by using biologically
inspired cognitive mechanisms or adaptive computation
based on cascade and multi-branch models [8, 9].

Separate components of resilience to certain types of
destructive influences have been researched in many
scientific papers, but the complex influence of multiple
destructive factors at once had still not been considered
[1-3]. In addition, machine learning algorithms for
classification analysis of images that simultaneously
implement such components of resilience as robustness,
graceful degradation, recovery and improvement have not
yet been proposed. Not all implementations of these
components are compatible, especially under resource
constraint conditions.

The object of research is the process of training and
inference for image classifier that functioning under
influences of destructive perturbations.

The subjects of the research are model architecture
and training algorithm of image classifier that provide
resilience to adversarial attacks, fault injection attacks and
concept drift.

The research goal is development an effective model
architecture and training algorithm of image classifier that
provide resilience to adversarial attacks, fault injections
and concept drift.

1 PROBLEM STATEMENT
Let Dy ={XﬁJ | j=1n} is set of unlabeled images

and Dg ={x¢ j|k=01K;j=Ln} is set of labeled

images for classifier training and testing, where n is
number of unlabeled examples and nj is number of

examples of Kk -th class. Is this case class index m can be
composite form for implement hierarchical labeling for
class hierarchy. Moreover, the structure of the vector of
model parameters is known

g=< el,..,egl,..,eal, fl"" fE.-Z yeos fEZ >, (1)

[1]

EI+E‘2: N

In this case, the constraints R;’I (e],...,egﬂ oo B )<0,
Rﬁz (fyes fﬁz yeees sz )<0 are impose on parameters.

These inequalities may include resource constraints,
necessitating the development of resource-efficient
algorithms.

It is necessary to find by machine learning an optimal
values of parameters g (1) that provide tradeoff between
maximum of class-wise averaged value of information-

based efficiency criterion J and value of integrated
metric R for resilience quantification on control time
period T :

M=

- 1
J=—2 J(ay, B, Dk, Dax) ()
Kia

1 T, =
WZP J’tjo J(t)dt
R=

: 3)
T —
ItZOJo(t)dt
g =argmax{nJ(@)+(1-MR@)} . )
G

2 REVIEW OF THE LITERATURE

The problem of image representation and image
classification analysis remains an active research topic
due to its relevance in safety-critical applications which
require resilience to challenging operating conditions [2,
10]. Basic principles of system resilience to destructive
perturbations are formulated in [6, 7]. These presuppose
the existence of mechanisms of perturbation absorption,
perturbation detection, graceful degradation, restoration
of productivity and improvement. Research [1, 2, 3]
studied vulnerability of artificial intelligence algorithms,
identifying the following destructive effects: noise and
adversarial attacks, faults and fault injection in the
environment of intelligent algorithm deployment, concept
drift and emergence of novelty, i.e., test examples that out
of distribution of training data.
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The ability to absorb destructive perturbations is
called robustness. There are many methods and
approaches to increase robustness to adversarial attacks.
Some researchers separate methods for ensuring
robustness to competitive attacks into the following
categories : gradient masking methods, robustness
optimization methods and methods of detecting
adversarial examples [11]. Gradient masking includes
some input data preprocessing methods (jpeg
compression, random padding and resizing), thermometer
encoding, adversarial logit pairing), defensive distillation,
randomly choosing a model from a set of models or using
dropout, and the use of generative models (ie,
PixelDefend [12] and Defense-GAN [13]). However [14]
demonstrated inefficiency of gradient masking methods.
Robust optimization approach includes adversarial
training, regularization methods which minimize the
effects of small perturbations of the input (such as
Jacobian regularization or L2-distance between feature
representations for natural and perturbed samples), and
provable defenses (ie, Reluplex algorithm [15]). Finally,
yet another approach lies in developing an adversarial
examples detector to reject such examples at the input of
the main model. However, Carlini and Wagner [16],
rigorously demonstrate that the properties of adversarial
examples are difficult and resource-intensive to detect. In
[11] it was proposed to divide the methods of protection
against adversarial attacks into two groups, implementing
two separate principles : methods of increasing intra-class
compactness and inter-class separation of feature vectors
and methods of marginalization or removal of non-robust
image features. This work [17] emphasize the possibility
for further development of these basic principles and their
combination, taking into account other requirements and
constraints.

There are three main approaches to ensure robustness
to the injection of faults in the computing environment
where neural networks are deployed : introduction of
explicit redundancy [18], learning algorithm modification
[19] and architecture optimization [19]. Faults are
understood as accidental or intentional bit flips in memory
which stores the weights or the original value of the
neuron. The introduction of explicit redundancy is
achieved, as a rule, by duplication of critical neurons and
synapses, uniform distribution of synaptic weights and
removal of unimportant weights and neurons. It is also
possible to increase the robustness of the neural network
to the injection of faults at the stage of machine learning
by adding noise, perturbations or injecting direct faults
during training. The same can also be achieved by
including a regularization (penalty) term in the
performance measure to indirectly incorporate faults in
conventional algorithms [20]. Optimizing the architecture
to increase robustness means minimizing the maximum
error at the output of the neural network for a given
number of inverted bits in memory where weights or
results of intermediate calculations are stored. Authors of
research [20] solved this problem with evolutionary
search algorithms or Neural Architecture Search tools.

However, architecture optimization is traditionally a very
resource-intensive process.

Papers [21, 22] propose methods of domain
randomization and adversarial domain augmentation
which increase the robustness of the model under
bounded data distribution shifts. Domain randomization is
the generation of synthetic data with amount of variations
large enough so that that real world data is viewed as
simply another domain variation [21]. This can include
randomization of view angles, textures, shapes, shaders,
camera effects, scaling and many other parameters.
Adversarial domain augmentation creates multiple
augmented domains from the source domain by
leveraging adversarial training with relaxed domain
discrepancy constraint based on Wasserstein Auto-
Encoder [22]. Transfer learning and multi-task learning
also  reinforce  resistance to  out-of-distribution
perturbations. However, if there is a real concept drift in
the data stream, there is a need to detect such a situation
and implement reactive mechanisms to adapt [23]. There
are studies on adaptation to real concept drift, but the lack
of labels for test data or a significant delay in obtaining
them remains a challenge.

