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ABSTRACT

Context. The pairwise comparison method is a component of several decision support methodologies such as the analytic
hierarchy and network processes (AHP, ANP), PROMETHEE, TOPSIS and other. This method results in the weight vector of
elements of decision-making model and is based on inversely symmetrical pairwise comparison matrices. The evaluation of the
elements is carried out mainly by experts under conditions of uncertainty. Therefore, modifications of this method have been
explored in recent years, which are based on fuzzy and interval pairwise comparison matrices (IPCMs).

Objective. The purpose of the work is to develop a modified method for calculation of crisp weights based on consistent and in-
consistent multiplicative IPCMs of elements of decision-making model.

Method. The proposed modified method is based on consistent and inconsistent multiplicative IPCMs, fuzzy preference
programming and results in more reliable weights for the elements of decision-making model in comparison with other known
methods. The differences between the proposed method and the known ones are as follows: coefficients that characterize extended
intervals for ratios of weights are introduced; membership functions of fuzzy preference relations are proposed, which depend on
values of IPCM elements. The introduction of these coefficients and membership functions made it possible to prove the statement
about the required coincidence of the calculated weights based on the “upper” and “lower” models. The introduced coefficients can
be further used to find the most inconsistent IPCM elements.

Results. Experiments were performed with several IPCMs of different consistency level. The weights on the basis of the consid-
ered consistent and weakly consistent [IPCMs obtained using the proposed and other known methods have determined the same rank-
ings of the compared objects. Therefore, the results using the proposed method on the basis of such IPCMs do not contradict the re-
sults obtained for these types of IPCMs using other known methods. Rankings by the proposed method based on the considered
highly inconsistent IPCMs are much closer to rankings based on the corresponding initial undisturbed IPCMs in comparison with
rankings obtained using the known FPP method. The most inconsistent elements in the considered IPCMs are found.

Conclusions. The developed method has shown its efficiency, results in more reliable weights and can be used for a wide range
of decision support problems, scenario analysis, priority calculation, resource allocation, evaluation of decision alternatives and crite-
ria in various application areas.

KEYWORDS: interval multiplicative pairwise comparison matrix, consistency, expert judgements, fuzzy preference program-
ming, decision support systems.

ABBREVIATIONS NOMENCLATURE
DM is a decision-making; A is an interval pairwise comparison matrix;
PCM is a pairwise comparison matrix; n is a dimension of matrix 4, the number of pairwise
IPCM is an interval pairwise comparison matrix; compared objects;
AHP is an analytic hierarchy process; a; isan interval number, an element of matrix A4;
FPP is a fuzzy preference programming. I; is a left end of interval ay
u; 1s aright end of interval a;; ;
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w is a weight vector;

w; is an element of weight vector, i =1,...,n;

P is a matrix describing a system of inequalities,
P e RT",

q is a number of rows in matrix P, g =n(n—1);

B, is the k-th row of matrix P;

W (P,w) is a membership function of a fuzzy
preference relation;
d. is a parameter in function p (P, w);

H;;(w) is a convex membership function of a fuzzy

relation;

d; is a parameter in function p,;(w);

m,; is the most probable predominance value from the

interval [/;,u,];

Aisa fuzzy feasible area;

7" isa (n—1) -dimensional simplex;

w is a maximizing solution, the resulting vector of
weights;

A is an auxiliary variable;

A= 1% (W*) is the degree of overall satisfaction of
the decision maker with the optimal decision w ;

XZ- are coefficients, which characterize extended in-
tervals for weights ratios.

INTRODUCTION

The problems of evaluating decision alternatives in
semi-structured and unstructured subject areas have their
own characteristics [1, 2]: the uniqueness, complexity,
lack of optimality in the classical sense, multicriteria, data
uncertainty, incompleteness of quantitative input
information and the need to take into account qualitative
judgements of a decision maker. Semi-structured and
unstructured decision support problems are solved using
the expert estimates and the principle of decomposition of
a complex problem into subproblems [2—4]. Thus, a
typical hierarchical or network model for a practical
decision-making (DM) problem contains decision criteria,
sub-criteria, goals, sub-goals and decision alternatives [4].
By performing pairwise comparisons of the criteria and
alternatives, preference relations on the set of compared
elements are built, and the pairwise comparison matrices
(PCMs) are formed. Moreover, the pairwise comparison
method represents a natural, general way of thinking of a
person when making decisions [5, 6]. Based on PCMs,
the weights of criteria and the priorities of alternatives in
terms of each criterion are calculated. These priorities
form partial solutions to the initial problem and are
further aggregated into the resulting vector of global
priorities or weights of the alternatives. In recent decades,
considerable attention is given to development of the
theory and applications of the Analytic Hierarchy Process
(AHP) [7 — 10]. The rating, prioritization and resource
allocation problems, problems of choosing the best deci-
sion alternatives, planning, scenario analysis and
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sustainable development problems are solved using the
AHP.

One of the main elements of both the basic AHP and
its modifications is the calculation of local priorities or
weights using the pairwise comparison method and expert
judgements. The complex psychological process of a
comparative analysis made by a person in the presence of
multiple criteria and decision alternatives is significantly
influenced by various kinds of uncertainties [11]. The
input information in the majority of multi-criteria DM
problems is uncertaint and imprecise [12]. The
uncertainty level of pairwise comparison results can
increase with an increase of the number of compared ele-
ments [5, 13]. Therefore, many modifications of the AHP
have been proposed for calculating weights based on
uncertain estimates of pairwise comparisons: stochastic
[14], fuzzy [15-35], or their combinations. Fuzzy
multiplicative PCMs [15-18], interval multiplicative
PCMs [19-29] and different types of fuzzy preference
relations [30-35] on a set of pairwise compared
alternatives are investigated. The weights are calculated
on the basis of interval fuzzy preference relations [30-32]
and interval multiplicative preference relations [18, 19,
34, 35].

The resulting local priorities (weights) of the decision
criteria and alternatives on the basis of PCMs are
significantly influenced by the consistency level of the
initial expert pairwise comparison judgements. Methods
for assessing the consistency level of PCMs are developed
in [23, 26, 29, 31-35], methods for increasing the
consistency level of PCMs are proposed and discussed in
[27, 36], but this issue requires further research.

The object of study is an interval multiplicative PCM
of elements of DM model.

The subject of study is a method for calculation of
priorities (weights) of elements of DM model on the basis
of interval multiplicative PCM and fuzzy preference pro-
gramming.

The purpose of this work is to develop a modified
method for calculation of crisp weights (priorities) based
on consistent and inconsistent interval multiplicative
PCM of elements of DM model.

