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ABSTRACT

Context. Implementation of modular arithmetic operations of addition, subtraction and multiplication by a tabular method based
on the use of the tabular multiplication code. The object of the study is the process of tabular implementation of basic arithmetic
operations on the residues of numbers represented in the system of residual classes.

Objective. The goal of the work is to develop methods for the tabular implementation of the arithmetic operations of multiplica-
tion, addition and subtraction of the residues of two numbers based on the use of the tabular multiplication code.

Method. Tabular methods for implementing integer arithmetic modular operations of addition, subtraction and multiplication are
proposed for consideration. In order to reduce the amount of equipment for a tabular operating unit of computer systems that imple-
ments modular operations of addition, subtraction and multiplication by reducing the coincidence circuits AND in the nodes of the
tables for implementing arithmetic operations based on the code of table multiplication, two methods for performing arithmetic mod-
ular operations of addition and subtraction have been developed. These methods are based on the code of tabular multiplication, the
use of which will reduce the amount of equipment of the tabular operating unit. Thus, despite the difference in the digital structure of
the tables of modular operations of addition, subtraction and multiplication based on the use of the tabular multiplication code, two
new tabular methods for implementing arithmetic modular operations of addition and subtraction have been created. Based on them,
algorithms for tabular execution of modular arithmetic operations of addition and subtraction have been developed. Using these algo-
rithms, it is possible to synthesize a structurally simple, highly reliable and fast table operating unit that operates in a system of resid-
ual classes, which is based on three separate permanent storage devices (read-only memory), each of which implements only one
fourth of the corresponding complete table of values of the modular operation, what is earlier in the theory tabular arithmetic was
supposed to be impossible.

Results. The developed methods are justified theoretically and studied when performing arithmetic modular operations of addi-
tion, subtraction and multiplication using tabular procedures.

Conclusions. The conducted examples of the implementation of integer arithmetic modular operations of addition and subtrac-
tion can be considered as presented experiments. The results obtained make it possible to recommend them for use in practice in the
design of computer systems operating in a non-positional number system in residual classes. Prospects for further research may be to
create a tabular method for implementing integer arithmetic modular division operations based on the use of the tabular multiplica-
tion code.

KEYWORDS: modular arithmetic operation, system of residual classes, tabular arithmetic, tabular multiplication code.

ABBREVIATIONS TOU is a tabular operating unit.
CS is a computer system;
MCA is machine-computer arithmetic; NOMENCLATURE
BPNS is a binary positional number system; a, is a residue an arbitrary modulo m, of the number
SRC is a system in residual classes; A represented in the SRC;

TMC is a tabular multiplication code;
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b, is a residue an arbitrary modulo m, of the number

B represented in the SRC;
m, is a SRC module;

M is a value of the informational numerical range;
Y, (v,) is a sign of the TMC values of residues g,

and b accordingly;

vy, 1s a generalized sign of the TMC;

vy, is a sign of the TMC of the result of an arithmetic
modular operation (addition or subtraction);

’

a] is aresidue an arbitrary modulo m; of the number

A presented in the TMC;
b' is a residue an arbitrary modulo m, of the number

B presented in the TMC;
® (a/, b)) is a selection function by the values of the

residues a; and b; the result of the operation of addition

or subtraction in the corresponding nodes of the tables;
®, () is a dependence function of the implementation

of the operation of modular addition, depending on the
result of the operation of the operation of modular sub-
traction of two numbers in the SRC;

®, () is a dependence function of the implementation

of the operation of modular subtraction, depending on the
result of the operation of the operation of modular addi-
tion of two numbers in the SRC.

INTRODUCTION

It is known that one of the effective ways to increase
the speed of a CS operating in the BPNS has led to the
need to develop new MCA. MCA is based on the theory
of residues of natural numbers and on the results of the
proof of the Chinese remainder theorem. In the literature,
such an MCA is called a non-positional number system in
SRC [1-4]. Based on the properties of the SRC, its use
allows to significantly increasing the speed of performing
integer modular arithmetic operations of addition, sub-
traction and multiplication of the residues of numbers
modulo SRC. In addition, such a property of the SRC as
the low-bit capacity of the residues, the totality of which
determines the non-positional code structure, makes it
possible to effectively apply the tabular implementation
of arithmetic operations [1, 2]. In the general case, the
TOU of the CS for the implementation of arithmetic op-
erations that are performed in a unitary code is a two-
input ROM. For each of the ROM inputs, the number of
input buses for the I-byte (8/ bits) CS is 2. In this case,
the total number of logic circuits AND in the ROM nodes
(which basically determines the amount of equipment of
the TOU of CS in the BPNY) is equal to the value N, gpys
= 2% x 2%=2'% Tt is obvious that the table implementa-
tion of integer arithmetic operations in the usual BPNS is
appropriate only for the value /=1 [5].

The search for ways to increase the efficiency of using
tabular arithmetic necessitated the development and im-
provement of methods for tabular implementation of the
main integer modular arithmetic operations: addition,

© Krasnobayev V. A., Yanko A. S., Kovalchuk D. M., 2022
DOI 10.15588/1607-3274-2022-4-2

subtraction and multiplication of the residues of numbers,
aimed at reducing the number of ROM elements.

The object of study is the process of implementing
arithmetic modular operations of addition, subtraction and
multiplication in SRC.

The process of implementing arithmetic operations
based on the BPNS involves the sequential processing of
digits of numbers according to the rules determined by the
content of this operation, and cannot be completed until
the values of all intermediate results are sequentially de-
termined, taking into account all connections between the
digits. This drawback significantly affects the methods for
implementing arithmetic operations and limits the speed
of data processing. The number system in SRC has the
valuable property of independence of the residues of the
processed numbers in the accepted base system, which
opens up wide opportunities in building not only new
machine arithmetic, but also a fundamentally new circuit
implementation of the data processing CS with the effec-
tive use of tabular methods.

The subject of study is the tabular methods for im-
plementing arithmetic modular operations of addition,
subtraction and multiplication.