Adversarial attacks, error injections, concept drift and
out-of-distribution examples cannot always be absorbed,
so the development of reactive resilience mechanisms,
namely graceful degradation, recovery and improvement,
remains relevant [2, 6]. The implementation of these
mechanisms is often associated with the need to detect the
perturbation. The most successful methods of detecting an
adversarial and out-of-distribution samples and concept
drift are based on the analysis of high-level feature space
using a distance-based confidence score or prototype-
based classifier [24, 25]. In [25], the mechanism for
detecting faults affecting inference is based on the
calculation of the reference value of the contrastive loss
function on test diagnostic samples of data in the absence
of faults. To detect faults, the current value of the contrast
loss function for diagnostic data is compared with the
reference value. In research [27] is proposed mechanisms
of Nested Learning and Hierarchical Classification,
particularly useful for the implementation of the
mechanism of graceful degradation.

In [28], consider algorithms for adapting models to
destructive perturbations, where the principles of active
learning or contrastive learning are used to increase the
speed of adaptation by reducing the requirement for
labeled data in quantities. Semi-supervised learning
methods are proposed in [29] for the simultaneous use of
both labeled and unlabeled data in order to accelerate
adaptation to concept drift. The methods of lifelong
learning, which allow to continuously accumulate
knowledge from different tasks and improve, as well as
different reminder mechanisms helping avoid catastrophic
forgetting problem are considered in [5]. Various
approaches to the implementation of meta-learning to
improve the effectiveness of adaptation are covered in [4].
The paper considers the principle of self-distillation for
training neural networks which can implement adaptive
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calculations and speed up the inference mode as the
learning efficiency of the lower layers of the neural
network grows.

Thus, there are numerous studies of separate
principles of resilience of data classification models, but
there are virtually no works which consider their
coterminous combination. However, in systems analysis,
there are studies related to the provision of affordable
resilience [7] which are particularly relevant for data
analysis systems operating under resource constraints.

3 MATERIALS AND METHODS

When building the model, we aim to implement the
main characteristics of resilience: robustness, graceful
degradation, recovery and improvement. The model is
based on the following principles:

— hierarchical labeling and hierarchical classification
to implement the principles of graceful degradation by
coarsening the prediction with a more abstract class with
reasonable confidence when classes at the bottom of the
hierarchy are recognized with low confidence level;

— combining the mechanisms of self-knowledge
distillation and nested learning to increase the robustness
of the model by increasing the informativeness of the
feedback for the lower layers at the training stage and
accelerate inference by skipping high-level layers for
simple samples at inference stage;

— prototype and compact spherical container formation
for each class to simplify detection of out-of-distribution
samples and concept drift;

— using memory FIFO-buffer with limited size to store
labeled and unlabeled data with corresponding values of
loss function obtained by inference for implementation
diagnostic and recovery mechanism.

These principles should ensure resource-efficiency
because the model will have small branches for
intermediate  decisions, which introduces minimal
redundancy, since the main part of the feature extractor
body is shared between intermediate classifiers. In
addition, the size of the data buffers can be set to an
acceptable capacity from the point of view of resource
constraints.

Fig. 1 depicts the architecture of the resilient classifier
with sectional design. Sections consist of ResBlocks of
the well-known ResNet50 architecture. ResNet50
architecture also provided the inspiration for the
Bottleneck module, serving to mitigate the impacts
between each classifier of the lower sections, and to add
distillation knowledge from the high-level feature map to
the lower-level feature maps. The output of each section
is used to construct a separate classifier. Each classifier
receives feedback from the data labels and the last layer.
Feedback from the last layer, denoted by a dotted line,
ensures the implementation of the principle of self-
knowledge distillation.

A set of prototype vectors is constructed for the
classification analysis of the feature representation of
each section output. Prototype vectors are not fixed, they
are determined in the training process together with
weights of feature extractor. To implement the graceful
degradation principle, prototypes can belong to different
levels in the hierarchy according to the hierarchy of
labeling. In the example provided, a 2-level hierarchy is
used. To increase immunity to noise and implementation
of the information bottleneck, we approximate the feature
representation to a discrete form, which is why the output
of the feature extractor of each section uses the sigmoid
layer and the corresponding regularization in the training
algorithm.

—| D 520200 || 6705050 [ | 6705050 [ ] Sr0-050
generator |
7 W ResBlock 1 ResBlock 2 ResBlock 3 ResBlock 4
:
E | Bottleneck 1 | | Bottleneck 2 | | Bottleneck 3 |
'
'
. '
e || [oerse ] [oeme ] [ oeme ]
learning '
request/ H y y y
reasponse E | Sigmoid | | Sigmoid | | Sigmoid | Prototype
: module -
Moeeeee . N—— 0 Level 1, 2
A 4 4 ) 4
A 4 Prototype Prototype Prototype
module - module - module -
Memory Level 1,2 Level 1, 2 Level 1, 2
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A
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Figure 1 — Resilient classifier model
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The radius of hyperspherical containers of classes is
optimized for each prototypical classifier. Container radii
are stored in memory to detect high levels of uncertainty
when making decisions. Test samples outside the class
containers become candidates for incremental learning
using unlabeled samples and trigger a request for manual
labeling (active learning) to be performed at a later stage.
Controlling for the samples outside the class container can
also be used for real concept drift and out-of-distribution
detection.

After updating the weights and parameters of the
model, the diagnostic dataset and the corresponding value
of the loss function must be stored (or updated) in
memory. After that, a subset of diagnostic data should be
passed along for processing together with the test samples
in each batch. This will allow comparison of the past and
present values of the loss function to detect errors or
injection faults in the memory of the neural network
weights. Where the difference between past and present
values of the loss function exceeds a certain threshold
a =0.01 a neural network fine-tuning algorithm utilizing
the diagnostic data needs to be initiated to bring this
difference under a threshold 3 =0.001.

Multi-section structure of the model with intermediate
classifiers allows implementing adaptive calculations,
allowing accelerating the recognition of simple images.
At the same time, as the model is continually trained, it
becomes faster due to increased recognition confidence of
the lower section classifiers. This, in turn, will allow the
rest of the high-level sections of the model to be skipped.
The following rules for classification analysis in the
adaptive calculations framework are proposed:

— Neural network calculations are
sequentially, section by section;

— high-level sections can be skipped if in the output of
the current section the maximal value of the membership
function to a particular class of the lower hierarchical
level exceeds the confidence threshold T ;

— if the maximal value of membership function of any
of the hierarchical levels of the classifier at the output of
the current section has not increased compared to the
previous section, then the subsequent calculations can be
omitted;

— where any of the conditions of omission of the
subsequent sections are fulfilled or the classifier in
question is the last classifier in the model and the
maximal value of the membership function of the lower
hierarchical level does not exceed the confidence
threshold, the higher level in the hierarchy is checked;

— where a class with a sufficient confidence level has
not been identified, a decision is refused, a request for a
manual labeling is generated, and the corresponding
sample is designated as suitable for unsupervised tuning.