1 PROBLEM STATEMENT
Let A4={a; =[l;,u;]|i,j=1...n} be an interval
multiplicative pairwise comparison matrix (IPCM) of
objects, for example, decision alternatives regarding their

common characteristic (decision criterion), 0</; <u;,

liy=1/uj;, i =u; =1.In is necessary to find the vector
w={w, |i=1,..,n} of weights of the objects, such that

n
+
w; eR", ZWiZI'
i=1
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2 REVIEW OF THE LITERATURE

The first modifications of the pairwise comparison
method using fuzzy set theory appeared in the early 1980s
[37, 38]. Using extended binary arithmetic operations, a
method for calculating fuzzy weights was proposed based
on the PCMs with triangular fuzzy numbers [37]. This
approach was further developed in [15-17], where the
approximation of PCM elements g; by the (L-R)-type

fuzzy numbers a; was performed. Fuzzy numbers a;

represent the approximate value of preference of one
alternative over the other and form a fuzzy PCM A.0n

the basis of the fuzzy matrix A, fuzzy weights are

calculated, which approximate 4 : a; = w; /W it

Another approach, presented in [18, 20-22, 39], is
based on the discretization of fuzzy numbers — elements
of fuzzy PCM. Decomposition representation of fuzzy
PCM using level sets results in interval PCMs. Models of
least logarithmic squares [39], FPP [18, 19], goal pro-
gramming [22], lower and upper approximation models
[20], two-stage models [21, 40] and other have been pro-
posed, which operate with [IPCMs.

The first stage of the two-stage model [21] consists in
finding the minimum deviations of the expert IPCM from
the unknown consistent PCM. In the second stage, the
weight vector is directly calculated based on the founded
deviations. Another two-stage method for weight vector
calculation is based on the interval additive PCM [40]. At
the first stage of this method, programming models are
built to obtain crisp consistent PCMs based on
inconsistent interval PCMs. At the second stage, the
resulting weights are calculated with different degrees of
confidence.

The FPP method for calculation of crisp weights is
based on the IPCM and fuzzy mathematical programming
[18]. The FPP method requires the setting of additional
parameters, which characterize the level of satisfaction of
an expert or a decision maker with the calculated vector
of weights. The problem is transformed to a classical
fuzzy programming problem using the Bellman-Zade
principle. The FPP method [18, 19] has significant
limitation, which casts doubt on the validity of obtained
results. It is the sensitivity of results by the FPP method to
the renumbering of the compared objects.

The analysis of modifications of the pairwise
comparison method, analytical hierarchy and network
methods, which use the fuzzy sets, has shown that in these
methods little attention is given to methods for increasing
the consistency level of expert pairwise comparison
judgements represented by interval and fuzzy PCMs.

3 MATERIALS AND METHODS

IPCM 4 is inversely symmetric: a =1/al~j s
Vi, j=1,..,n. This is equivalent to the fulfillment of the
condition ll-j =1/ujl- for Vi,j=L..,n. Thus, the

elements of the upper triangular and lower triangular parts
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of the IPCM carry the same information about the values
of preference on a set of compared objects.
Definition. IPCM 4 is called consistent, if a weight

. . . .. +
vector w exists, which satisfies the conditions w; € R,

3w, =1 [20,21];
im1

by <wi/w; <u, ()

[/

i=L2,.,n-1, j=23,.,n,i<j.

A weaker concept of a fuzzy consistent [IPCM is also
used, such that violation of inequalities (1) is allowed to
some extent. According to the FPP method, a vector of
weights w is calculated that satisfies inequalities (1)
approximately.

Definition. IPCM 4 is called fuzzy consistent if a

n
weight vector w exists, such that w, € R", z w; =1 [18,
i=1
19]:
by sw/w; suy, @

i=12..n-1, j=23,..n, i< j,

where < is a fuzzy preference relation.

Inequalities (2) are transformed in order to formulate a
linear optimization problem for calculating the weight
vector w:

W, —uyw; £0,

-w,+lw, <0, i< j. 3)

System (3), which contains 7(n—1) inequalities, can
be written in the equivalent matrix form:

Pw0, @)

where P € R, g=n(n-1).

In the initial FPP method [18], the following
piecewise continuous membership function was used,
representing the kth row of the inequality (4), for which
PkW§ 0 . k :1,2,...,q .

1, Pw<0,
Bw
p, (Bw)=51- 1 0<Pw<d, 5)
k
0, Pw>d,;

where dj is a parameter specifying the interval of
approximate fulfillment of a crisp inequality P,w<0,

subscript & corresponds to the number of one-sided
inequality in the constraint system (3).
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The membership function pj (P, w) (5) describes the
degree of satisfaction of the decision maker with some
weight vector, according to the kth one-sided inequality
(3). According to (5), the p; (B, w) value:

— is zero, if the corresponding crisp constraint
B, w<0 is strongly violated,;

— grows linearly, is positive and less than one, if the
constraint P,w <0 is approximately satisfied;

—is equal to one, if the constraint B, w <0 is fully sat-
isfied.

Since both constraints in (3) correspond to the same
interval for @; given by the pair (i,/), a modified FPP
model is proposed [19], such that functions (5) are repre-

sented in the form of the following convex membership
functions:

- (-w, +L,w)) w,

<m,
- e
_ d; Wi ,
l”"ij(wi’wj)_ (5"
1 (Wz _uijwj) w; >
TTa, w v
i j
where d; is a parameter for interval [/;,u;], m, is the

most probable value of the preference from the interval
[;,u; ], namely the middle of this interval. The functions

(5") are as follows: p;(w): R™ — [—oo, W™ ]

The Bellman-Zadeh mathematical programming ap-
proach is uses in [18] for calculating the weight vector on
the basis of IPCM A=1{a, =[/;,u,]|i,j=1,.,n}. Let
u, (Pw), k=12,..,g be the membership functions (5)
of fuzzy constraints Pw<0 on the (n—1)-measuring
simplex 7" = {(wl,...,wn) |w, eR", Zwl. :1},

i=1

Definition. A fuzzy feasible region AonT"" isa
fuzzy set, which is an intersection of fuzzy constraints (4)
[18]:

;W) ={kr_rllif1q{uk (Bw)} [ w, eRﬂZn:wf =1}- (6)

i=1

The parameters d, values in (5) should be chosen

large enough to obtain a non-empty area A (6). In this

case, fuzzy set A (6) on T"' is convex. If fuzzy
constraints (3) are defined using membership functions

(5"), the requirement of non-emptiness of the set A (6)
can be weakened, and A is defined as follows:
py(w)= min

i=1,2,...,n—
Jj=23,...,n

iy 0} )
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Obviously, the fuzzy set 4 (6) is convex. In contrast
to the function (6), the function (6") can take negative
values for a strongly inconsistent IPCM in a case of too
small values of the parameter d, .