The known tabular methods are distinguished by the
complexity of implementation, low speed of implementa-
tion of basic arithmetic operations, as well as an increase
in the amount of TOU equipment with an increase in the
length of the bit grid, which is typical for the modern
trend in the development of powerful computing systems.

The purpose of the work is to increase the efficiency
of using tabular methods for performing basic arithmetic
operations (addition, subtraction and multiplication) based
on the representation of numbers in SRC and the use of a
tabular multiplication code.

1 PROBLEM STATEMENT
In a formalized form, the statement of the problem of
the article can be represented as a realization of two ana-
lytical relations. For the first method of performing a
modular addition operation through the result of a modu-
lar subtraction operation, the first analytical relation is
represented as:  (A+B)modM =, (y, || D (a/, b)) =

=@, (m, ~{lm ~ (v, |a)]=(x, [B)}). For the second

method of performing a modular subtraction operation
through the result of a modular addition operation, the
second analytical relation is represented as:

(A4-B)ymodM = @, (y, || ®(a}, 5)) =D, { (v, ||a)) +

+[m,. = (v, |l bl.')]}. These methods implement the opera-

tions of modular addition and subtraction for the original
two numbers 4 and B represented in the SRC as a set of
residues (a,,a,,....a, ,,a,,a,,,...,4,) and

(b,,b,,....,b, ,,b,,b,,,....,b,) an arbitrary modulo m, SRC,

i.e. residues a, = A—[%_]m,, i =1, n) the residues

i
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are obtained from the successive division of the initial
number by a set of mutually pairwise prime numbers m,

called bases or SRC modules. Such a representation of
numbers (coding) makes it possible to construct data
processing CSs in which the processing of all digits (resi-
dues) is performed in parallel in time.

Denote the generalized arithmetic operation as ®,
which will be used as a sign (feature) of the arithmetic
operation of modular multiplication, addition or subtrac-
tion. For numbers 4 and B represented by the SRC code
The result of the operation can be represented as follows:

(A® Bymod M =((a, ® b, )modm,,...,(a, ®b, )modm,

In this case, it is necessary that the following inequalities
hold: 0<A<M,0<B<M, 0<(A®B)<M, where

M = Hml.. These requirements are due to the need to

i=1
stay of the informational numerical range [0, /) like
numbers 4 =(q,,4,,....,a,) and B =(b,,b,,....,b,), as well
as the result of the operation (4® B)mod M.

2 REVIEW OF THE LITERATURE

The results of the search for ways to improve the per-
formance of CS, effective methods for implementing the
basic operations of the computational process and as a
result of building high-speed and high-reliable systems,
carried out over the past decades by various groups of
researchers have confirmed in the opinion that within the
BPNS one cannot expect significant satisfactory progress
in these areas without a significant increasing the operat-
ing frequencies of the processor elements and the compli-
cation of the hardware part of the CS [1-12].

The results of research in the field of the creation of
high-speed CS of well-known authors (Aksushskyi I.Ya.
and Yuditskyi D.I. [1], Gregory R.T. and Krishna-
murthy E.V. [6], Mohan P.V.A. [9] and others) showed
that the use of SRC as a system of calculations of CS,
intended for the implementation of integer arithmetic op-
erations of addition, subtraction and multiplication num-
bers in the positive numerical range, significantly in-
creases the speed of the solution of problems of a certain
class [13].

In order to be able to build CS in SRC, it was neces-
sary to develop fundamental methods for constructing
MCA [1, 7, 14]. The implementation of the obtained theo-
retical and practical results will contribute to the creation,
development and operation of real CS operating in a non-
positional number system in the residual classes [15-20].
Prospects for further research may be to create a tabular
method for implementing integer arithmetic modular divi-
sion operations based on the use of the tabular multiplica-
tion code [16].

3 MATERIALS AND METHODS
Let’s first consider the procedure for implementing the

arithmetic  operation of modular multiplication
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(a,-b)modm, two residues g, and b by an arbitrary
modulo m, respectively of the numbers 4 and B repre-
sented in the SRC. It is known that the table of values
(a, -b,)mod m, the result of the operation of modular mul-
tiplication is symmetrical with respect to the diagonals,
verticals and horizontals passing (for m, — an odd num-

(m, =1) (m, +1)
and .
2
Symmetry with respect to the left diagonal of the two-
input table of the result of the operation is determined by

ber) between the numbers

. the commutativity of the multiplication operation

a,-b, =b,-a,. Symmetry with respect to the right diago-
nal of the table is determined by the fact that the condition
a;,-b, =[(m;=b,)-(m,—a,)Jmodm,. Symmetry with re-
spect to the vertical and horizontal of the table is deter-
mined from the condition of multiplicity modulo m, of

the sum of symmetric
a,-b, =[m; —a,(m,—b,)]mod m, as

numbers
well as
a,-b, =[m, —b,(m, —a,)Jmod m,.

Using the symmetry properties of the modular multi-
plication table of the residues of numbers, you can com-
pletely restore the complete table of values
a;-b,(modm,) of the multiplication operation of residues
using only 0.25 of its part. Hence, it becomes possible to
simplify the table (reduce the number of two-input ele-
ments AND of the TOU corresponding to the nodes of the
complete modular multiplication table. To solve the prob-
lem, it is necessary to introduce a sign (feature) that de-
termines the location of the input residues of numbers in
each of the four quadrants of the complete modular multi-
plication table. In [1] this sign is called tabular multiplica-
tion code.