The confidence in the forecast of i -th sample
belonging to the k -th recognition class, is determined by
the following membership function

performed

dist(z;, z} )

N’I’k (5)

Wi(z;)=1-

If maximum value of the function (1) for an input
unlabeled sample z; is less than zero, such a forecast

should not be trusted and such sample should be added to
the buffer of unlabeled data outside the training
distribution. Where the input unlabeled sample falls into
one of the containers of the recognition classes (at any of
the levels), it should be added to the in-class unlabeled
data buffer within the training distribution. Unlabeled
sample buffers can be used for training with pseudo-
labeling, soft-labeling or for consistency regularization.

Where the model was trained, but in the buffer of the
new labeled data an occurrence of n samples of the ¢ -th
class misallocated during forward propagation to k -th
class container is detected, the real concept drift is
recognized.

To avoid catastrophic forgetting in the context of
concept drift or emergence of a new recognition class a
reminder function is implicitly implemented. Such
function is based on unlabeled data buffers and
prototypical vectors in feature space, which are changing
slowly. Upper layers knowledge distillation mechanism
also serves the same purpose.

Data from unlabeled data buffer can be moved to the
labeled data queue after the feedback on their actual
affiliation with the classes is received. The priority of
specific samples being recommended for manual labeling
depends on the value of the membership function (1).

During the development of the training algorithm, we
aim to ensure the robustness, graceful degradation,
recovery and improvement. To this end, the training
algorithm will be based on the following principles :

— accounting for the hierarchy of data labeling and
hierarchy class prototypes by calculating the loss function
separately for each level of the hierarchy to provide
graceful degradation at inference;

— implementation of self-knowledge distillation, i.e.,
distillation of knowledge from the high-level layer
(section) of the model down to lower layers (sections) as
additional regularization components to increase
robustness and provide adaptive calculations in inference
mode;

— increasing the compactness of the distribution of
classes and the buffer zone between classes to increase
resistance to noise, outliers, and adversarial attacks in turn
as additional distance-based regularization component;

— penalization of discretization error (compression to
binary form) of the feature representation as a way for
implementing an information bottleneck to improve the
robustness and informativeness of the feature
representation;

— implementation of reactive mechanisms for rapid
performance recovery under perturbations based on the
fine-tuning weights on diagnostic data to eliminate the
effects of detected faults, reset (re-initialization)
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prototypes of drifting or new classes, use of new
unlabeled data for consistency regularizing;

— ability to effectively use both labelled and unlabeled
data samples to speed up adaptation with a limited
quantity of labelled data, which usually comes with a
significant lag;

— avoidance of catastrophic forgetting when adapting
to perturbations without full retraining by implementing a
reminding mechanism utilizing the data buffers, class
prototypes and distillation feedback of the upper layers.

The proposed training method consists of two main
stages :

— preparatory training the model on labeled and
unlabeled data using a semi-supervised regime;

— adaptation to perturbation with semi-supervised
supervision and active learning feedback.

The main criterion for learning in both cases is the
information measure. The loss function based on the use
of the information measure has the form:

Liyp =1-J . (6)

The normalized modification of C. Shannon’s
entropy-based information measure is used as the
criterion of the recognition efficiency of the & -th class
and calculated by the formula [30]

o H,—H, _
HO
=1 +1—[ k k +
2{ oy, +D2,k Ol +D2,k
Dy Dy
Dy +By Dy + By
Bk Bk
Dy +By Dy y +By
+ Dok log, Dok . @)
o +D2,k Ol +D2,k

A separate hyperspherical surface is built for each
class in the radial basis feature space. The accuracy
characteristics of the hyperspherical decision boundary
for each class can be calculated on the basis of statistical
tests as follows :

TP,
Dyj=——"t— g, (3)
’ TPk+FNk+8
TN
Dyy=—k  4¢, ©9)
"IN, +FP, +¢
FN
o =———h ¢, (10)
FNk +TPk +&

FP,

=—FK 4
i FP, +TN, +¢

(11

Procedures for calculating statistical tests are not
differentiable, so in the training mode their smoothed
versions can be used instead [31]

n.‘/IB
TP~) 50y,

(12)
i=1
nMB
FP~Y 5,0(-y). (13)
i=1
nMB
FN=~Y (1-3)0y;, (14)
i=1
n‘\/ﬂi
TN~ (1-5)001-y). (15)
i=l
B ={retu(u; ) | k=1,K}. (16)

Admissible domain of criterion function (7) is
bounded by inequalities D;; >0.5 and D,; >0.5, or

By <0.5 and oy <0.5. In order to take into account the

admissible domain of function (7) in the optimization
procedure based on error backpropagation method it is
proposed to perform the following operations when
calculating the loss function [30]:

Dy, =max(Dy,0.5), a7
Dy j =max(Dy, 0.5), (18)
oy =min(oy, 0.5), (19)
By =min(B;, 0.5). (20)

To increase the compactness of class distribution and
inter-class gap in feature space it is proposed to use the
contrastive-center loss function that calculated for labeled
training samples [32]

dist(z;,Z,,)
Lecr =—% '
Z dist(z;, z; ) +1
k=Lk#y,

€2y

To optimize boundaries of classes it is proposed to use
additional regularization component L~ that connects the
average distance between class prototypes and the
average radius of separate hypersurface class boundaries
(container)

(22)
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_ 1 K K
d=———>3% >dist(z,, %),

5 (23)

NK -1 (S
_ 1 & A
F—E;Vk . (2 )

To speed up adaptation to changes, unlabeled data
examples can be used in consistency regularization [29].
In this case, unlabeled data is divided into two groups :
unlabeled examples that fall into the class containers;
unlabeled examples that out of all class containers.

It is proposed to use unlabeled data that fall into the

class containers in regularization component L’Z}CE which
can be calculated by following formulas:

Lfcr =CE(¢"Gi ,v=1,¢" G ,1=D),  @9)

0= ;"P(“k<z,~ ve)

Zexp(uc(zi )/r)

c=1

(26)

Certain portions y (<10%) of unlabeled data, which
fall into class containers and have maximum values of
g (z,), can be pseudo-labeled with the corresponding
classes. Such pseudo-labeled data can be included in
every mini-batches during training.

