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ABSTRACT

Context. The problem of development and research of methods for approximation of discontinuous functions by discontinuous
interlination splines and its further application to problems of computed tomography. The object of the study was the modeling of
objects with a discontinuous internal structure.

Objective. The aim of this study is to develop a general method for constructing discontinuous interlining polynomial splines,
which, as a special case, include discontinuous and continuously differentiated splines.

Method. Modern methods of restoring functions are characterized by new approaches to obtaining, processing and analyzing in-
formation. There is a need to build mathematical models in which information can be represented not only by function values at
points, but also in the form of a set of function traces on planes or straight lines.

At the same time, practice shows that among the multidimensional objects that need to be investigated, more problems are de-
scribed by a discontinuous functions.

The paper develops a general method for constructing discontinuous interlining polynomial splines, which, as a special case, in-
clude discontinuous and continuously differentiable splines. It is considered that the domain of the definition of the required two-
dimensional function is divided into rectangular elements. Theorems on interlination and approximation properties of such discon-
tinuous constructions are formulated and proved. The method is developed for approximating discontinuous functions of two vari-
ables based on the constructed discontinuous splines. The input data are the traces of an unknown function along a given system of
mutually perpendicular straight lines. The proposed method has not only theoretical significance but also practical application in the

IT domain, especially in computing tomography, allowing more accurately restore the internal structure of the body.
Results. The discontinuous interlination operator from known traces of the function of two variables on a system of mutually

perpendicular straight lines is researched.

Conclusions. The functions of two variables that are discontinuous at some points or on some lines are better approximated by
discontinuous spline interlinants. At the same time, equally high approximation estimates can be obtained. The results obtained have
significant advantages over existing methods of interpolation and approximation of discontinuous functions. In further research, the
authors plan to develop a theory of discontinuous splines on areas of complex shape bounded by arcs of known curves.

KEYWORDS: image processing, polynomial splines, interlination, discontinuous functions, approximation.

NOMENCLATURE
ol (y) is atrace of function along the straight X = x;
on the right;
¢li (y) is a trace of function along the straight X =X;

on the left;

f(x¢,Y) is atrace of function on the line X =X, ;

f(x,y,) is a trace of function on the line y =y, ;

Hij is a rectangular element size 51 X) X (Y1, Y )

h1lis(X), h2;5(X) are basic Hermitian polynomials of
degree 2p —1with properties;

Sij(x,y) is a discontinuous interlination polynomial
spline, which corresponds to a given partition into rectan-
gular elements 11; ;

Lij(x,y) is a discontinuous interpolation spline, which
corresponds to a given partition into rectangular elements
Hi' 5

J >

C:t:t

i,j 1s an one-sided function values at a point

(Xi > y] );
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CH*Y(D) is a class of two variables functions, which

are defined and continuous in the domain and have con-
tinuous derivatives.

INTRODUCTION

The main attention in the theory of approximation of
several variables functions by splines is given to the ap-
proximation of continuous and differentiable functions by
continuous and differentiable splines ([1-3]), when using
the least squares method [4, 5]. At the same time, the
practice shows that among the multidimensional objects
that need to be investigated, a larger number of problems
are described by discontinuous functions. For example, in
the methods of computed tomography, nowhere is infor-
mation about the internal structure of the human body
used (the stomach has one shape and the corresponding
density of its tissues, the liver has a different shape and a
different density of its tissues, the pancreas has its shape
and density of tissues, the spine has its density, etc.)

In [6], it was proposed to use a priori information
about parts for a more accurate description of the internal
structure of a 3D body using the corresponding functions
of three variables included in the equations where is the
number of objects of the internal structure of the body to
better restore it by computed tomography methods. In this
method, it is proposed to use information about the inter-
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nal structure of the body in the form of a discontinuous
function of three variables, which has discontinuities at
the points of surfaces separating adjacent subregions.

The development of computational and applied ma-
thematics suggests that the use of additional information
about the object under study can lead to a more accurate
restoration of this object. For example, in [7] it is pro-
posed to use the equation of the surface of the human
skull to more accurately restore the internal structure of
the body.

In addition, we will give the following example. In
solid mechanics, one of the most difficult problems is the
problem of investigating cracks at the internal points of
the body. It can be said that such a body has a discontinu-
ous density: beyond the boundaries of the crack — one
density, in the area bounded by the walls of the crack —
another density.