The area A defined by (6) or (6') indicates the overall
satisfaction for the decision maker with a certain crisp
weight vector. The maximizing solution is the resulting
weight vector.

Definition. The maximizing solution of the problem is
the vector [18]:

w =argmax minp. (w), 7
weT"™ Kk =k

where <, presents the k-th fuzzy inequality in (4), namely
Pw<0.

Depending on the choice of the membership function
. (W) in (7), the maximizing solution can be calculated

in one of the following ways:

w =argma><{mi { (Bw)} [ w, e R, D w, =1}, ®)
w q

k=l,..., P
where values p, (P, w) are defined as in (5), or

W =argmax r{,{lj,n{ui, W)}, (8"
where 1, (w) are defined as in (5).

In case when all fuzzy constraints are determined us-
ing the membership functions (5), at least one point W is
present in 7", which has the maximum degree of mem-

bership in the set A . However, the solution to problem
(8) will not necessarily be unique. The optimization prob-
lem (8"), in turn, has a unique solution.

By introducing a variable A, the problem (7) for re-
sulting weight vector calculation is presented as a follow-
ing fuzzy mathematical programming problem:

max A )
under constraints

A<p, (Pw), k=12,.,q,

where values p, (P, w) are defined as in (5).

Problem (9) can also be written as

9

max A

under constraints

A<, (w), i=L2,.,n-1,j=23,.,n,i<j,
where i, (w) are defined as in (5").

The membership functions (5') are linear with respect
to variables w,,...,w,, so (9') can be written as a follow-

ing linear programming problem [18]:
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max A
under constraints
dh+w, —u;w; <d, ,

dh—w, +l,w, <d;,

i=12,n=1,j=23,..n,i< j,

(10)

iwk =1, w, >0, k=12,...,n.

k=1

The pair (w,A") forms the solution to problem (10),

where W is the resulting weight vector, and A" = 3 W)
is the value of maximum membership in the aggregated

set A . The value X measures the degree of expert’s (de-
cision maker’s) overall satisfaction with the optimal solu-

tion w . Therefore A" =p 3 (w") is defined as an indicator

of consistency level of expert (decision maker) judgments
[18].

If IPCM is consistent, then A" >1. Indeed, according
to the definition of consistent IPCM, there is a vector w ,

w,eR", D w, =1, satisfying [, <w,/w, <u,, i<j.
i=1

Therefore, Lw<0 and p,(F,w)>1 are carried out for

every k=12,..q. Consequently,

..... m Py

—_— 1 + p—
ui(w)—{krrlnn 1, (Bw))|w, eR ,ZWI.—I}ZI, and
A >1, where w =w.

Next, let us consider an inconsistent IPCM and a case
when a weight vector w exists, such that the system of

inequalities (2) 1is satisfied. Then, there is such
k=12,.,q that Pw>0 and p (Pw)<l.

Consequently, p;(w)<1 and A" <1. By choosing large
enough values of d, parameter, a positive value A~ can
be achieved. It can be shown that A" >0 if ¢, >1. Thus,

for an inconsistent IPCM we have A" €(0,1), and A’ de-
pends on the inconsistency level of IPCM and d, values.
Let us consider problems (9), (9") and (10) for calcu-
lating the resulting weight vector. In these problems, the
weights are defined based on expert’s estimates presented
in the upper triangular part of the IPCM. As noted above,
the IPCM has the property of inverse symmetry. So, the
sets of elements of the [PCM, which form the upper and
lower triangular parts of the IPCM, carry the same infor-
mation about the unknown weights. Therefore, the solu-
tion based on problem (10) and judgments [/;,u,], i < j
must coincide with the solution of the same problem
based on judgments [ll./.,u,./.], i > j. However, as shown

in examples below, the weight vectors according to the
“upper” and “lower” FPP models [18, 19] do not coincide
with each other.

“Upper” FPP model: max A

under constraints
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A< w), i=12,n1, j=23,n, i< .

“Lower” FPP model: max A
under constraints

M<pi(w), j=12.n-1 =23 .n, j<i.

The above “upper” and “lower” FPP models have ad-

ditional constraints ZW,( =1, w,>0, k=12,..,n.
k=1

The difference in the results based on the “upper” and
“lower” FPP models means that the FPP solution [18, 19]
depends on how the compared elements are numbered. In
this paper, a new method is proposed that does not have
such drawback.

Consider membership functions (5'), where the middle

of the interval [/,,u,] is chosen as the most probable

preference value m, . Indeed, an expert or a decision

maker is not equally satisfied with all the ratios of the
resulting weights inside or outside the intervals (2) for
a;,i < j. Obviously, he/she would prefer a solution

around the middle of each interval than a solution on the
given boundaries of the intervals for ;. On the other

hand, in case of inconsistent IPCM, any ratio of resulting
weights w, /w; that is outside the interval a; close to the

boundaries of this interval is more preferable than the
solution far from these boundaries. Therefore, the degree
of satisfaction of an expert or a decision maker with the
ratio of resulting weights should be presented as a
monotone continuous function, gradually increasing
towards the middle of the interval.
However, the wuse of the middle of
Ly +u,

y
m; =

interval

seems to be justified only for the case

1< l,-j Su. The middle of interval as the most probable
preference value is not acceptable for all intervals in
IPCMs. For example, if [/, <u, <1 then the value
()" +,)” o 2

2 )T )
sidered as the most probable value of preference. In the
third possible case /[, <1<u,, it is reasonable to choose

.j+1
-1
(Z;)" +1

should be con-

m; = (

the value m, = as the most probable preference

value.
Thus, it is proposed to determine the value m,; de-

pending on [/,

,»u;] as follows:

ij ij

—if 1<1, <u,, then m, = 5 (11)
if <1, then m 2 (12)
-/l <u, sl,then My =——————,
v )" + )
if I <l<u, ,th L (13)
—if [, <1<u,,then m, = —— .
i i Ty
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According to the new values m; (11) — (13), the
membership functions (5') are changed as follows:

1) if 1</, <u,, then

ij o

(w+lw) w,

L L <m,,
d, wj v
)= (14)
|77 7 s —2>my,
d; wp
where m;; is calculated as in (11),
2) if [; <u, <1, then
) W
(0, w,) = ) ' (15)
TR o)
d; w,
where m;; is calculated as in (12),
3) if [, <I<u,, then
Cwvlpe) v,
( =D(; -D+d; w, v
},LU-(WI-,W].) = (16)
~ (w, u,]wj) >m

(Z; =D(u; =) +d; w

where m;; is calculated as in (13), and the value of d;

parameter is proposed to be equal to d, =u, -/, for all

the above cases 1) — 3).