Unlabeled examples that out of all class containers

may be examples of unknown classes or result of concept
drift. In this case, soft-labeling ¢/*'(z,) based on
distances to prototype of known classes should be used in

consistency regularization component it :

1 = CE () 4™ 1)), @7)
—dist(z, ,Z,
q:““%zl-):KeXp( 7)) (28)

Eexp(—dist(z,. ,Z, )) .

Consistent regularization can be performed not only at
the level of the classification module, but also at the level
of features. The corresponding regularization component
Ly, of the loss function is calculated by the formula

Lupo :dist(zi’ 2 ) (29)
Kullback-Leibler divergence loss Lcgp and L, loss
from hints Lggp and calculated based on the S -th (last)

output of the model and the s -th output (intermediate) of
the model are used in additionally for self-knowledge
distillation

Lpsp = dist(z], ZZS) ,

Lesp =KL(g" (.4 0).

(30)
(€1))

A regularization component which penalizes the
discretization error of feature representation is introduced
in addition to implement the information bottleneck [30]

Lp=z1(e-z). (32)

The initial values of the parameters of the lower level
class prototypes are initialized on the basis of the
Hadamard matrix using the principle of label smoothing.
For this first the dimensionality of the Hadamard matrix is
_ 2cei/(log2(N))

determined N, 000

, where ceil() is the
function rounding a number to a larger integer value. All
values less than 0 are replaced by 0, ie

Z = max (0, Hadamard (N ,;,4,,..,,)) Subsequently. As the

next step, to facilitate the process of adapting the class
prototype to the data structure, the proposed approach
uses label smoothing. This is performed according to the
formula Z'=Z%*0.7+0.15, as a result of which the 1’s
will turn into 0.87, and the Os into 0.15. K of the first
vectors truncated by N first features , ie
z=Z"T1:K,1:N] are then selected from the resulting

matrix. The trainable scale factor 7, for radius of

hyperspherical decision boundary (container) of & -th
class is initialized with a value of half of Plotkin’s Bound,
divided by the dimensionality of the feature space

rke(lﬁ K ji= K (33)
22K-1)N 4.(K-1)

Appearance of a sample with a label indicating a new
(K +1)-th lower-level class necessitates a formation of a

new prototype for the class z,,, with the corresponding

initial values of the radius scale factor rg,; . This is

achieved by selecting the nearest vector from the
remaining unused rows of a modified Hadamard matrix
Z', where the proximity is determined on the basis of
Euclidean Squared distance. Initial value of Radius scale
factor for the new class is also determined by formula
(14), but taking into account the new number of classes.

Each coordinate of the prototype of the upper
hierarchical level 1is initialized by copying the
corresponding coordinate of one of the prototypes of the
lower level, selected at random. Initial class radius of the
upper hierarchical level is determined by formula (14)
taking into account the number of classes at this level.

Where a real concept drift is recognized, prototypes of
drifting classes are populated with random numbers from
the range [0; 1].

The resulting loss function is formed by the sum of the
above components, averaged by sections of the model and
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levels of class hierarchy, with coefficients that regulate
the impact of individual components depending on the
training regime.

The following combined loss function averaged over
hierarchical levels and model sections is suggested for
supervised learning

L= }\‘INF[_‘INF + KCCLZCCL + kcl_'c + }\‘FSDZFSD +
+hespLesp ALy -

CSDCSD

(34

When new labeled data appear, they are combined
with unlabeled data from FIFO-buffer to implement
continuous adaptation using the loss function

Lyopar, = Ls + XZL(C{ELZ)/,E{E + A‘ZCELZCE + oLy, -

(35)

Default values of coefficients are proposed as

follows : A =10 , Aey =10 , A.=0001 |,
Apgp =0.01 | Aoy =01, %, =0001 , A2 =0.1 ,
A =0.1, Ay, =0.01.

4 EXPERIMENTS

The Cifarl0 dataset was chosen for experimental
research because it is publicly available and its images are
small in size, which speeds up experimental research. The
classes of this dataset can be arranged in a hierarchical
structure. For example, the first upper level class will be
the animal class, which includes the subclasses bird, cat,
deer, dog, frog and horse. The second upper level class
will be the vehicle class, which includes airplane,
automobile, ship and truck subclasses. Therefore, 12
prototype vectors will be used at the output of the
classifier of each section, of which 2 for upper level
prototypes and 10 lower level prototypes. For all
experiments, the chosen confidence threshold, considered
sufficient to make a decision, is 7 =0.8 . The Cifarl0
dataset consists of 50,000 training images and 10,000 test
32x32 color images distributed evenly between 10
classes. For convenience of the analysis for training of
base model we will use 70% of training data to form
dataset base, and use the remaining 30% for additional
dataset _additional training dataset.

As a result of perturbations, there is a notable decrease
in model performance. To test the ability to recover, we
define recovery as the state of reaching 95% of the
performance level observed prior to perturbation. The
control interval is set at 7, =200 to ensure testing on the

full volume of test data. During recovery, each test mini-
batch is preceded by a training mini-batch. The size of the
mini-batch is equal to 128 examples.

To test the model for resistance to faults and the
ability to recover, it is suggested to use the TensorFI2
library, which is capable of simulating software and
hardware faults. In the experiment, it is proposed to
consider the influence of the most difficult to absorb type
of faults by generation of random bit inversion (bit-flip

injection) in each layer of the model. A fixed share of
tensors is randomly selected (fault rate) and 1 bit is
randomly selected from them to be inverted. For
diagnostics and recovery, along with test data, diagnostic
data is added to the input of the model in each mini-batch.
Diagnostic data are generated from the dataset additional
set and data quantity is equal to the size of 128 examples.

Different model weights have different importance
and impact on model performance. In addition, a fault in
the higher bits of tensor value leads to a greater distortion
of the results than a fault in the lower bits. Therefore,
statistical characteristics should be used to evaluate and
compare the model’s resilience to different proportions of
damaged tensors. The statistical characteristics are
derived from a large number of experiments, where bits
and tensors for inversion are chosen randomly from a
uniform distribution. For simplicity, we can consider the
median value (MED) and interquartile value (IRQ) of the
integral metric of classifier’s resilience for the classes of
the upper and lower hierarchical level, calculated after
1000 experiments. We can also consider the influence of
the dimensionality of the feature space.