The object of study is mathematical modeling of a
discontinuous two-dimensional function by function inter-
lination.

The function interlination operator allows you to re-
store a function of two variables with high accuracy.
Traces functions on lines are used by the function interlin-
ing operator.

The subject of study is the theory of discontinuous
intlinational splines.

The purpose of the work is to construct a discon-
tinuous interlination spline to restore a two-dimensional
function that has discontinuities of the first kind, when the
sets of traces of the function on the lines are be used as
function information.

1 PROBLEM STATEMENT
Let a discontinuous function of two variables f(X,y) is
given in the domain D. Suppose that the domain D is

divided by straight lines X,=0<X;<X,<...<Xp=1,
Y=Yo<Y1<Y><...<y,=1 into  rectangular  elements
Ijj = (X1 X)X (Yj_1.yj)-i = L.m, j=1n. The function

f(x,y) and its derivatives up to p—1order have disconti-

nuities of the first kind at the boundaries between these
rectangular elements (not necessarily between all ele-
ments). It is required to construct a discontinuous spline
such that the interlining and approximation properties are
fulfilled.

2 REVIEW OF THE LITERATURE

Over the years, methods have been developed that ap-
proximate various important functions. These methods
include Fourier series, Chebyshev series, Fourier-Jacobi
and Pade-Jacobi polynomials, rational functions of Pade-
Jacobi, Pade-Chebyshev and Pade-Legendre, as well as
fractional and quasi-fractional approximations [§—11]. But
these methods have a bad effect on the convergence of
series when approximating functions with singularities.
Loss of convergence occurs in the region with disconti-
nuities and is called the Gibbs phenomenon. This phe-
nomenon manifests itself in the vicinity of the discontinu-
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ity jumps and is an obstacle to the restoration of a discon-
tinuous function. There are methods to reduce the Gibbs
phenomenon [12, 13]. However, they do not completely
remove it at all. A.L. Ageeva and T.V. Antonov proposed
a method for determining the number of breakpoints and
their positions based on the use of the Gibbs phenomenon
[14, 15]. But the method requires more information: the
smallest and largest values of the jumps of the approxi-
mate function. It is also assumed that the intervals in
which the Gibbs phenomena arise do not intersect, i.e. it
is impossible to separate the breakpoints that are close to
each other.

That is, the development of the theory of approxima-
tion of discontinuous functions using discontinuous
splines is a relevant task. This work belongs to a series of
works by the authors aimed at the study and improvement
of mathematical models in computed tomography [16—
18]. To date, tomography has developed many computa-
tional methods, algorithms and software tools aimed at
restoring the internal properties of an object. They per-
form well when restoring objects with smooth properties,
but give unsatisfactory results for objects with discon-
tinuous characteristics. Therefore, there is a need to create
mathematical methods for approximating discontinuous
functions for a more accurate idea of the structure of the
studied object.

A series of works by authors [19, 20] devoted to solv-
ing the flat problem of Radon computed tomography us-
ing the heterogeneity of the internal structure of a two-
dimensional body. For this purpose, it is advisable to use
function interlination operators, since these operators re-
store (possibly approximated) functions on their known
traces on a given system of lines. They provide an oppor-
tunity to construct operators whose integrals from these
lines (linear integrals) will be equal to integrals from the
most renewable function. That is, interlination is a ma-
thematical apparatus, naturally related to the task of re-
storing the characteristics of objects according to their
known projections. This article is a continuation of this
article series.

In this article, we construct the discontinuous inter-
lineation operator from known traces of the function of
two variables on a system of mutually perpendicular
straight lines.

3 MATERIALS AND METHODS
Let us introduce the

eli ()= lim f(xy), oli(y)= lim f(xy) -
X—X;+0 X—X;—0

notation:

function traces on the straight X=x,i=Lm. If

(pli+(y) =olj (y), then the function f(x,y) is continuous
on the line X=X;, otherwise it has a break on the given line.
Consider the element Hij :(Xi—laxi)x(yj—layj ),
i=Lm, j=Ln.