In order to preserve the structure of expert (decision-
maker) preferences, to further assess and improve the
consistency level of interval expert pairwise comparison
judgments, a modified method is proposed for calculating
a crisp vector of priorities or weights for elements of DM
model. The method includes the following two models:

Proposed “upper” model:

(17)
—under constraints

Ay <p(w), i=12,.,n-1,7=23,..n,i<j,
where p, (w) values are calculated as in (14)—~(16).

Proposed “lower” model:

maxni:ikij

j=li=j+1

(18)

—under constraints
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A<y, j=12,0,n-1 =230, J<I,

where 1, (w) are calculated as in (14) — (16).
The “upper” and “lower” models (17) and (18) have

additional constraints Zwk =1, w,>0, k=12,.,n. A
k=1
similar approach to constructing the objective function as

n-1 n

a sum Z z (p; +4;) is used in another TLGP method
i=l j=i+l
[21], where p;,q, are variables that form unknown ex-
tended intervals. TLGP is a two-stage method and results
in optimization problems with non-linear constraints.
Statement. The weight vector based on the “lower”
model (18) is equal to the weight vector based on the “up-
per” model (17).
Proof. Suppose that the constraints A, <p, (w),

Vi< j of the “upper” model are satisfied. Let us show

that for each of the conditions 1-3 for the ends of the in-
terval [/;,u;] in (14)—(16), the objective functions of the

i
“upper” and “lower” models coincide and the constraints
of the “upper” and “lower” models are also coincide.
Consider /; < a,; <u; and the coresponding condition
A, <p,(w) for i< j. Let 1</, <u, be satisfied for
i < j. Then the constraint A, <p, (w), i<, in (17) is
equivalent to the fulfillment of two inequalities:

dk W, —u,w, <dy,i<j, (19)
dihy —w,+Lw, <d;, j<i. (20)

Consider S <a,
u;
tion A, <p,(w) for ]<l L, <u, <1,
J<i, and inequality A, <p,(w), J<I is equivalent to
the following two:

gli and the coresponding condi-

In this case,

didj +Lw; =Luw <d,;, J<1, (197
1 11 < i<
djikji_l_wj-i_l_u_wi _dﬁ, J<t. (20"
i i Y
The inequality (19') is written as
TR I N PR
ij ul/ ij
d/lul/lt/}\’_/t +l W W d_/tul/ll[ (19”)
The inequality (20') is written as
du ), —uw, +w, <d ul, (20"

Note that inequality (19"”) is equivalent to (20), and
(20") is equivalent to (19), if d; =d u,l, and A, =4,

JiTT
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For example, when choosing d, =u, —/,, equality

Uy =1y

dl.j =d.u.l.

Ul 1s satisfied, since d; =u, -1, =

uijlij

The proof is similar in other two cases: [; <u, <1, if

i<j,and [, <l<u,,ifi<j.

4 EXPERIMENTS

Let us consider several matrices of different consis-
tency levels (Tables 1 — 4), which other researchers have
analyzed using other methods. [IPCM A1 [19] (Table 1) is
not consistent by definition, and indicator A" =0.9583.
However, the IPCM A1 is weakly consistent, since
(ap >DAlay > = (a3 >1).

IPCMs 42 [21, 23, 26, 29] (Table 2) and A3 [22] (Ta-
ble 3) are consistent by definition. Consistency is also
confirmed by values A" =1.0435 and A" =1.0313 of
these IPCMs. Consistency is a stronger concept than weak
consistency. So, [IPCMs 42 and A3 are weakly consistent.

PCM B (Table 4) has proposed in [10] to solve the
sprint planning problem. PCM B is not consistent by
definition, since the transitivity condition b; = b,b, is not

satisfied for all 7, j,k =1,...,n. However, the consistency

ratio CR = 0.083 is less than its threshold value, so PCM
B is admissibly inconsistent and can be used for weights
calculation. PCM B is weakly consistent, since
(b, >D A, >D)= (b, >1) forall i, j,k=1..,5.

IPCM A4 (Table 5) is the result of B fuzzification for
the application of the proposed method. IPCM A4 is con-

sistent, since A" =1.0244 .

Let us disturb individual elements of IPCM 44 in or-
der to increase the inconsistency level of this matrix. In-
consistent [IPCMs often occur in practice. Therefore, it is
interesting to investigate the implementation of the pro-
posed method also on IPCMs of this class. So, only the
element a,, :=[2,4] of IPCM 44 and the symmetric ele-

ment are changed. Resulting IPCM 45 is shown in Table
6. Such IPCM can be, for example, the result of an acci-

dental expert error. The value A" =0.9500 of IPCM A5
indicates an increase in inconsistency compared to A44.
The same conclusion is based on the consistency ratio CR
= 0.650 (after A5 defuzzification). In addition, IPCM 45
is not weakly consistent, which means it has a cycle and
an undesirable violation of ordinal transitivity on the set

of its elements.
The next IPCM A6 (Table 7) coincides with 44 except
for the element a,, =[3,5] and symmetrical to it

a,=[1/51/3]. Values . =0.8611 and CR = 1.002

(after defuzzification of 46) for IPCM 46 mean that this
matrix is the most strongly inconsistent in comparison
with 44, A5 and 41 — 43.
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Table 1 — Weakly consistent IPCM A1 [19]

1 [1,2] [8,9]
[1/2, 1] 1 [2,3]
[1/9, 1/8] [1/3,1/2] 1

Table 2 — Consistent IPCM 42 [21, 23, 26, 29]
1 [2,5] (2,4] [1,3]
[1/5,1/2] 1 [1, 3] [1,2]
[1/4,1/2] [1/3,1] 1 [1/2,1]
[1/3,1] [1/2,1] [1,2] 1

Table 3 — Consistent IPCM 43 [22]
1 [1,3] [3, 5] [5,7] [5,9]
[1/3,1] 1 [1,4] [1,5] [1,4]
[1/5,1/3] [1/4,1] 1 [1/5, 5] [2,4]
[1/7,1/51 | [1/5, 1] [1/5, 5] 1 [1,2]
[1/9,1/51 | [1/4,1] [1/4,12] | [1/2,1] 1
Table 4 — PCM B [10]
1 3 3 12 2
1/3 1 172 1/4 172
1/3 2 1 1/3 1/2
2 4 3 1 2
172 2 2 1/2 1
Table 5 — Consistent IPCM 44