Consider one of the possible options for encoding the
input residues @, and b, tables of operation of modular

multiplication modulo m, by means of a specially intro-

duced data compression code of the TMC. Values of the
residues @, (b)) which is in the numerical range

=1 .
{0, m’Tj can be encoded arbitrarily. Then the values

m. +1
:m,'
2

encoded as the inverse of a number modulo m, —a, or

of a; (b)) which is in the numerical range [

m, —b,. To distinguish the ranges of finding the values of
the residues @, and b, the sign v, (y,) of the TMC is

introduced defined as follows:

1
0,if 0<a ()< m'2 ,

Yo (V)= (1)

41
1,if m12+ <a,(b)<m 1.
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The procedure for determining the result of a modular
multiplication operation by means of TMC is as follows.
If two residues are given modulo m; of the form

a,=(v, lla), b =(y, |Ib), where || — the mathematical

sign of the concatenation operation (the operation of glu-
ing, the operation of joining) and

OSaI.'(bI.')S(m,.—l)/ 2. To get the product of these
numbers modulo m,, it is enough to get the product
a;-b/(modm,) and invert its generalized sign vy,, in the
event that vy, is different from vy, , i.e. the result of mul-

tiplying two residues modulo can be represented as
a, -b,(mod m,) = (y, || (a; - b))mod m,) on condition:

0,if v, =7,
Vi =

2
Lify, #v,. @)

Until now, there are no methods for performing by
means of TMC, arithmetic modular operations of adding
and subtracting the residues of two numbers, which make
it possible to reduce the number of two-input elements
AND in the TOU CS. This hinders the further develop-
ment of SRC in terms of the practical use of tabular
arithmetic. The main difficulty lies in the fact that it is
quite difficult to synthesize algorithms for performing
modular operations due to the fact that tables
(a, ® b;)mod m, performing modular operations of mul-
tiplication, addition and subtraction are different in their
digital structure. When studying the digital properties of
tables of modular addition and subtraction operations, the
validity of expression (3) is shown:

[(7, 1))+ (v, 18]+

+{[ml. ~(v, 1) ]=(v, \|b;)} = 0(modm,), 3)

where a, = (ya’ Ha{), b, = (yb’ Il b,.’) — are given residues
modulo m, presented in the TMC of the form
a=(,lla), b=(,lb) with the

0<a'(b)<(m—-1)/2

condition

for m odd number or

i

0<a'(b')y<m, /2 for m evennumber.

Expression (3) can be interpreted as an analytical de-
pendence of the modular operations of addition and sub-
traction of the residues modulo numbers presented in the
TMC.

It follows from expression (3) that in order to obtain
the result of the modular addition operation by means of
the TMC, it is sufficient to know the result of the modular
subtraction and to obtain the result of the modular sub-
traction operation by means of the TMC, it is sufficient to
know the result of the modular addition. That is, it be-
comes possible to effectively (from the point of view of
reducing the ROM hardware) use the TMC not only to
perform the modular multiplication operation, but also to
implement the modular addition and subtraction opera-
tions.

Let’s write expression (3) in the form (4). Expression
(4) is the mathematical basis of the tabular method for
performing the operation of modular addition using tables
that implement the operation of modular subtraction:

(v 105)+ (v 1) =m, = { =, 1) | =(, 181))-

The method of performing the operation of modular
addition using tables that implement the operation of
modular subtraction can be represented as follows

(Fig. 1).

Inversion reduced aj =((y,, +Dmod2 || a)

Minuend ¢, = (Ya Haf) is inverted modulo m, , where

ai, lf Yu :()3
a = i
m; —a, if Y, =1

. Subtrahend b, = (Vb, Il b/ ) leave unchanged.

A 4

Determining the result of an operation
(v, lI(a — By modm,)

Via ROM for modular subtraction by input operands a; and b, the result
of the operation is determined (a, — b)) modm, . The index of the result of

the operation is formed in accordance with the values of the indices of the
corresponding operands, i.e. according to the values (y, +1)mod2 and

v.if (y, +Dmod2#y, ,

Yo 8LY, =y
K {y, if (y, +Dmod2=vy,.

\ 4

Inversion of the result {mi - [(ml -a)- bl.]}

The result obtained is inverted modulo m, , i.e.
((v, +ymod2|| (a - b)ymod m, ).

| The searched result of the modular addition operation |

Figure 1 — The method of performing the operation of modular addition using tables that implement the operation of modular
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The resulting method can be schematically repre-
sented in the form of 4 stages:

(a, —b,.)—>[(m[ —a,)—bi] —>{m[ —[(m,. —ai)—b,.]} -

— (a,+b,).

Let’s write expression (3) in the form (5). Expression
(5) is the mathematical basis of the tabular method for
performing the operation of modular subtraction using
tables that implement the operation of modular addition:

(v, @)= (v 1) ={ (v, 1)+ [ =(v, 18) ]} )

i.e. it is possible to determine the result of the modular
subtraction operation by means of a ROM that imple-
ments the modular addition operation.

Consider the result of a modular arithmetic operation
in the TMC, which is represented as:

(v, 10 (g, b)) (6)
where 7y, — sign of the TMC of the result of a modular

arithmetic operation.
Expression @ (a/, b') — a numeric value assigned to

the table node of the corresponding arithmetic modular
operation with coordinates @, and b/ . If the residues are

given g, =2 and b, =4 numbers modulo m; =5, the ex-
pression @ (a/, b)) is a numeric value assigned to the

table node of the corresponding arithmetic modular opera-
tion with coordinates @/ =2 and b/ =4.

The method of performing the operation of modular
subtraction using tables that implement the operation of
modular addition can be represented as follows (Fig. 2).

Simplified schematically, the second method can be
represented in the form of 3 stages:

(a,. +b,.) — [a,. +(ml. —b,.):| — (a,. —b,.).

When jointly implementing the arithmetic operations
of addition and subtraction, the second method allows, in
comparison with the first method, to implement the
arithmetic modular subtraction operation in less time and
with less hardware costs. Despite the difference in the
digital structure of the tables of modular operations
(a, ® b,)mod m, of addition, subtraction and multiplica-

tion (for example, for m; =5, these are Tables 2-9), the

developed first and second methods of addition-
subtraction, which implement arithmetic modular opera-
tions, can reduce the number of elements of the TOU CS.
This is achieved by simultaneously using only fourth part
of each of the three complete addition, subtraction and
multiplication tables by using TMC, which was previ-
ously thought to be impossible.