Definition.We will call a discontinuous interlination
polynomial spline in a domain D, which corresponds to a



p-ISSN 1607-3274 Pagioenexrponika, inpopmaTuka, ynpasiainss. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

given partition into subdomains II;;, the following func-

tion
S(Xa y) = SlJ (X9 y)s (X9 y) € 1_[Ij

Sij (%, ¥) = S1ij(X, ¥) + S2j;(X, ¥) — S1245(X, Y),

x,y) € Hij cD (1)

where

Stij(x,y)=
= Slij Y5 {eli s (MY {elis(V)),s=0,p—1) =
-1
= Z“Pl Crs(Y)-hliy () + Z“Pll s(¥)-hlj 5(x);
s=0
S2ii(x.y)=
=S82;(X, Y3192 1, p (0} 492 ()}, p=0,p—1) =
p—1 p—1
= > 0271021 (N + D 921 (-2 (Y);

p=0 p=0
S1245(x,y) =

= S12; (X, Vs {pli s (V)}: 4l s (W)}, 5 =0,p—1,
(021 p(0}:492) p (0}, p=0,p—1) =

p—1 p—1

= > > Gt ors phlics 02y (M) +
$=0 p=0
p—1 p—1

+ Cit1js.phli1s(0N2 (V) +

5=0 p=0
p—1 p—1

+D 0> Ciirs phlis ON2j 4 p () +
s=0 p=0

p—1 p—1

+ 373 Cirjs phlis 025 5 (y),

s=0 p=0

h1ys(X), h2;,(X) — basic Hermitian polynomials of degree
2p —1 with properties:

M)y () = 8 rbs > KK € fi—Li},8,8" € 0,01},

h2(P)) o (y) =8y 8 1 € (i =1 j}. p. P’ €40.p 1.

Theorem 1.If

P () =92} 5 0) = C i,

P =025 00 =C g
PP (v =02, 00) =C ijep-
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Py =020 =C" g

then on the border of the rectangle II;; the function

Sij (X, y) satisfies the following relations

9° Sjj (x,y)

axs/ | 1 S' (y)

X=X
5% S (x.y) 2)

v =l (y).
X

X=Xj
i1 <Y<Yy, s'=0,p-1
9P Sij(x,y)

oy J 1p

B 3)
= @2], p/(x)’

Y=Yj

X <x<x, p'=0,p—1

Proof. Substitute in formula (1) X=X;_;. As a result,
we get Sj(Xi_1,Y) =

= STij (%1, Y) + 524§ (X 1, ) — S1245 (X1, ¥) =

p-1 p-1
= 2Ol s( -y s (i) + 20l s () Wl s (%) +

s=0 s=0
p-l N
+ Z (sz—l,p(xi—l)'hzj—l,p(y)"'
p=0
p-1
+Z (lep(xi—l)'hzj,p()/)_
p=0
p—1p-1
_Z ZCI -1, j-1s, phli—l,s(xi—l)hzj—l,p(Y)+
s=0 p=0
p—1 p-1
+Z ZC -1j.s, phll 1,s (X 1)h2 p(Y)"'
$=0 p=0
p—1 p-1
+Z Z Cij ,i-Ls phli,s(xi—l)hzj—l,p(y)+
s=0 p=0
p—1p-1
+Z Z CI_J_S phll S(XI l)hzj p(y)—
s=0 p=0
p-1 p-1
= 20115 (V) Bi1imiBs 0+ 2 0l s(¥) 818 +
s=0 s=0

p-1
+ 2, 021 p (%) -h2 g p(V)+
p=0
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p-1
+ 2,925 p (i) h2j p(Y) -
p=0
p—-1p-1

_Z Z Co ,i-15,p0i-1i-19s,0N2 1 p(Y) +
s=0 p=0

p—1 p-1

+Z ch ljsp5| Li- 1830h2 p(y)+
s=0 p=0

p—1p-1

+Z ZCIJ “1,5,p01,i-19s,0M2 1 p (V) +
s=0 p=0

p—1 p-1

+ZZCI_J_Sp i,i—19s 0h2] p(Y)=

s=0 p=0

p-1
=0l 0 (M) + D 921 p (%) -2y p(V)+
p=0

p—1
+2, 025 p(Xi)-h2j p(y) -
p=0

_Z |1]10ph2]1p(y) z |1]0ph2j,p(y):