To test the model for resistance to noise and
adversarial attacks, it is suggested not to rely on gradients
or other features of the model architecture and learning
algorithm. Instead testing will be carried out on the basis
of black box attacks. To assess the level of disturbances,
the resistance to which is tested, it is necessary to choose
a metric. In practice, such metrics as LO-norm, L1-norm,
L2-norm and Loo-norm have become widespread.
However, only LO-norm and Loo-norm impose restrictions
on the spatial distribution of noise, which prevents the
formation of distorted samples that are incorrectly
classified even by humans. In addition, the selection of
the perturbation level by the metric LO-norm or Loo-norm
does not depend on the size of the image, which is
convenient for comparison. Covariance matrix adaptation
evolution strategy (CMA-ES) using the Loo metric [33] is
chosen as an evolutionary attack strategy for our
experiments. Classifier efficiency measurements are
performed on perturbed test samples, with each mini-
batch of perturbed test data created on the basis on the
actual model. At the same time, mini-batches of perturbed
data from the dataset additional set are created, and 50%
of them are provided with data labels for active learning
emulation. Perturbed data from the dataset additional set
is not involved in measuring the model’s efficiency, but is
used to adapt it to disturbances of this type.

Resilience testing to the appearance of new classes
and to the concept drift is performed on the classes of
lower hierarchical level. Each of the classes will be
considered as a new class in turn. Likewise, real concept
drift will be examined between any pair of classes.

5 RESULTS
Fig. 2 shows an example of model performance
recovery curves for classes of the lower hierarchical level
with the feature space dimension N=64 after fault
injection. The vertical axis corresponds to the value of the
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information criterion averaged over the set of the classes,
and the horizontal axis corresponds to the number of test
iterations of the trained model on the dataset base set.
The first 50 iterations take place without fault injection,
and on the 51st iteration, 4 versions of the model are
generated with a different proportion of tensors with an
inverted bit in a random position, i.e. fault ratee

{0,1; 0,3; 0,5; 0,6} . Therefore only 4 recovery curves of
the model’s performance are presented below.

jtest
0.8
0.6 -
0.4 1
—— fault rate = 0.6
02 """ fault rate = 0.5
—:= faultrate = 0.3
— fault rate = 0.1
0.0

0 100 200 300  iter_num
Figure 2 — Example of performance recovery curves after fault
injection computed for low-level classes with information

measure as performance metric

Table 1 below shows the experimental data after
testing the resilience of the model to the faults injection,

where J, is the average value of the information criterion

before the impact of the fault injection, averaged over the
set of the classes, N is the selected dimension of the
features. In this case, the table shows the data collected
for different hierarchical levels of the model. The
hierarchical level number is denoted by the symbol H .

Table 1 — Experimental data of model resilience to the faults
injection testing

—

H | N fault rate MED(R) IRQ(R) To

1 64 0.1 0.981 0.021 0.992
1 64 0.3 0.952 0.019 0.992
1 64 0.5 0.883 0.020 0.992
1 64 0.6 — — 0.992
2 | 64 0.1 0.978 0.022 0.978
2 | 64 0.3 0.945 0.021 0.978
2 | 64 0.5 0.873 0.038 0.978
2 | 64 0.6 - - 0.978
1 128 0.1 0.981 0.019 0.985
1 128 0.3 0.955 0.018 0.985
1 128 0.5 0.919 0.020 0.985
1 128 0.6 - - 0.985
2 128 0.1 0.979 0.021 0.971
2 128 0.3 0.951 0.022 0.971
2 128 0.5 0.880 0.019 0.971
2 128 0.6 — 0.971

Analysis of the table 1 shows that if the share of
damaged tensors reaches 60%, it becomes impossible to
ensure recovery during processing T. mini-batches.

Fig. 2 shows the performance recovery curves, where the

curve corresponding to the damage of 60% of the tensors
after 200 iterations does not improve and does not show a
recovery of 95% of the performance prior to perturbance.
In addition, the analysis of the table 1 shows that
increasing the dimensionality of the feature space leads to
both a slight decrease in the performance of the model
without disturbances, and a slight improvement in the
median value of the integral metric of resilience. The
corresponding interquartile value of the integral metric of
resilience is in the interval [0.01; 0.04].

Fig. 3 shows an example of recovery curves of model
performance for classes of the lower hierarchical level
with the feature space dimension N=64 after the
application of adversarial attacks. The vertical axis
corresponds to the value of the information criterion
averaged over the set of the classes, and the horizontal
axis corresponds to the number of iterations of testing the
trained model on the dataset base set. The first 50
iterations are tested without adversarial attacks, and on
the 51st iteration, data sets with 4 different threshold
values of the disturbance level are generated, i.e.
threshold € {1; 3; 5;10} Therefore, 4 performance

recovery curves are displayed.

jtest
0.8 1
0.6
0.4 1
—i— threshold = 10
0.2 === threshold =5
—-— threshold = 3
—— threshold =1
0.0 — T : ; - .
0 100 200 300 iter_num

Figure 3 — Example of performance recovery curves after
adversarial attack computed for low-level classes with
information measure as performance metric

Table 2 shows the result of the experimental testing
the model’s resilience to adversarial Loo -attacks.

Analysis of the table 2 shows that if the adversarial
perturbation level is less than 10, it becomes impossible to
obtain recovery by processing 7. mini-batches. Fig. 3

shows performance recovery curves, where the curve
corresponding to a perturbation level of 10 after 200
iterations does not provide 95% performance recovery. In
addition, the analysis of the table 2 shows that an increase
in the dimensionality of the feature space leads to a slight
decrease in the efficiency of the model on unperturbed
data, but also to a noticeable improvement in the median
value of the integral index of resilience, with
corresponding interquartile value of resilience being in
the interval [0.01; 0.03]. Therefore, according to formula
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(4), the dimension of space N =128 is a more optimal
compromise option than lower dimension N =64 .

Table 2 — Experimental data of the model resilience to
adversarial attacks testing

H N threshold MED(R) IRQ(R) To

1 64 1 0.980 0.017 0.992
1 64 3 0.955 0.019 0.992
1 64 5 0.885 0.017 0.992
1 64 10 0.667 0.027 0.992
2 64 1 0.978 0.028 0.978
2 64 3 0.954 0.021 0.978
2 64 5 0.879 0.017 0.978
2 64 10 — — 0.978
1 128 1 0.988 0.018 0.985
1 128 3 0.967 0.018 0.985
1 128 5 0.925 0.022 0.985
1 128 10 0.701 — 0.985
2 128 1 0.983 0.021 0.971
2 128 3 0.962 0.021 0.971
2 128 5 0.905 0.026 0.971
2 128 10 — — 0.971

A comparison of the averaged information efficiency
criterion and the integral metric of resilience for different
hierarchical levels shows that the upper-level classifier is
characterized by a lower level of uncertainty and exhibits
a higher level of resilience to disturbances, which allows
it to be used in graceful degradation mechanisms in case
of adversarial attacks.