4 EXPERIMENTS
The experimental base of research is based on the the-
ory of residues of natural numbers and on the results of
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the proof of the Chinese remainder theorem. The initial
data in the form of bases (modules) m, SRC are repre-

sented by a set of mutually pairwise prime numbers.

In the developing of the methods, the influence of the
main properties of the SRC on the structure and principles
of the functioning of the CS was used. Due to the low-bit
capacity of the computational paths of the data processing
CS presented in the SRC, there are possibilities for using
(unlike the BPNS) tabular arithmetic, where the arithme-
tic operations of addition, subtraction and multiplication
are performed almost in one clock cycle. The low-bit ca-
pacity of residuals in the representation of numbers in the
SRC makes it possible to choose a wide range of options
for system engineering solutions in the implementation of
modular arithmetic operations tabular principle basis
(based on the use of small ROM).

Tabular methods for the implementation of arithmetic
modular operations of addition, subtraction and multipli-
cation based on the use of the TMC are proposed for con-
sideration. In the performing, using the tabular methods of
modular arithmetic operations developed in the article, it
was possible to reduce the amount of equipment of the
TOU through which these operations are implemented.
Note that with an increase in the length of the bit grid,
which is typical for the modern trend in the development
of powerful computing systems, the efficiency of using
the proposed tabular methods for performing modular
arithmetic operations increases significantly.

As experiments carried out in this article, we can con-
sider a brief description of the structures and content of
two methods (Fig. 1, 2) and two algorithms for the tabular
implementation of modular arithmetic operations of addi-
tion-subtraction (Tables 10, 11).

The proposed methods are brought to algorithms, on
the basis of which classes of patentable devices that im-
plement these algorithms have been developed and for
which Ukrainian patent have been received (state patent
of Ukraine for the invention Ne 106343 from 11.08.2014.
“A device for tabular implementation of arithmetic opera-
tions of multiplication and addition of numbers modulo
m, of the residual class.”).

Some of the results obtained in the article are a defi-
nite contribution to the theory and practice of tabular
arithmetic, which can be used to create CS in the SRC.

5 RESULTS
As a demonstration of the effectiveness of the devel-
oped methods, consider examples of a specific implemen-
tation of arithmetic modular operations of multiplication,
addition and subtraction for a module equal to the value
m, =5. In this case, for the tabular method of the table

for the implementation of modular operations of using
TMC the initial data are presented in Tables 1-9. The first
and second algorithms for performing modular addition
and subtraction operations, respectively, by the first and
second methods, are presented in Table 10 and Table 11,
respectively.
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Inversion of the second term
b, =((y, +1mod2 | b))

4

leave unchanged.

Second term b, = (yh | b,.') is inverted modulo m;, . First term q, = (ya lla; )

—b))modm,)

Determining the result of an operation
(v, (]

Via ROM for modular addition by input operands a; and 5/ the result of
the operation is determined (a; + b)) mod m; . The final result of the opera-

tion will be presented in the form ((y, + 1)mod2|| (a] + 5))mod m, ).

The searched result of the modular subtraction operation

Figure 2 — The method of performing the operation of modular subtraction using tables that implement the operation of modular

Table 1 — Table multiplication code

T™C T™C
a; ai;
Yo | @ Yo | o
1 0 1 3 1 2
2 0 2 4 1 1

Table 2 — Full table of

modular multiplication

A &0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 3 — Full table

of modular addition

A S0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3
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Table 4 — Full table of modular subtraction

a;
b, 0 1 2 3 4
0 0 1 2 3 4
1 4 0 1 2 3
2 3 4 0 1 2
3 2 3 4 0 1
4 1 2 3 4 0
Table 5 — First table of modular multiplication
a; 1 2
b; 4 3
1 4 1 2
2 3 2 1
Table 6 — First table of modular subtraction
a; 1 2
b; 4 3
1 4 0 1
2 3 1 0

Table 7 — Second table

of modular subtraction

a; 2 1
b; 3 4
1 4 2 2
2 3 1 2

ition

Table 8 — First table of modular add
a; 1 2
b; 4 3
1 4 2 2
2 3 2 1
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Table 9 — Second table of modular addition

a; 2 1
b 3 4
1 4 1 0
2 3 0 1

In the implementing modular operations using the first
algorithm, the TOU CS is based on three ROMs. The first
ROM implements the II-quadrant of the complete multi-
plication table (Table 5); the second and third ROMs im-
plement, respectively, I (Table 7) and II (Table 6) quad-
rants of the complete subtraction table).

In the implementing modular operations using the
second algorithm, the TOU CS is also based on three

ROMs, each of which implements 0.25 parts of the corre-
sponding complete table of modular multiplication opera-
tions (Table 2) and addition (Table 3). The first ROM
implements the I[-quadrant of the complete multiplication
table (Table 5); the second and third ROMs implement,
respectively, I (Table 9) and II (Table 8) quadrants of the
complete addition table. In this regard, the TMC acquired
a new quality and became a universal tabular code for
performing three arithmetic modular operations: addition,
subtraction and multiplication.

In the implementing the arithmetic operations of addi-
tion and subtraction, the second proposed universal me-
thod makes it possible to implement a modular operation
in less time and with less hardware costs (compared to the
first method).