CiLj-10.p

CiZljop
p-1
=l o)+ D 021 p(Xi)-h2j_y p(¥)+
p=0
p-1
+ 02 p (%) h2j (V) -
p=0

=(P2j—1,p(xi—1) ~
=02 p(Xi_1)

p-1
= > 02, p(Xih2jy p(¥) -
p=0

p—1
=2 925 p(XiDh2 p () =011 o(¥)
p=0

Thus, we have proved that S;;(Xj_i,y) = @1;11,0(Y)a
Vi1 =YY
The equalities are proved similarly when we substitute

into formula (1) X=Xi, y=Yj_1, Y=Y;.
Let us assume that1<s'<p—1. As a result, we get

osony| oSl
s’ o s
8X ‘X:Xi ax ‘X:Xi
P2 TS ) I TERY)
ox® ox® -
X=X X=X
_Z“Pll ls(Y) hll 1,s(0) +
s=0 X=Xj_|
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+Zap1.s<y> his(0]
=0 X=X
ol 5’ N
T2 o0 h2j ()
p:oax X:Xi71
p—l1 asl
+Z_§@21p(x) hzj,p(y)*
p=0 X X=Xj_1
p—1 p—1 (9
_ZZCI—IJ 1s,p— NMi—1,s(X) 25 p(Y) -
5=0 p=0 ox® =Xy
p—1 p—1
_ZZCI —1,j.s, p hl| 1,5(X) h2; h(y)—
s=0 p=0 X=Xi_{
p—l p—l1 o5
_ZZCI,J 1s,p —hljs(X) 'hzjfl,p(Y)‘F
s=0 p=0 8 X=Xi_|
—1 p—1 8 s’
+ZZC.,sp htj 4 (%) h2j p(y)=
s=0 p=0 X=Xj_1
p—1 p—1
= Z@li—tl,s(y)@ifl,iflzss’,s + Z@lfs(y)'ﬁi,ifltss’,s +
s=0 s=0

P

+Z “szr(? )p(Xi—l)' h2j 1 p(V)+
p—l ’

+30 9255 ()2 ()~
p=0

p—1 p—l1

—> > G s pdicnioids sh2j 1 p (V) —
s=0 p=0
p—1

p—1 p—
- Cilljs,pdiotizids sh2j p(V) —
s=0 p=

0
p—1 p—1
_Z Z Cijjtl,s, pdii—10ssh2j 1 p(¥) +
$=0 p=0
p—1 p—1

+> > Cijs.pdiiids sh2j p(¥) =
=0 p=0
+ +
- ‘CI Lj-1s,p — kPZJ (i )p(xi—l)‘: LFDli,I,S/()/)‘f'
.

+ZC| -1,j-1s’,p h2;j_ lp(y)+ZC| —1,j,8',p" h2jp(¥)—

_ch 1,j-1s ph2] Lp(Y)— ch ~1,j,8',p h2jp(¥)=

= Lpll -1, S/(y)'

Properties (2) with x=x; and properties (3) are proved
similarly.
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Theorem 1 is proved.

Theorem 1. If li (¥) =15 (Y) = ¢li s(Y),
s=0,11,0 <p <p—1, P2} p(¥) =92 () =42 x(X),
p= 0,_1/,0 <v <p-—1, then the function
S(X,¥)=Sj;(x,y), (x,y) €Il will have properties like

this
S(x,y)eC*" (D),

8%'s(x,
TICN (.
S V- “)
i=1Lm, s =0,u, Yi-1 <Y<Y,
9”'s(xy)
. =62, (),
vy, 5)

i=Ln, p'=0,v, xi_; <X<X.

The proof follows from the fact that if functions
—1 —1

elis(NECT %1% ], 92 p(X) €CPT [y, Y]], then

in each element ITj; the function S;;(X,y) will belong to

the class CP~P 71(Hij).Thus, the function S(X,y) in

cach of the elements TII; belongs to the class

Cp_l’p_l(Hij) and on the boundary between the
neighboring ITj; elements, it preserves the continuity of

the derivatives up to orders p, v, respectively, since the

proof of properties (4), (5) is carried out by analogy with
the proof of properties in Theorem 1.

Theorem 2 is proved.