Fig. 4 shows the performance recovery curve for the
worst-case variant of the new class and the worst-case
pair of drifting classes in terms of the model’s resilience
to these perturbations.

Jtest —— .___’.——.:_._:_::-_-:_—_;:'_"___"a-\-
}_.’—'—' - ‘—”'_
\ ’_—’
0.81 il
0.6
0.4
0.2
--- add new class
—-— real drift between two classes
0.0

0 100 200 300 iter_num

Figure 4 — Worst cases of performance recovery curves after add
new class and real concept drift between pair of classes

Analysis of Fig. 4 shows that in both cases the T

quantity of mini-batches (iterations) was sufficient for
recovery. In comparison, learning from scratch required
more than 100 times more mini-batches (taking into
account 10 learning epochs and a mini-batch size of 128
samples). The worst performing new class from the point

of view of the integral metric of resilience was the “bird”
class (R=0.88). The worst pair of drifting classes from the
point of view of the integral metric of resilience were
“truck” and “automobile” classes with corresponding
R=0.95.

Thus, the ability of the proposed algorithm to restore
performance after exposure to perturbations has been
experimentally proven. Described method of adaptation to
adversarial attacks ensures absorption of disturbances of
this type and amplitude and ensures performance
recovery. Superior efficiency and resilience of the
algorithm during the analysis of classes of a higher
hierarchical level was also confirmed; this forms the basis
for implementation of graceful degradation mechanisms.

6 DISCUSSION

The proposed model of the classifier has a multi-
section structure designed to implement adaptive
calculations and increase the generalization capabilities of
the model due to self-knowledge distillation. Integral
metric of model resilience using the outputs of each
section and the model using the output of only the last
layer of the model are compared to identify the influence
of the multi-section structure on the resilience of the
model. The model with the feature space dimension
N =64 is considered.

Table 3 — Comparison of the integral metric of resilience for the
model using the outputs of individual sections and the model
with a single output in the last layer

Only single Perturbation MED(R) IRQ(R)
output
True Fault injection 0.891 0.034
(fault_rate=0.3)
True Adversarial attack 0.912 0.053
(threshold=3)
False Fault injection 0.955 0.018
(fault rate=0.3)
False Adversarial attack 0.965 0.021
(threshold=3)

Analysis of the table 3 shows that the median value of
the integral metric of resilience for the model using the
outputs in all sections is 5-6% higher compared to the
model with a single output on the last layer.

It is assumed that as the multi-sectional model
architecture is trained, its computational efficiency of
inference is improved by saving resources on simple
examples without perturbations. Fig.5 shows the
dependence of the ratio of the average time spent in the
adaptive mode 7, ~to the time of inference across the

on the fault rate (Fig.5a) and
-attack

0

dap

entire network 7,

maximum amplitude of the adversarial L
(Fig. 5b).
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Tadap
Tfull
e /—_
0.6
0.4
0.2
0.0
0.0 0.1 0.2 0.3 0.4 0.5 fault_rate
a
Tadap
Ttull
0.8 /
0.6
0.4+
0.2
0.0
0 1 2 3 4 5 threshold
b

Figure 5 — Dependence of the average time ratio in the
adaptive mode to the time of inference across the entire network
on the factor of influence : a — fault rate; b — maximum

amplitude of the adversarial L_ -attack

Analysis of Fig. 5 confirms the hypotheses that the
average inference time increases when the amplitude of
the adversarial attack and the frequency of faults increase
and vice versa. This can also be considered a mechanism
of graceful degradation.

CONCLUSIONS

The scientific novelty of obtained result are the new
model architecture and the learning algorithm of a
multilayer classifier with the property of resilience to the
injection of faults, adversarial attacks, and concept drift.

The model with the proposed architecture has a multi-
section structure. At the output of each section, a
hierarchy of optimized prototypes and radii of
hyperspherical separation boundaries (containers) of
classes is built, which ensures the absorption of some part
of disturbances and the graceful degradation.

A new learning algorithm that combines ideas and
principles of self-knowledge distillation, maximization of
compactness of class distribution and interclass buffer
zone, discretization of feature representation and
consistency regularization is proposed. Self-knowledge
distillation is aimed at improving the efficiency of an
inference by adaptive computing and the mechanism of
graceful degradation. Consistency regularization is carried
out both at the level of classification output and at the
level of features and is used to increase the robustness and
speed of adaptation to destructive perturbations due to the
effective use of unlabeled data. At the same time, the

main component of the loss function is the information
criterion of the classifier’s effectiveness, expressed as a
functional of smoothed probability estimates for errors of
the first and second kind, true positives and true negatives
tests.

During testing of the proposed algorithm on the
Cifarl0 dataset, it was found that if the proportion of
damaged tensors reaches 60%, it is not possible to ensure
recovery during the processing of mini-batches both for
the upper and lower levels of class hierarchy. Similarly, if
the adversarial L -attack perturbation level is 10, it fails

to recover during mini-batches processing at the lower
class hierarchy level, but for the upper class hierarchy
level it is able to achieve 95% recovery of the
performance obtained on unperturbed samples. In
addition, it was observed that increasing the
dimensionality of the feature space leads to a noticeable
improvement in the median value of the integral mectric
of resilience. At the same time, the interquartile value of
the integral metric of resilience is in the interval [0.01;
0.03].

A comparison of the averaged information efficiency
criterion and the integral metric of resilience for different
class hierarchy levels shows that the upper level of class
hierarchy is characterized by a lower level of uncertainty
and exhibits a higher level of resilience to disturbances,
which allows it to be used in graceful degradation
mechanisms under the influence of adversarial attacks.

The median value of the integral metric of resilience
of model that uses the outputs of all sections is 5-6%
higher compared to the model that has a single output on
the last layer. The multi-section structure of the model
saves 40% of time on the test dataset, but in the case of
perturbation influences, the processing slows down a bit.

The proposed learning algorithms provide adaptation
to the appearance of a new class and a real concept drift
between a pair of classes in 7. =200 iterations with a

mini-batch size of 128 examples. The worst class in the
Cifarl0 dataset, from the point of view of the integral
metric of resilience, if we consider it as a new class, is the
“bird” class, for which the value R=0.88 was reached.
The worst pair of drifting classes from the point of view
of the integral metric of resilience are the “truck” and
“automobile” classes, for which the value of R=0.95 was
reached.