Table 10 — Algorithm for executing the first method

1 2 3 4 5
y. =y, =0 The result is determined directly by the values of the
v, =y Quadrant IT is used (Ta- ¢ K nodes in Table 6 (y,=1v,)
“ "% | ble6) of the complete table - - - -
(1i=0) | of modular subtraction v, =7, =1 The result is determined by inverting modulo m, the
(a,- b )modm, ' node values of Table 6 (y,= (y; +1)mod2)
) v, =1, 7, =0 The result is determined directly by the values of the
- Quadrant I is used (Table 7) L nodes in Table 7 (y, = 7))
Ya =Yy of the complete table of
y:i=1) modular subtraction v, =0, y, =1 The result is determined directly by the values of the
“ > Th nodes in Table 7 (y, = v;)
- The result is determined directly by the values of the
— Quadrant I is used (Table 7) a - th nodes in Table 7 (y, =1v,)
“ ' 1 of the complete table of - - - -
yi=0) | modular subtraction v, =7, =1 The result is determined by inverting modulo m, the
(a+5 )mod o node values of Table 7 (y,= (y; +1)mod2)
a,+ b Ymodm;
y =1,y, =0 The result is determined directly by the values of the
v %y Quadrant IT is used (Ta- “ > 'h nodes in Table 6 (y,=1v;)
“" "™ | ble 6) of the complete table - - - -
(yi=1) | of modular subtraction v, =0, 7, =1 The result is determined by inverting modulo m, the
' ' node values of Table 6 (y,= (y; +1)mod2)
Table 11 — Algorithm for executing the second method
1 2 3 4 5
" The result is determined by inverting modulo m, the
. W=V =
Vo =Ty S#aifnz(l)ﬁp‘fzf: g;ﬁe 2} node values of Table 9 (y,= (y; +1)mod2)
(i=0) | modular addition v =y, =1 The result is determined directly by the values of the
(4 )mod a1k nodes in Table 9 (y, =7y,
a,— b, )modm;
v =1,7, =0 The result is determined by inverting modulo m, the
drant II i d (Ta- a0 T
Yo Vs, Slléag)re;r} the cl(meIS:te t;b?e node values of Table 8 (y,= (y; +1)mod2)
(i=1) | of modular addition v =0, 7y, =1 The result is determined directly by the values of the
“ > Th nodes in Table 8 (y, =)
v =y, =0 The result is determined directly by the values of the
v, =y Quadrant II is used (Ta- “ b nodes in Table 8 (y,=7;)
“ "% | ble8) of the complete table - - - -
¥:=0) | of modular addition v, =v, =1 The result is determined by inverting modulo m, the
(a+5 )mod o node values of Table 8 (y,= (y; +1)mod2)
a;+ b )modm;
y =1,y, =0 The result is determined directly by the values of the
y %y, | Quadrantlis used (Table9) “ 72 Th nodes in Table 9 (y,=7,)
“” "B | of the complete table of - - - -
yi=1 modular addition v, =0, 7y, =1 The result is determined by inverting modulo m, the
' ' node values of Table 9 (y,= (y; +1)mod2)
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To confirm the efficiency of the developed methods
and algorithms, consider some examples for the residues
are given a, =2 and b, =4 numbers modulo m;=5, which

in the TMC are presented in the form
a,=(v, lla)=(0[12) and b, = (v, [[5)=([1), look at
expression (1) and Table 1. In accordance with expression
(2), get that vy, =(y, +v, )mod2.

Consider performing the operations of multiplying the
residues @, =2 and b, =4 numbers modulo m; =5 using
TMC. Using expression (6), the result of the operation
will be represented as (a, -b,)modm, =(y, | ®(a/, b))). In
accordance with expression (2) get, v, =1, y, =y, =1,
and ®(a;, b))=2 (Table 5). Thus, the result of modular
arithmetic multiplication (g, -b,)modm, =(2-4)mod5 =
=(y, || ®(a), b)))=(1]]2)=3. Check: (2-4)=3(mod5),
see Table 1, 2 and 5.

Consider the execution of the modular addition opera-
tion (a; +b,)modm, for the first and second algorithms

(the first and second methods):
The first algorithm (Table 10). The result of the modu-

lar addition is presented in the form (y, || ®(q;, b)),
where v, =(y, +D)mod2 = (1+1) = 0(mod 2) and
® (a/, b))=1 (Table 6). Check: (2+4)=1(mod5), see
Table 1, 3, 6 and 10.

The second algorithm (Table 11). The result of the
modular addition operation is represented in the form
(v, | @@, b)), where  y,=(y,+)mod2=
=(1+1)mod2=0. By values of a/=2 and b =1, in
Table 9, the value is 1. The result of the operation will be
as follows (v, | ®(a/, b)))=(0] D). Check:
(2+4)=1(mod5), see Table 1, 3,9 and 11.

Consider the operation of modular subtraction for the
first and second algorithms (the first and second meth-
ods):

2l"he first algorithm (Table 10). The result of the modu-
lar  subtraction  operation is  represented  as
(v, 1@ (a/, b)), where @ (a/, b)) — the value assigned to
the node in the second modular subtraction table (Table 7)
with coordinates @ =2 and b/=1. In accordance with
the first algorithm (Table 10), given that y, =1, sign val-
ue of y, the result of the modular subtraction operation is
v, =7, =1. The value of ® (a/, b/) assigned to the node
of Table 7 with coordinates @ =2 and b/ =1, equals
®(a/=2, b/=1)=2. The result of the operation of
modular subtraction (a, —b,) in the TMC, in accordance
with the first algorithm, will be
(v, | @@, ) =(1]12).  Check:
=3(mod>5), see Table 1, 4, 7 and 10.

The second algorithm (Table 11). Consider the im-
plementation of the modular subtraction operation

© Krasnobayev V. A., Yanko A. S., Kovalchuk D. M., 2022
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equal to
(2-4)mod5 =

(a,—b,) in the TMC, the result of the operation will be
presented in the form (y, || ®(a/, b)), where y, =y, =1
®(a/ =2, b =1)=2 (Table 8). The result of the opera-
tion of modular subtraction in the TMC, in accordance
with the second algorithm, will be equal to
¥, 1@ (a;, b)) =(1]2). Check: (2-4)mod>5 =
=3(mod5), see Table 1,4, 8 and 11.

The results of the experimental or theoretical data ob-
tained in the article consist in the development of two
methods and two algorithms for the implementation of
modular arithmetic operations of addition-subtraction in
the SRC, by means of the TMC. The obtained scientific
and theoretical results of the article represent a significant
step forward compared to previous studies in the field of
the theory of the implementation of modular operations
using the tabular principle. So, Fig. 1 shows a method for
performing a modular addition operation using table data
that implements a modular subtraction operation, and
Fig. 2 shows a method for performing a modular subtrac-
tion operation using table data that implements a modular
addition operation. For this, digital data of tables for the
implementation of integer modular addition-subtraction
operations were developed (Tables 1-9). When develop-
ing the theoretical part, the methods for performing
arithmetic modular operations presented in the article,
various methods of cognition were used. For example,
when synthesizing a non-positional code structure in the
SRC, the induction method was used, and when imple-
menting modular operations in the SRC, the deduction
method and others were used. Based on the developed
methods, algorithms for performing modular arithmetic
operations of addition-subtraction in the SRC are pre-
sented (Tables 10, 11).