[1,1] [2,4] [2,4] [1/3,1] [1,3]
[1/4,12] | [1,1] [1/3,1] [1/5,13] | 13, 1]
[1/4,12] | [1,3] [1,1] (/4,121 |13, 1]
[1,3] [3,5] [2,4] [1,1] [1,3]
[1/3,1] (1,3] [1,3] [1/3,1] (1, 1]

able 6 — Weakly inconsistent [IPCM 45

[1,1] [1/4,1/2] [2,4] [1/3,1] [1,3]
[2,4] [1,1] [1/3,1] [1/5,1/3] [1/3,1]
[1/4,1/2] [1,3] [1,1] [1/4,1/2] [1/3,1]
[1,3] [3,5] [2,4] [1,1] [1,3]
[1/3,1] [1,3] [1,3] [1/3,1] [1,1]

Table 7 — The most

strongly inconsistent IPCM 46

1, 1] [2,4] [2, 4] [1/3,1] [1,3]

[1/4,12] | [L 1] [1/3,1] 3, 5] [1/3,1]

[1/4,12] | [1,3] 1,1 [1/4,12] | [173, 1]

[1,3] /5,13] | [2.4] L1 [1,3]

[1/3, 1] [L,3] [1,3] [1/3,1] L1
5 RESULTS

In the following Tables 8-13, weights are shown,
which are calculated using different methods based on the
above-considered IPCMs. The k; values for these IPCMs
(Table 14) are further used to find the most inconsistent
elements in the IPCMs. Calculated weights are also com-
pared with weights by the Saaty’s eigenvector method
(EM) on the basis of defuzzified IPCMs A5 and A6 (Ta-
bles 12 and 13).
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6 DISCUSSION
As follows from Tables 8—13, the weights based on

Table 11 — Weights obtained using different methods based on
consistent IPCM 44 from Table 5

the “lower” FPP model [18, 19] differ from the weights Weights
based on the “upper” FPP model [18, 19] for all the FPP model Proposed model
considered IPCMs. The “upper” and “lower” models g [10] | Normal | “upper” | “lower” | “upper” | “lower”
proposed in this paper lead to the same resulting weight ised g
vectors. w) 1.55 0.2660 0.2683 0.3000 | 0.2647 | 0.2647
Wy 0.46 0.0790 0.0976 0.1000 | 0.0882 | 0.0882
Table 8 — Weights obtained using different methods based W3 0.64 0.1110 | 0.1220 | 0.1250 | 0.1176 | 0.1176
on IPCM 41 from Table | ws | 2017 | 03720 | 03659 | 03250 | 03529 | 03529
Weights Ws 1.00 0.1720 0.1463 0.1500 | 0.1765 | 0.1765
FPP model Proposed model . . . .
“upper” Tower” “upper” Tower” Table 12 — Welgh_ts obtgmed using different methods based on
weakly inconsistent IPCM 45 from Table 6
wi 0.6250 0.6154 0.5604 0.5604
ws 02917 02967 0.3736 03736 Weights
ws | 0.0833 0.0879 0.0659 0.0659 FPP model Proposed model
EM “upper” “lower” “upper” “lower”
Table 9 — Weights obtained using different methods based Wi 0.1810 0.1167 0.1149 0.1935 0.1935
on consistent IPCM 42 from Table 2 wa 0.1290 | 0.1333 | 0.1609 | 0.0968 | 0.0968
Interval weights w3 0.1170 0.0833 0.1264 0.1290 0.1290
Li&Tong’s TLGP [21] Liu’s me- Kuo’s me- Wy 0.3920 0.5000 0.4138 0.3871 0.3871
method [26] thod [23] thod [29] Ws 0.1810 0.1667 0.1839 0.1935 0.1935
[1.5540, [1.6818 [1.4142, ] ] -
wi 2.5329] 2.4495] 2.7832] 0.4499 Table 13 — Weights obtained using different methods based
[0.7348, [0.7598 [0.8409, on the most strongly inconsistent IPCM 46 from Table 7
w2 1.1977] 1.1067] 1.0466] 0.2127 Weichts
Wy [0.5105, [0.5000 [0.5373, 01398 FPP model g o Tmode]
: 0.7442] 0.8409] 0.7071] posed mode
s [0.7219, [0.6866 [0.6389, 0.1977 EM “upper” | “lower” | “upper” | “lower”
1.0525] 1.0000] 1.1892] W) 0.1810 0.2500 0.2500 0.3000 0.3000
W 0.1290 0.1944 0.2143 0.1000 0.1000
Table 9 continuation — Weights obtained using different . 01170 0.1944 01250 0.1000 0.1000
methods based on consistent [IPCM A2 from Table 2 o 03920 01111 01607 03000 03000
Weights ws 0.1810 | 02500 | 02500 | 0.2000 | 0.2000
FPP model Proposed model
“upper” “lower” “upper” “lower” Table 14 — Values 7»; for IPCMs of different consistency
Wi 0.4783 0.4675 0.4000 0.4000
wy 0.2174 0.2078 0.2667 0.2667 IPCM Values )\;
ws 0.1304 0.1429 0.1333 0.1333 Weakly  consistent | [1.1868, 1.0330, 0.8242]
Wy 0.1739 0.1818 0.2000 0.2000 Al from Table 1

Consistent 42 from | [0.9556, 1.0667, 1.1000, 1.0667, 1.0667,

0.1364, 0.2909]

[0.1781, 0.2817]

[0.1396, 0.3320]

0.1409

[0.0818, 0.2097]

0.0364, 0.1364]

[0.0763, 0.0845]

[0.0591, 0.1347]

[
[
w3 [0.0273, 0.1818]
[
[

0.0455, 0.1364]

0.0704

0.0633

A5 from Table 6

Table 10 — Weights obtained using different methods based on Table 2 1.0667]
consistent IPCM A43 from Table 3 Consistent 43 from | [1.1214, 1.0607, 1.0405, 1.0347, 1.0405,
Tnterval weights Table 3 1.0405, 1.0116, 1.0354, 0.9913, 1.0116]
Consistent 44 from | [1.0441, 1.0147, 1.0441, 1.0441, 1.0147,
LUAM-1 LUAM-2 GPM Table 5 1.0441, 1.0441, 1.0588, 1.0294, 1.0882]
wi 0.2909, 0.4091] [0.4225, 0.5343] 0.4527 Weakly inconsistent | [0.8548, 0.9677, 1.0968, 1.0000, 1.0161,