The practical significance of the achieved outcomes
is formation of a new methodological basis for the
development of classification analysis algorithms with
resiliece to adversarial attacks, fault injection and concept
drift.

The prospects for further research are the
development of criteria, models, and methods for
measuring and certifying the resilience of image
classification analysis models.
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AHOTAULIA

AxTyanbHicTh. [IpobiemMa Bpa3IMBOCTI aNropuTMiB KiIacu(iKaiifHOro aHaji3y 300paxeHb 10 AeCTPYKTUBHHX 30ypeHb I0Ci He
OyJ1a MMOBHICTIO BUpIIIEHA i € JOCUTh aKTYAJIBHOIO [UISI KPUTUYHHX 10 O€3IeKU 3acTOCYBaHb. ToMy 00’ €KTOM IOCIHIIKEHHS € IPOoLeC
HaByaHHS Ta (OpPMyBaHHS pilleHb Ui Kiacugikaropa 300paxkeHb, 0 (YHKIIOHyE MiJ BIUIMBOM JECTPYKTUBHUX 30YpEHB.
IIpeameroM AOCTIIKCHHS € apXiTEeKTypa MOJIEII Ta aJTOPUTM HaBYaHHS Kiacudikatopa 300pakeHb, 1110 3a0e3MeUy0Th CTIHKICTD 10
MpOTUOOPYMX aTaK, IHKEKIii HecnpaBHOCTe# 1 npeiidy KOHIemnii.

Mera pocaizxkeHHst — € po3pobieHHs epeKTUBHUX apXiTEeKTypH MOJENI Ta ajJropuTMy HaBYaHHs, sIKi 3a0e3MeuyIoTh CTIHKICTh
JI0 TPOTHOOPYNX aTaK, IHKEKII HECIPaBHOCTEH Ta Apeiidy KOHIEMIii.

MeTtonu aocaimkeHHsl. ApXITEKTypa MOZIETl Ta aJrOpUTM HAaBYaHHS pPEali3oBaHi HUIIXOM MNOEIHAHHS iAed 1 NPHUHIUIIB
CaMOJUCTHIIALIT 3HAaHb, MaKCcHMi3amii iH(opMaIiifHOT MipH Ta KOMITAKTHOCTI PO3MOALTY KJIaciB, MaKCHMI3allil MDXKKIIACOBOTO 3a30DY,
CTHCHEHHSI JJAaHUX Ha OCHOBI AMCKpETH3allil 03HAKOBOTO ITOJIAHHS, & TAKOXK HABYAHHS 3 YaCTKOBUM 3TyUCHHSIM yUHUTEISI Ha OCHOBI
peryJsipizanii y3roukeHoCTi.

Pe3yabTaT. Po3pobieHo apxiTekTypy Mojeii i alroputM HaB4aHHs KiacudikaTopa 3o00pakeHb. OTpumanuii kiacudikaTop
Oyno BunpoOyBano Ha Habopi nanux Cifarl0 ms oriHioBaHHS Horo pesinbeHTHOCTI Ha iHTepBani B 200 MiHi-makeTiB i3 po3mMipom
HaBYAJILHOTO 1 TECTOBOTO MiHi-TIakeTy B 128 3paskiB [1st Takux 30ypeHs : mpoTndopui L oo-araku yopHOI mryxmsan 3 piBasmu 1, 3, 5
Ta 10; iHBEepCis 0THOTO BUMAIKOBO 0OpaHoro 6iTy B TeH3opi st 10%, 30%, 50% ta 60% BHMaAKOBO 0OpaHUX TCH30PIB; M0aBaAHHS
OJTHOTO HOBOTO KJIacy; peajbHUH Ipeiid koHumenmiii MiK maporo kiaciB. PO3IJIsiHYTO BIUIMB PO3MIPHOCTI HMPOCTOPY O3HAaK Ha
3HaueHHs iHdopMaliiHOro KpuTepito eheKTUBHOCTI Mozeli 6e3 30ypeHb Ta Ha 3HAYCHHS IHTErpalbHOTO MOKa3HMKA PE3iTbEHTHOCTI
i1 9ac BIUTMBY 30ypeHb.

BucHoBKH. 3ampoIlOHOBaHI apXiTEKTypa MOZETI 1 alrOpuTM HaBYaHHS 3a0e3MEeUyIOTh MOTIMHAHHSA YaCTHHH 30ypIOI0YOTro
BIUIMBY, BUTOHYEHY AETpajallifo 3a PaxyHOK i€papXidyHOCTI KJaciB Ta aJanTHBHAX OOYHCIIEHb, a TaKOXX MIBHAKY aJalTalliio Ha
oOMexeHiH KUTPKOCTI po3MideHHX JaHuX. [lokazaHO, IO aJanTHBHI OOYHCIICHHS NO3BOJIAIOTH eKoHOMHTH 10 40% pecypciB 3a
paxyHOK PaHHBOT'O NMPUHHATTS PIlIeHh HAa HIDKHIX CEKILIAX MOJENi, OJHAK 30ypIOIOYMil BIUTUB NPU3BOAUTH /IO YIOBIIBHEHHS, IO
MOXHA PO3MIISAATH SIK BUTOHYEHY Aerpajariro. JloBeneHo, mo OaraTocekIliiiHa CTPYKTypa, IO HAaBYAETHCS 3 BHKOPHCTAHHIM
MIPUHLMIIB TUCTHILILIT caMo-3HaHb, 3a0e3nedye OiIbII HiK Ha 5% MOKpalleHHs 3HaYeHHs IHTerpaJIbHOTO TIOKa3HUKA Pe3iTbEHTHOCTI
MOPIBHSIHO 3 apXiTEKTYpOIo, /¢ PIllIeHHs NPUHMAEThCsl Ha OCTaHHbOMY Iiapi Mozelni. [TomiueHo, O po3MipHICTH MPOCTOPY O3HAK
MOMITHO BIUTMBAa€ Ha CTIMKICTh 1O MPOTHOOPYHMX arak i MOKe OOHMpaTHCs SIK KOMIPOMIC MK Pe3iIbEHTHICTIO 10 30ypeHb Ta
e(eKTUBHICTH 0€3 BIUIUBY 30ypEHb.
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AHHOTANUA