6 DISCUSSION

The analysis and assessment of the reliability of the
results is based, firstly, on the correct use of the rules of
tabular arithmetic. Secondly, on a clear and complete use
of the properties of the SRC. And, finally, thirdly, the
reliability of the results is confirmed by examples of tabu-
lar implementation of arithmetic modular addition-
subtraction operations in the SRC, by means of the TMC,
for specific values of the residues of numbers in the SRC.
The scientific results obtained in this article refute similar
results of prominent scientists in the field of implementa-
tion of tabular modular operations. So, for example, in
chapter 6 “Computer components in the system of resid-
ual classes”, 6.3 “Fundamentals of tabular arithmetic”, on
page 337 in the monograph of Aksushskyi [.Ya. and
Yuditskyi D.I. “Machine arithmetic in residual classes”,
who are the founders of scientific and technical develop-
ments in the field of the SRC in the USSR, the following
is noted “... the tabular multiplication code is fundamen-
tally unsuitable for use in the addition operation ...”[1].
This conclusion contradicts the conclusion of this article
about the effective use of the TMC not only for the opera-
tion of modular multiplication, but also for the implemen-
tation of modular addition-subtraction operations. The
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practical application of the results of the article is possible
when creating a tabular operating device of a computer
system operating in the SRC. The expediency of further
research in the field of application of tabular arithmetic is
due to the fact that this approach makes it possible to cre-
ate high-speed and reliable computer systems.

CONCLUSIONS

A scientific and technical problem has been solved,
which consists in developing methods and algorithms for
the tabular implementation of the arithmetic operations of
multiplication, addition and subtraction of the residues of
two numbers based on the use of the tabular multiplica-
tion code.

The scientific novelty of obtained results is that two
new tabular methods for the implementation of arithmetic
modular operations of addition and subtraction have been
created based on the use of the TMC, despite the differ-
ence in the digital structure of the tables of these modular
operations. The use of the developed methods makes it
possible to reduce the number of TOU CS equipment that
implements the modular operations of addition, subtrac-
tion and multiplication by reducing the matching circuits
AND in the nodes of the tables for implementing arithme-
tic operations based on the TMC. Based on these meth-
ods, algorithms for the tabular implementation of modular
arithmetic operations of addition and subtraction have
been developed. With the help of these algorithms, it is
possible to synthesize a structurally simple, high-reliable
and high-speed TOU CS operating in the SRC, which is
based on three separate ROMs, each of which implements
only 0.25 of the corresponding complete table of values of
the modular operation, which was previously assumed
impossible in the theory of tabular arithmetic.

The practical significance of obtained results is that
in the performing, using the tabular methods developed in
the article, modular arithmetic operations, it was possible
to reduce 75% of the equipment of the TOU CS, through
which these operations are implemented. This, in turn, as
shown by the calculations, depending on the length of the
bit grid of the CS, made it possible to reduce to =~ (50—
60)% of the equipment of the TOU CS in the SRC. Note
that with an increase in the bit grid length CS, which is
typical for the modern trend in the development of power-
ful computing systems, the efficiency of using the pro-
posed tabular methods for performing modular arithmetic
operations increases significantly. Some of the results
obtained in the article are a definite contribution to the
theory and practice of tabular arithmetic and it can be
used when creating a CS in the SRC.

Prospects for further research are to create a tabular
method for implementing integer arithmetic modular divi-
sion operations based on the use of the TMC.
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METOJIA TABJIMYHOI PEAJIIBAIII APUPMETHYHAX OMEPAIIIA 3AJTAIIKIB TBOX YHCEJ,
NMPEACTABJIEHUX ¥ CUCTEMI 3AJIMIIIKOBUX KJIACIB
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Horo yHiBepcurety «[lonraBcrka momitexnika imeHi FOpis Konapariokay, [lonraBa, Ykpaina.

KoBanpuyk JI. M. — acmipant kadeapu eIeKTPOHIKH Ta YIPABISIIOYMX CHCTEM XapKiBCBKOTO HAliOHATBHOTO YHIBEPCHUTETY
imeni B. H. Kapasina, XapkiB, Ykpaina.

AHOTAIIA

AKTyaabHicTb. PO3MIsiHYTO 3aavy peaiizaiii MOAYJIbHHX apH()METHYHUX OIlepaiiil J0JaBaHHs, BiAHIMAHHS Ta MHOKCHHS
TaOJIMYHIM METOJIOM Ha OCHOBI BUKOPHCTAHHS KOAy TabIMYHOr0 MHOXEHHs. OO’ €KTOM IOCTIDKEHHS € Ipoliec peaiizaunii apudme-
THYHUX MOAYJIBHUX OIepaliil JoaaBaHHs:, BiAHIMAaHHS Ta MHOKeHHs. MeTa poOOTH — po3po0HTH METOM TabIMYHOI peaisawii apu-
(MeTHYHUX Omepaliil oAaBaHHS, BiAHIMAaHHS Ta MHOXKCHHS 3aJIMIIKIB JIBOX YHCEN Ha OCHOBI BHKOPHCTAaHHS KOAY TaOIMYHOTO
MHOKEHHSL.