Remark 1. If the conditions of Theorem 2 are satis-
fied, then the function S(x,y) has discontinuous partial

derivatives of orders greater than p in X and larger than
v in Y, respectively.

Remark 2. In principle, it is assumed that discontinui-
ties of a function S(X,y)and its partial derivatives up to
the corresponding orders can exist only at the boundaries
of one or several elements.

Theorem 3. If the functions uplfs(y), ¢lis(y) are po-
lynomials (generally speaking, different) of degree
Q>2p—1 and the functions Lpztp(X), 2 p(X) are
polynomials (generally speaking, different) of degree
Q >2p—1, then the function S(X,y) will be a piecewise
polynomial discontinuous spline, which is a polynomial
in two variables on each rectangle II;; C D . In particular,

if Q=2p—1, then S(x,y) will be a discontinuous
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piecewise polynomial spline of (x,y) degree 2p—1 in
each variable.

The proof follows from the fact that the functions
Sij(x,y) use the Hermitian polynomial basis functions

and will be polynomials in the assumptions of Theorem 3.
If Q=2p—1, then S;(x,y) will be a polynomial of de-

gree 2p—1 in each variable. If the conditions of Theo-
rem 2 are not satisfied, then such a function S;(x, y) will

have gaps between different elements.

Remark 3.We emphasize again that these gaps may
not necessarily be at the border between all elements.
Moreover, it is not required that on all four sides of each
element the spline has discontinuous derivatives of orders
p+l, p+2,..,p—1 and v+1,v+2,..,p—1concerning X

and y , respectively.

Theorem 4. Let us assume that the function to be ap-
proximated

f(,y)eCP{(D\IT),
el 1 s (y) = lis(y),
0211 p(0 =92} p(X), s,p=0,p— 1.

Then, if in S(x, y) substitute

el s =0l (1 =1000,y),
i"c{o,l,..m},i'=i—1i"=i, 0<y<];
02y p (0 =2), (0= FOPeyp),
ji'edo L.y, j'=j-1Lj=j0<x<I;
el s =l (=T _1.y),
0<y<yjjoryj<y<l;
P2j 1 p (0 =21 0= F*P(xy ),
0<x<X_; or X <x<I,
el s (N = £S04 +0,y), ¢l (y) = £V (% —0,y),
el s (V) = F006, —0,y), el (y) = £V +0,y),
©2j 4 () = ©P(x, Yj1+0),
02} ,(0=f*P(x,y; —0),
P2jp () =T OP(xy ji-1—0),
02,00 =fOP(xy; +0),

then the resulting function S(x,y) will belong to the class

c»~1(D) and will be discontinuous along with its
derivatives up to the order p—1 in each variable only on
the element boundary IT;; .
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The proof follows from the fact that on the boundary
between all elements (except for the elementHij) the

function S(x,y) will have continuous derivatives up to
the order p—1 inclusive and only on the boundary of the
element IIj; can it be discontinuous together with its par-
tial derivatives. That is, such a function will belong to the
class S(x,y)€C’ (D\IIy).

Theorem 5. If the conditions of Theorem 4 are satis-

fied, then for the error of approximation of such a discon-
tinuous function f(X,y), the corresponding discontinu-

ous interlinational polynomial spline S(x,y) will satisfy
the following relation:
2 2
| £ 06 Y)—=S(X,y)|=O(AI? A2), (x,y) € TTy =TI ;.
Al= mI?X(Xk —Xg_1), A2= mIaX(y| —Yi-1)s

(%, y)—S(x,Y)| =O(AI®A*), (x,y) €11, j,
Ai= Xi — Xi_15 AJ = yJ - yjflz (I: J) = (k’l)

provided that f(Xx,y)€ Cp_l’p_l(Hi’ i)

Proof. The operator Sjj(X,y) =S;; f (x,y) according to
definition 1 can be written as §;; f (x,y) = SL;; f(x,y) +
+52; f (%, y)—S12;5 f (X, y) .

According to Theorem 3.2.1 in [3], the remainder of
the approximation by the interlination formulas is ex-
pressed as the operator product of the remainders of the
approximation of a function f(X,y) by the operators

Sl'J f(X, y) and S2,J f(X, y)

RS;i f(x,y)=(f(x,y)=S; f(x,y))=
=(F (%, y)—STjj F(x, y) =825 f(x,y)+ 8125 f(x,y)) =
=(F (% y) = ST FOGyNE(X,Y) = S25 F(x, ) =
=RS1;; (X, Y)RS2;; f(x,y).