1.0484, 1.0484, 1.0645, 1.0323, 1.0968]

Weakly inconsistent
A6 from Table 7

1.05, 1.05]

[1.05, 1.05, 1.00, 1.05, 1.00, 0.6, 1.05, 1.05,

Table 10 continuation — Weights obtained using different
methods based on consistent IPCM 43 from Table 3

Weights
FPP model Proposed model
“upper” “lower” “upper” “lower”
wi 0.5000 0.5089 0.4855 0.4855
) 0.1875 0.1809 0.2428 0.2428
w3 0.1563 0.1583 0.1214 0.1214
Wy 0.0937 0.0840 0.0809 0.0809
ws 0.0625 0.0679 0.0694 0.0694

© Nedashkovskaya N. 1., 2022
DOI 10.15588/1607-3274-2022-3-15

162

Analysis of Tables 8-11 shows that the weights
obtained by different methods on the basis of the
consistent IPCMs A42-44 (Tables 9-11) and weakly
consistent IPCM A1 (Table 8) provide the same rankings
of the compared objects. Therefore, the results obtained
by the proposed models do not contradict the results for
such IPCMs obtained by other known methods [10, 19,
21, 22, 23, 26, 29]. The modeling shows that solutions to
the problem of choosing one “best” object, obtained by
different methods on the basis of a consistent IPCMs, are
generally coincide. The same is true for solutions to the
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problems of ranking and rating of objects based on
weakly consistent [IPCMs.

When highly inconsistent expert estimates of paired
comparisons (IPCMs 45 and A6, see Tables 6 and 7) are
the input data, then different considered methods lead not
only to different weights, but also to different rankings of
compared objects (Tables 12 and 13). For example, for
IPCM 45, the “upper” FPP model specifies the ranking

w, >ws >w, >w, >w;, the “lower” FPP model specifies
the ranking w, >w, >w, >w, >w,, and the proposed

method specifies another ranking w, > w; =w, > w; > w,
(Table 12). For IPCM A6, the “upper” FPP model

determines w, =w; >w, =w; >w,, the “lower” FPP
model determines w, =w, >w, >w, >w;, and the
proposed method determines the ranking

w =w, >w; >w, =w, (Table 13).

The result w, =w, >w; >w, =w, (Table 13) by the
proposed method based on the inconsistent IPCM A6 is
significantly closer to the ranking w, > w, > w, > w, >w,

(Table 11) by the proposed method based on the initial
unperturbed IPCM 44 in comparison with the FPP
rankings. Therefore, the resulting vector of weights by the
proposed method based on the inconsistent [IPCMs with
outliers, like IPCM A6, is not significantly sensitive to
individual strongly perturbed element in this matrix.
Another advantage of the proposed method in
comparison with FPP is that it becomes possible to find
the most inconsistent elements in highly inconsistent
IPCMs based on values 7»;., in order to their further
correction to reduce the inconsistency level of the entire
IPCM. So, the element a,, of IPCM A45 (Table 6) is the
most inconsistent. This element corresponds to the ele-

ment L;,, which is equal to 0.8548 and is the smallest
element of corresponding 7»: (Table 14). In IPCM 46
(Table 7), the most inconsistent element is a,, . It corre-
», » Which is equal to 0.6000 and is

the smallest element of these 7»; (Table 14). In the consis-

*

sponds to the element A

tent [IPCMs 42 — A4, the elements ?»;. generally take on
values greater than one.

Solutions to problems (9) and (9’) [18, 19] depend on
the choice of values of parameters d, and d; of member-

ship functions p, (F,w) (5) and w,;(w) (5"), respectively.
In the general case, this choice has to be made by a deci-
sion maker. In this paper, the values d, are calculated

without the role of a decision maker: d,.j =u, - l(/. .

The proposed method consists in solving a linear pro-
gramming problem with n + n(n—1)/2 variables. For com-
parison, the linear programming problem of the FPP
method has (n + 1) variables. The linear programming
problems of the GPM [22] and LUAM [20] have 6n and
4n variables, respectively. Additional n(n—1)/2 variables
in proposed method are needed to preserve the prevalence
values determined by an expert, and are also used to find
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the most inconsistent
judgments.

The TLGP [21], Liu’s [23], Li&Tong’s [26], Ne-
dashkovskaya’s [13] and Kuo’s [29] methods result in
interval and non-normalized weights on the basis of
IPCM. So, the question of choosing a method for normal-
izing interval weights arises. The weights obtained by the
proposed method are crisp and therefore do not require
special methods for their normalization and ranking.
However, interval resulting weights provide more infor-
mation to the decision maker and are more flexible when
applied in the DM process.

The method can be used for a wide range of decision
support problems, planning, prioritization and rating, re-
source allocation problems, evaluating decision alterna-
tives and criteria in various applied areas.

expert pairwise comparison

CONCLUSIONS

The scientific novelty of the obtained results consists
in suggestion of a modified method for calculating a crisp
weight vector for elements of DM model based on consis-
tent and inconsistent multiplicative IPCMs. The differ-
ences between the proposed method and the known ones
are as follows: coefficients that characterize extended
intervals for ratios of weights are introduced; membership
functions of fuzzy preference relations are proposed,
which depend on values of IPCM elements. The introduc-
tion of these coefficients and membership functions made
it possible to prove the statement about the required coin-
cidence of the calculated weights based on the “upper”
and “lower” models. The introduced coefficients can be
further used to find the most inconsistent [IPCM elements.
Therefore, the proposed method results in more reliable
weight vectors on the basis of inconsistent multiplicative
IPCMs compared to another known methods.

The results show the practical significance of the
method for solving prioritization problems. Resulting
weight vectors, priorities and rankings based on them are
not sensitive to the renumbering of the compared ele-
ments in contrast to the known FPP method. The most
inconsistent elements of [IPCM, which are a by-product of
the proposed method, are further used for adjusting the
elements of IPCM to improve the quality of decisions
based on these matrices. In the proposed method, experts
or a decision-maker are not required to set the parameters
of the membership functions, these parameters are calcu-
lated without the participation of experts. Modeling has
shown that the weights and rankings obtained by the pro-
posed method on the basis of consistent and weakly con-
sistent [PCMs do not contradict the weights and rankings
for such IPCMs calculated using other known methods.
For strongly inconsistent studied IPCMs, the proposed
method gave more reliable weights compared to the other
known methods, since the obtained weights were practi-
cally insensitive to individual strongly perturbed during
the simulation elements in these matrices.