MeTtona. 3anponoHOBaHO O PO3MIISAY TaOIMYHI METOOM peaizallii HiIOYHCeTbHUX apu(pMETHIHNX MOAYJIFHUX OIEeparii pona-
BaHHS, BiHIMAaHHS Ta MHOXKCHHS. 3 METOI0 CKOPOYEHHS KIJIBKOCTI 00JIaHAHHS TaOIMIHOTO ONEpalifHOro NMPUCTPOI0 KOMIT I0Tep-
HHX CHCTEM, 1[I0 peali3ye MOAYJIbHI Olepallii 1oJaBaHHs, BiJHIMAaHHS Ta MHOXKCHHS, 3a PaXyHOK CKOpOYCeHHs cxeM 30iry Iy By3max
Tabnuup peanizarii apudMETHIHNX ONepalliif, Ha OCHOBI KOAy TaOJIMYHOTO MHOKEHHSI, PO3pOOJICHO 1Ba METOAN BUKOHAHHS apHud-
METHYHHX MOJIYJIbHHX OMEpalliii J0JaBaHHs Ta BiJHIMaHHS. B OCHOBY JaHHMX METOMIB MOKIJIAJCHO KOJ TaOJINYHOIO MHOXKEHHSI, BU-
KOPUCTAHHS SIKOTO JI03BOJIUTH 3MEHIIUTH KUIBKICTh 001aAHAHHSA TaOJIMYHOTO ONEPAIIHHOrO MPUCTPOIO. TaKUM YMHOM, HE3BAXKA0UN
Ha BiJIMiHHICTb HU(POBOT CTPYKTYpH TaONUIb MOAYJIBHUX Ollepaliil 1oAaBaHHs, BiJHIMAHHS Ta MHOXCHHSI, Hd OCHOBI BUKOPHCTaH-
HS KOAy TaOJIMYHOTO MHOKEHHS, CTBOPEHO /1B HOBI TaOMMYHI METOAM peanizauii apuMEeTHIHUX MOAYJIFHHUX OMEpaliil Jo1aBaHHA
Ta BigHiMaHHI. Ha iX OCHOBI po3po0sieHO aaropuTMH TaOIMYHOTO BUKOHAHHS MOAYJBFHHX apH()METHYHUX OMEpalliil JoIaBaHHS Ta
BiZIHIMaHHs. 3a JIOIIOMOIO0 IMX AITOPUTMIB MOXKHA CHHTE3YBAaTH KOHCTPYKTHBHO IPOCTHH, BUCOKOHAQIIMHMI Ta IIBHUAKOIIIOYHIA
TaOMMYHHN OTICpaIlifHUI MTPHUCTPIH, M0 QYHKIIOHYE B CHCTEMI 3aIMIIKOBUX KJIAaCiB, OCHOBY SIKOTO CKJIa[JAIOTh TPU OKPEMHUX MOCTIH-
HHX 3aIaM’ITOBYIOUYHX MPHCTPOI, KOKEH 3 SKUX peaiizye JIMIIC OJHY YETBEPTY YaCTHHY Bi/INOBIIHOI NOBHOI TaOMHI 3HAYCHH MO-
JyJBHOI oreparii, o paHime B Teopii TabIn4HOT apupMETHKH repe16adarocs: HEMOKIIUBHM.

Pe3yabraTi. Po3pobieHi Mmetoan oO0rpyHTOBaHI TEOPETUYHO Ta JOCIHIKEHI IPH BUKOHAHHI apr()METHUYHUX MOAYJIBHUX OIepa-
it JomaBaHHs, BiJHIMAHHS Ta MHOXEHHS 32 JOTIOMOTOI0 TaOIUYHHUX NPOLETYD.

BucnoBku. [IpoBeneHi mpuknaau peatizamii HiMOYHCETbHUX apU(PMETHUHUX MOIYJIBHHX OIepalliii J10oJaBaHHS Ta BiAHIMaHHS
MOXXHa PO3IJIAAATH SIK IpeJCTaBleH] ekcriepuMeHTH. OTprMaHi pe3ysIbTaTH J03BOJISIOTH PEKOMEH/YBAaTH iX BUKOPUCTaHHS Ha IpaK-
THUII IPOEKTYBAaHHS KOMIT IOTEPHUX CHUCTEM, IO (PYHKIIOHYIOTh Y HETIO3HLIHHIA CHCTEM] YHCIIEHHS B 3aJIMIIKOBHX Kiacax. [lepcme-
KTHBH MOAAIBLINX JOCIIKEHb MOXYTh HOJISITATH Y CTBOPEHHI TAOJIMYHOTO METOIY pealtisarii LiounceapHol apuMeTHIHOT MOTy-
JIBHOT OTepariiil JiIeHHs: HA OCHOBI BUKOPUCTAHHS KOy TaOJIMYHOTO MHOXKCHHSI.

KJIFOYOBI CJIOBA: monynbHa apupMEeTUYHA OMEpallis, CHCTEMa 3aIMIIKOBUX KJIACiB, TaOJIMYHA apr(METHKa, KOJ TaOImd-
HOTO MHO)XCHHSI.
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METO/IbI TABJIMYHOM PEAJTM3ALINN APUOPMETUYECKHX OMEPAIIMIT OCTATKOB IBYX UHCE,
HNPEJCTABJIEHHBIX B CHCTEME OCTATOYHBIX KJIACCOB
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HalMOHaNIbHOro yHuBepcurera umeHu B. H. Kapasuna, XapskoB, YkpauHa.

Snko A. C. — KaHA. TeXH. HayK, JOLEHT, JOLECHT Kadeapsl KOMIBIOTEPHBIX U HH(POPMAIMOHHBIX TeXHONOrHH 1 cucteM Hammo-
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KoBaabuyk [I. H. — acimpasT kadenpsl dJIEKTPOHUKH U YIPABISIIOMNX CUCTEM XapbKOBCKOI'O HAIIMOHAJIBHOTO YHHBEPCHTETA
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AHHOTADIUA

AKTyansHOCTb. PaccMoTpena 3ajada peann3anys MOIYJIBHEIX apU(PMETHIECKHUX ONEPAUi CIIOKCHUsI, BBIYUTAHUS U yMHOXe-
HUSI TaOJIMYHBIM METOOM Ha OCHOBE MCIOJIB30BAHMS KOJa TaOIMYHOTO yMHOXeHHs. OOBEKTOM HCCIEeIOBaHUS SBISUIACH MPOLIECC
peanu3anuy apuGMETHIECKUX MOIYJIBHBIX ONEpalHi CIOKSHHUS, BBIYUTAHHUSA M yMHOXeHHUs. Llenb paboTsl — pa3paboTaTh METObI
TaOJIMYHON peanu3anuy apu(pMETHUECKUX CIIOKEHUS, BBIYMTAHUSA U YMHOXKCHHS OCTaTKOB JIBYX YHCEN Ha OCHOBE HMCIIOJIb30BaHUS
KOJa TaOJINYHOTO YMHOXEHHUSL.