AxTyanbHocTh. [IpoGiiemMa ysS3BUMOCTH aITOPUTMOB KJIACCH(HKAIIMOHHOTO aHalM3a H300paXeHHMH K JEeCTPYKTHBHBIM
BO3MYIICHHSM JI0 CHX ITOp HE ObLIa ITOJHOCTBIO pelleHa U JJOCTATOYHO aKTyalbHa JUIsl KPUTHIECKHX K 0e301acCHOCTH MPUMEHEHHH.
[ToaToMy OOBEKTOM HCCIEOBAaHHS SIBISETCS IMpouecc o0ydeHWs W (OPMHPOBAHUS pelIeHH Kiaccudukaropa H300paXKeHHH,
(YHKIMOHHUPYIOIIEM I10]] BIMSHUEM JIECTPYKTHBHBIX BO3MyIleHuH. [IpeameroM ncciemoBaHus SIBISETCS apXHTEKTYypa MOJEIH W
anroput™M oOyueHHs KiaccHM(pUKaTopa M300paXKEHUH, 00ECHeUMBAIONINE YCTOWYMBOCTD K COCTA3aTENbHBIM aTakaM, HHKCKIMU
HEHCIPaBHOCTEH U apeiidy KOHIEHIH.

Hens ucciaenoBaHus — pazpaboTka 3(PpQEeKTUBHBIX apXUTEKTYPhl MOJEIU M ajJroOpHuTMa OOYyYEHHS, KOTOpPhIE 00ECIICUYHBAIOT
YCTOMYMBOCTB K MPOTHBOOOPCTBYIOIINM aTaKaM, HHXEKIIMU HEUCIIPABHOCTEH U apeiida KoHIenIurii.

MeToasl uccaenoBaHusA. APXUTEKTypa MOAENU U AITOPUTM OOYYEHHS pPealn3yIOTCS IyTeM COYeTaHWs HAEH M IPUHIUIIOB
CaMOJUCTWULIIUY 3HaHMH, MaKCHMH3AIMH MH(MOPMAIMOHHOW Mephl M KOMIIAKTHOCTH PAacCIpeleleHHs KIAcCOB, MaKCHMH3AIHU
MEXKKJIACCOBOTO 3a30pa, C)KATHsI JaHHBIX HA OCHOBE AMCKPETHU3AlMK NPU3HAKOBOTO MPECTAaBICHHS, a TAK)KE 00YyUCHUSI C YACTHIHBIM
MIPUBJICYCHUEM YUUTEISI HA OCHOBE PEryJIIPU3aLUH COTIAaCOBAHHOCTH.

Pe3yabraThl. Pazpaborana apxuTeKTypa MOAEIH U auroputM oOydeHus kimaccudukaropa wnzodpakenuid. IlomydeHHbIH
knaccuukarop 6611 vcnbiTad Ha Habope manHbix CifarlQ s oLEeHUBaHHS ero Pe3HIbeHTHOCTH Ha HHTepBaite B 200 MHHU-IAKETOB
¢ pa3MepoM 00yYaroIero u TECTOBOrO MUHH-MakeTa B 128 00pa3LoB AJs TAKMX BOSMYILEHHH: cocTs3aTenbHble Loo-aTaku u€pHOTO
SIIUKa ¢ ypoBHsME 1, 3, 5 u 10; HHBepcHs OAHOTO CIIydaifHO BeIOpaHHOTO Outa B TeH3ope Mt 10%, 30%, 50% u 60% ciyqaiiHo
BEIOpaHHBIX TEH30pOB; 00ABIEHHE OJHOTO HOBOTO KJIAacca; PeasbHBIM Jpeii() KOHLENINHM MeXIy Mapoi KiaccoB. PaccMorpeHo
BIMSHHE Pa3MEPHOCTH IIPOCTPAHCTBA IPU3HAKOB Ha 3HAa4YeHHE WH(OPMAIMOHHOTO KpHUTepust 3(P(PEeKTUBHOCTH Monenu Oe3
BO3MYIIICHHUH U 3HaYCHHE MHTETPAIBLHOTO IOKa3aTels Pe3WILEHTHOCTH BO BPEMs BO3ACHCTBHS BO3MYILICHUH.

BruiBoasl. [Ipennaraempie apXUTEKTypa MOJEIN M aIrOPUTM OOydYeHHUs OOECIeYMBAIOT IMOTJIOIICHHE YacTH BO3MYIIAIOIIETO
BO3JEHCTBUS, WM3OLIPEHHYIO IETpajalldio 3a CUeT MEpapXWYHOCTH KJIAaCCOB M AaJaNTHBHBIX BBIUHCIECHHH, a Takke OBICTPYIO
a/lanTalyio HAa OrPAaHUMYEHHOM KOJIMYECTBE Pa3MEUEHHBIX JaHHBIX. [loka3aHo, YTO aJanTHBHbBIEC BEIYHUCICHUS MO3BOJISIOT SKOHOMUTD
10 40% pecypcoB 3a cUeT paHHETO NMPUHATHS PELICHUH Ha HIKHHUX CEKIHAX MOJEIH, OJHAKO BO3MYIIAIOIIEe BIUSIHIE IIPUBOAUT K
3aMEUICHUIO, YTO MOXHO pacCMaTpHBaTh KaK M3OMIPEHHYIO Jerpajanuio. Jloka3aHo, YTO MHOTOCEKIHOHHAs CTPYKTypa,
o0ydaromascsi ¢ MCHOJIb30BAaHUEM HMPHUHIUIIOB CAMOAUCTIILIAIMY 3HaHHH, obecriednBaeT Oojee yeM Ha 5% yiydlleHHe 3HaYCHUS
HHTETPANBHOTO IOKA3aTeNsl PEe3WILEHTHOCTH II0 CPAaBHEHHIO C apXUTEKTypOH, IZie peIIeHHe NMPUHUMAETCS Ha IOCJISTHEM CIIoe
MozeNny. 3aMe4YeHOo, YTO Pa3MEpHOCTh IPOCTPAHCTBA IIPH3HAKOB 3aMETHO BIIMSIET HAa YCTOWYMBOCTh K IPOTHBOOOPCTBYIOIINM aTakaM
Y MOXKET BBIOMPATHCSI KAK KOMIIPOMHUCC MEXK/Y PE3MIBEHTHOCTBIO K BOMYIICHUSAM U 3 )EKTHBHOCTEIO O3 BO3MYIICHHH.

KIIOYEBBIE CJIOBA: xinaccudukanus H300paXeHUH, poOacTHOCTh, pPE3WIILEHTHOCTh, YTOHYEHHas Jerpajarus,
COCTsI3aTeNbHbIC aTaKH, HHYKEKIMS HEHCIPABHOCTEH, Apeid KOHIeNIHi.
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