Prospects for further research consists in investiga-
tion of other types of fuzzy preference relations on a set
of compared decision alternatives, other types of interval
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and fuzzy PCMs, in particular, type-2 fuzzy PCMs; inves-
tigation of aggregation of fuzzy local weights of decision
alternatives according to multiple criteria; application of
the developed method for solving practical problems of
decision support in various applied areas.
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METO/, PO3PAXYHKY BAI' EJJEMEHTIB MOJEJI IIIATPUMKH HPUMHSTTS PILIEHb HA OCHOBI
IHTEPBAJIbHUX MYJIbTUIVIIKATUBHUX MATPHUIb TAPHUX IIOPIBHAHb

HepamkiBebka H. 1. — n-p TexH. Hayk, JOIEHT Kadeapn MaTeMaTHYHUX METOJIB CHCTEMHOTO aHaji3y, [HCTUTYT NMpPUKIIaJHOTO
cuctemuoro ananizy, HTYY «KuiBcekuii monitexHiunuii incTutyT iM. Iropst Cikopcbkoro», Kuis, Ykpaina.

AHOTALIA

AKTyaJabHicTb. MeToq mapHUX MOPIBHSAHB — CKJIaJ0Ba KUIBKOX METOMOJIOTIH MIATPUMKH HPUIHATTS PIlIeHb, TaKHX SK
PROMETHEE, TOPSIS, ananisy iepapxiit i mepex. Moro cyTs momsirae B po3paxyHKy BEKTOpa PiOpHTETIB (Bar) eleMEHTIB MOz
MIPUHHATTS PillleHb HA OCHOBI OOEPHEHO CHUMETPHUYHMX MAaTPHIlh MTapHUX NOPiBHAHB. OIHIOBAaHHS €JIEMEHTIB MOJEINI 3/IICHIOETHCS
371e0LUIBIIIOrO eKCIIepTaMy B YMOBAaX HEBH3HAUCHOCT. ToMy B OCTaHHI POKH JIOCIIKYIOTECS MOAM(IKOBaHI METOAN PO3paxyHKy Bar
3 BUKOPUCTaHHSIM HEYiTKUX Ta IHTEPBAIBHAX MaTPHLb NapHUX HopiHsHb (IMIIIT).

MeTa. Po3pobka Mou}ikoBaHOTO METOY PO3PaxyHKY Bar Ha OCHOBI Y3TO/KCHUX 1 HEY3TO/KEHUX MyJIbTHILTIKATUBHUX IMIIIT
CJIEMEHTIB MOJICII IPHUHSTTS PilllCHb.

Mertopa. 3anpornoHoBaHO MOIM(iKOBaHHI METOJ Ha OCHOBI y3TO/PKEHHUX 1 HEY3rokeHuX MyabTumutikatuBHuX IMIII Ta Hedit-
KOTO TpOrpaMyBaHHS ITEpeBar, KU MPU3BOIUTH 10 OLTBII JOCTOBIPHHX Bar €JIEMEHTIB MOJEINI MPUHHSATTS PILICHb MOPIBHIHO 3
IHIIUMH BiIOMHMH MeToAaMH. Po3poOneHnii MeTo BiAPI3HIETHCS Bi iHITNX HACTYIMHUMH OCOOIHMBOCTSIME: BBEICHO KOSQIIi€HTH,
SIKI XapaKTepHU3yIOTh PO3MIMPEH] IHTepBaIN IS BiTHOIICHb HEBIJOMUX Bar; 3alpOIIOHOBAHO (DYHKIIT HaJIEXKHOCTI HEYITKUX BiJHO-
IIeHb HECTPOTol IepeBary 3aJIeKHO Bij 3HaueHb eneMeHTiB IMIII. Beenenns Bkazanux koe(ilieHTIB 1 GpyHKIIIH HaJIEXKHOCTI JO3BO-
JIMJIO TOBECTH TBEP/IKEHHS PO HECYNEPEWINBICTh PE3yJIbTYIOUHX Bar Ha OCHOBI «BEPXHBOI» Ta «HWKHBOI» Mozeneil. [IpornoHoBaHi
Koe(illieHTH B TOJATIBIIOMY BUKOPHUCTOBYIOTHCS JUIS MOIIYKY HalHOLIbII Hey3roukeHux enementis IMIIIL

Pe3yabraTn. Bukonano ekcriepumenTy 3 kibkoma IMIIII pisHoro piBHs y3romkeHocTi. Baru, oTpiuMani mpormoHOBaHUM Ta iH-
IIMMH BiZIOMHMH METO/IaMH Ha OCHOBI PO3IJISTHYTHX Y3TOMXKEHNX Ta ciabko y3romxeHux IMIIII, BU3HAYMIM OJHAKOBI PAaH)KyBaHHS
MOPiBHIOBaHKX 00’ €KTiB. Pe3ynpTaT, OTprMaHi MPOIIOHOBAaHUM METOJIOM, HE Cynepedars pe3dyiabraTaM s Takux IMIIII 3a iHmmMu
BIIOMUMH MeToJaMHi. PaH)KyBaHHS MPOIIOHOBAaHUM METOAOM Ha OCHOBI PO3MIIHYTHX CHIBHO 30ypeHux IMIIII cyrreBo Ommxkui 10
pamXyBaHb Ha OCHOBI BiAOBIMHUX MovyaTKoBUX He30ypenux IMIIII nmopiBHSHO 3 pamxyBaHHAMH BitoMuM MetonoM FPP. 3naiineno
HaiO1IBII HeY3TO/PKeHI elTeMeHTH B po3riiaHyTux IMIIII.

BucnoBku. Po3po6nenuii MeTo]] mokaszaB CBOIO €(heKTHBHICTb 1 MOYKE BUKOPHUCTOBYBATHCS ISl IIMPOKOTO KoJia 3a]a4 MiATpUM-
KU TPUHHATTS pillleHb, CHEHAPHOTO aHalli3y, PO3paxyHKy HpIOpPUTETIB, PO3NOALTY PEcypciB, OLIHIOBAHHS BapiaHTIB Ta KPHUTEpiiB
pillieHb y Pi3HUX MPUKJIAJHUX 00JIACTSIX.