Mertoa. [IpeanoxeHbl K pPaCCMOTPEHHIO TAOINYHbIE METOBI PEATN3aL{U LEJIOYHCICHHBIX apU()METHYEeCKNX MOy IbHBIX Onepa-
LUH CIIOKEHUS, BBIYUTAHUSA U YMHOXKEHUsI. C LETbI0 COKpAIIEHHsI KOJIMIEeCTBa 000pyJOBaHUS TaOIMYHOTO OMEPAIIMOHHOTO YCTPOH-
CTBa KOMIIBIOTEPHBIX CHUCTEM, PEAU3YIOIIETO MOMYJIbHBIE ONEPALH CIOXKECHUS, BBIYUTAHHUSA U YMHOXKEHUS, 32 CUET COKpAIICHUS
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cxeM coBmaaeHus 1 B y3max tabuum peanmusanui apupMeTHIeCKUX OIeparyii, Ha OCHOBE KoJa TaOJIMIHOTO yMHOXKEHHS, pa3pabo-
TaHbI JBa METOJa BHIOJHEHUS apU(pMETHUECKNX MOJIYJIBHBIX ONEpalMii CIIOXKEHUs ¥ BBIYNTAHWS. B OCHOBY NaHHBIX METOJIOB ITO-
JIOKEH KOJ TaOJIMYHOTO YMHO)KEHHS, HCIIOJIb30BaHUS KOTOPOTO ITO3BOJINT YMEHBIINTH KOJHYECTBO 000PYZOBaHMS TaOJIHMYHOTO Olle-
paloHHOro ycrpoiictBa. TakuM 00pa3oM, HECMOTpS Ha pa3iauuue NUPPOBOI CTPYKTYPhI TAOIMUI MOAYJIbHBIX ONEPALUii CIOXKEHHU,
BBIYMTAHHS 1 YMHOXEHHUS, HA OCHOBE HCIOJIb30BAHUS KOJa TaOINYHOIO YMHOXKEHHS, CO31aHbI JIBa HOBBIX TaOJIMYHBIX METOJIOB pea-
JU3aUN apU(PMETHIECKUX MOJYJIBHBIX ONEpaIuii CIOXKEHHs U BhIUUTaHMA. Ha mx ocHOBe pa3paboTaHbI aarOPUTMBI TaOIHMIHOTO
BBITIOTHEHUS] MOAYJIBHBIX apU(METHIESCKUX ONEepaliil CIOKEHUS U BBIYUTaHMSA. C OMOIIBIO 3THX aJTOPUTMOB MOXKHO CHHTE3HPO-
BaTh KOHCTPYKTHBHO IIPOCTOE, BBICOKOHAEKHOE U OBICTPOJICHCTBYIOMIEe TAOIMIHOE ONEPAIMOHHOE YCTPOHCTBO, (PyHKIIMOHUPYIO-
masi B CHCTEMe OCTaTOYHBIX KJIIACCOB, OCHOBY KOTOPOTO COCTAaBISIIOT TPU OTAENBHBIX MOCTOSHHBIX 3alIOMHHAIONIMX YCTPOICTBA,
KBl M3 KOTOPBIX pean3yeT TOJIBKO OJHY YETBEPTYIO YaCTh COOTBETCTBYIONIEH MOIHOI TaOIMIBI 3HAUSHUIH MOJYJILHOH omepa-
MM, YTO paHee B TEOPHHU TAaOINIHOM apUpMETHKH MPEII0NIaraioch HEBO3MOXKHEIM.

PesyabTarel. PazpaGoTaHHble MeTOIBI 00OCHOBAHBI TEOPETHYECKH M UCCIIEIOBAHBI MPH BBHINOJIHCHUH apU(PMETHYECKHX MO-
IyJIbHBIX OTIEPALUil CII0KEHUS, BHIYUTAHUS M YMHOKEHHUS C IOMOILBIO TAOINYHBIX TPOLIELYD.

BoiBoapbl. [IpoBeieHHbIE TPUMEPHI peaN3aIMH HETOYHCICHHBIX apU(QMETHIECKNX MOIYJIBHBIX ONEPAUi CI0XKEHHUS ¥ BEIYUTAHUS
MOXKHO paccCMaTpuBaTh B KAaueCTBE MPEACTaBICHHBIX dKcHepuMeHTOB. [loimydeHHbIe pe3ynbTaThl MO3BOMSIOT PEKOMEHAOBATh UX UL
HCTIONB30BAHMS Ha MPAKTHKE IPOEKTUPOBAHUS KOMIIBIOTEPHBIX CHCTEM, (DYHKIMOHUPYIONIUX B HEMO3UIIMOHHON CHCTEME CUHCIICHHS B
OCTAaTOYHBIX KiaccaX. [lepcrieKTHBBI NanbHEHIINX MCCIEOBAaHNI MOTYT 3aKJIIOYaThesl B CO3MAHUM TAOIMYHOTO METOZA Pealn3allin
LEJIOYHCIICHHOHN apu(pMETHIECKON MOy IbHOM OTepalnii ejeH:s Ha OCHOBE UCTIONIB30BAHMS KO/Ia TAOJIUYHOTO YMHOKEHHS.

KJIIOUEBBIE CJIOBA: monynbHas apudMeTHdeckas OIeparys, CHCTeMa OCTaTOYHBIX KIIacCOB, TaOnn4yHas apu(MeTHKa,
TaOIMYHBINA KOJI yMHOKEHHS.
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