KJIFOYOBI CJIOBA: inTepBanbHa MyJIbTHILTIKATHBHA MATPULIS TTAPHUX MOPIBHSHb, Y3TOMKEHICTh, EKCIIEPTHI OL[IHKU, HEUiTKe
TIporpaMyBaHHS II€PeBar, CHCTEMH i ITPAMKHI MPUHHATTS PIllICHb.
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METO/]I PACYETA BECOB 3JJEMEHTOB MOJEJW NOJJIEPKKHA MPUHATHUA PEIIEHNI HA OCHOBE
HWHTEPBAJBHBIX MYJbTAILIAKATUBHBIX MATPHUIL TAPHBIX CPABHEHHI

HenamxoBckast H. U. — 1-p TexH. HayK, TOUEHT Kadeapsl MaTeMaTHYECKUX METOJOB CUCTEMHOro aHain3a, HCTUTYT IpHuKIIa-
nHoro cucremHoro aHanuza HTYVY «KueBckuit monurexandeckuit ”HCTUTYT uM. Uropst Cuxopckoro», Kues, Yikpanna.

AHHOTALUA

AKTYaJIbLHOCTB. MeTO/ NapHBIX CPaBHEHUI — COCTABIIAIOIIAS HECKOJIBKUX METOJOIOT U OJAEPKKU IPUHATUS PELIEHUH, TaKUX
kak PROMETHEE, TOPSIS, ananuza uepapxuii u cetreii. Ero cyTh 3akitodaercsi B pacuere BEKTOpa PUOPUTETOB MIIK BECOB dJIeMe-
HTOB MOJENHU NPHHATUS PEIIeHUIl Ha OCHOBE OOPaTHO CHMMETPHUYHBIX MATPHI] MAPHBIX CpaBHEHUH. OIEHKAa 3JIEMEHTOB MOAENIU
OCYILECTBIIACTCS. B OCHOBHOM JKCIIEPTAMH B YCJIOBHAX HEONpPEAeIeHHOCTH. [103TOMy B TOC/IeIHUE TOABI CCIENYIOTCS MOAMpHKa-
LM METO/IOB pacyeTa BECOB C MCIOIb30BAaHHEM HEUETKUX M MHTEPBAIBHBIX MaTpHIl NapHbIX cpaBHeHui (MMIIC).

Heab. PazpaboTka MoguduInpoBaHHOTO METOAa pacueTa MPHOPUTETOB HA OCHOBE COTJIACOBAHHBIX M HECOTJIACOBAHHBIX MYJIb-
turkatuBHbIX UMIIC 31eMeHTOB Mozeny NPUHATHS PELICHUI.

Merton. [IpeanoxeH MOTUPHUIUPOBAHHBIN METOl HA OCHOBE COTJIACOBAHHBIX M HECOTJIACOBAHHBIX MYJITHILTHKATHBHBIX MIIC
W HEYETKOTo IPOrpaMMHUPOBaHMs NPENOYTEHNI, KOTOPBIH NPUBOIMT K OoJiee JOCTOBEPHBIM BeCcaM DJIEMEHTOB MOJICIH IPHHSTHS
pelLIeHHH 110 CPAaBHEHHUIO C APYTUMHU U3BECTHBIMH MeTOoaMHU. Pa3paboTaHHBIH METOJ| OTJIMYAeTCs OT JPYTHX CICAYIOLIMMH OCOOCH-
HOCTSIMH: BBEJICHbI KOI((HUIUEHTHI, XapaKTePHU3YIOIIHE PACIIMPEHHbIE HHTEPBAJIbI /I OTHOILICHUH HEM3BECTHBIX BECOB; MPEUIONKE-
Hbl (QYHKIUH NPUHAATICKHOCTH HEUETKUX OTHOLICHUH HECTPOToro MpearnovYTeHHs B 3aBUCUMOCTH OT 3Ha4deHui snemenToB MMIIC.
BBenenne ykazaHHBIX KO((UIMEHTOB U (YHKONI MPUHAIISKHOCTH MO3BOJIHMIO J0KA3aTh yTBEP)KACHHE O HETPOTUBOPEUYUBOCTH
PE3yIABTUPYIOIINX BECOB HA OCHOBE «BEPXHEH» U «HIDKHEH» Mozeneil. [Ipennaraemprie k03¢ (GUIMEHTH B JaTbHEUIIEM HCIIOIB3YIOT-
sl ISl TONCKa HauboJiee HecorylacoBaHHEIX dneMenToB IMIIC.

Pesyabratel. Bemmonnensl skcnepuMeHTsl ¢ Heckonbkumu VIMIIC pasHoro ypoBHs coriiacoBaHHocTd. Beca, momyueHHble
IpejiaraeMbIM M JPYTMMH W3BECTHBIMH METOJAaMU Ha OCHOBE PACCMOTPEHHBIX COIJIACOBaHHBIX M ciabo cornacoBaHHbIXx MMIIC,
OIPEAEITNIIN OANHAKOBbIE PAH)KUPOBAHUS CPABHUBAEMBIX 00BEKTOB. Pe3ynbTaThl, OJIy4eHHbIE IIpeUIaraéMbIM METO/IOM, HE IIPOTH-
BopedaT pesynpTatam aid takux MMIIC no apyruM usBecTHbIM MeToAaM. PaHxupoBaHHs MpeiaraeMeiM METOIOM Ha OCHOBE pac-
CMOTpPEHHBIX cuibHO HecornacoBaHHbIX IMIIC cymiecTBeHHO Oiike K PaHXKHMPOBAHHAM Ha OCHOBE COOTBETCTBYIOIINX HAuyalbHBIX
HeBo3MyIeHHBIX MMIIC mo cpaBHEHHIO C paHXHPOBaHMAMHU H3BecTHHIM MeTomoMm FPP. Halimensr HamOoiee HecoriacOBaHHBIC
aneMeHTHl B paccMotpenHbx UMIIC.

BriBoasl. Pa3paboTaHHEIN MeTO ITOKa3an cBOIO (G (GEKTHBHOCT X MOXKET MCIOJIB30BATHCS I IIMPOKOT0 Kpyra 3a1ad Iojie-
PKKH [IPUHATHS PELICHUN, CLIEHAPHOI0 aHAJIN3a, pacueTa IPUOPUTETOB, paclpeIe/ICHUs. PECYPCOB, OLCHKHY BAPUAHTOB U KPUTCPHEB
pelIeHui B pa3HBIX PUKIAAHBIX 00TaCTAX.

KJ/IIOYEBBIE CJIOBA: uHTepBajbHas MyJIbTUIUIMKATHBHAs MaTpHLia MapHbIX CPaBHEHWUH, COITIACOBAHHOCTb, JKCIIEPTHBIC
OLIEHKH, HEUETKOE IIPOrpaMMHUPOBAaHUE MPEANIOUTECHUH, CUCTEMbI OJAEPKKU IPUHATHS PEILICHUH.
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