Theorem 5 is proved.

4 EXPERIMENTS
Let be p=1, m=2,n=2. Let’s set the nodes:

XO :0, Xl :0.5,X2 :1, yo IO, yl :O,S’yz =1.
That is, the domain of definition of the function being

approximated (Figure 1) consists of four rectangular ele-
ments, which are set as follows:

I ={(X,Y) 1 X9 <X<X, Yo <Y<V},
M ={(%Y): Xg <X <X, Y <Y< Y2},
I ={(X,y) X <X<X,Yo <Y<V},
I ={(%Y) 1% <X<Xp,Y; <Y<Y}
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y 4

0.5

X

0 0.5 1

Figure 1 — Domain of the function to be approximated f (X, Y)

Let’s define a function at the corner points of the ele-
ments:

f57(0,0)= f(0+0;0+0) =1,

. f57(0;0.5)= f(0+0;0.5-0)=2,
f77(0.5,0.5) = £(0.5-0;0.5-0) =1,
f~7(0.50)= f(0.5-0,0+0)=2,
f+7(0;0.5)= f(0+0;0.5+0) =1,

. f70;1) = F(0+0;1-0)=2,
f7(0.51) = f(0.5-0;1-0) =1,
f7(0.5;0.5)= f(0.5-0;0.5+0) =2,
f7(0.5;0.5)= f(0.5+0;0.5+0) =3,

m,,. f57(0.51)= f(0.5+0;1-0)=4,
()= f1-0;1-0)=3,

f 7% (1,0.5) = f(1-0;0.5+0)=4,
f77(0.5,0) = £(0.5+0,0+0)=3,

- f7(0.5;0.5)= f(0.5+0;0.5-0)=4,
f 7 (1;0.5) = f(1-0;0.5-0) =3,
£ (1,0)= f(1-0;0+0)=4.

The discontinuous spline will be constructed in the
form (1)

2X+2y—8xy+1, x,y)elljy,
S(x.y) = —10x -6y +8+8xy, (X, y)ell,,
—4Xy+2X+2y+2 , (X, y) ey,
—8Xy +6X+6Yy—1, (x,y) elly,.

As you can see, the function S(x,y) at the border be-
tween the elements IT;; and Il,; at X <X will have the
following traces:

S —0,y)=S;,(x,y) = f 7 (0.5:00L L +
Yo— Y1

+E77(0.5;0.5 L0y <y <y,
Y1—Yo
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Similarly, S(x +0,y) = S5,(x, y) = f 77 (0.5,002L L 4
Yo— W1

+£7(0.5:0.5 =Y Yo <Y<Y,
Y1—Yo
That is, if f~%(0.5,0)= f™(0.5,0), then at a point
(0.5;0) such a spline will be discontinuous. In addition, if
at a point f*7(0.5;0.5) = f ©7(0.5;0.5), then the spline

will  be discontinuous
X=0.35, yo<y<y.

Let us define the function to be approximated in the
form

along the entire line

f (X’ y) = SIj (X’ y) +

+(X_Xi—1)(xi =X =YD —Y)
4

7(Xa y) El_li,ja i’ J :1’2-

Thus, in each of the four elements of the assignment,
the function to be approximated has a partial derivative

f 2’2(x, y)=1, V(xy)ellj. Therefore, according to the

theory, the error in the approximation of such a discon-
tinuous function written above by a discontinuous spline
will satisfy the inequality:

AIPAJ?

|6y =8; 00y < F 3P Em)- BT

Bitl
1A2)82) 1 16

212! 64

max
(X, y)elljj

Suppose that in the domain defined in the previous
example, a function with discontinuities of the first kind
in the nodes of a given rectangular grid is given (Fig. 2):

X2+y2’ (Xay)enll;
X2 _y2’ (Xa y)enlz;

fooy)=9 "
—X"ty 7(Xay)€H21;

_X2 - yza (Xa y) € HZZ'

Figure 2 — Image of the discontinuous function f(X,Y)
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This function has discontinuities of the first kind at the
boundaries of a given rectangular grid, and hence at the
corner points of the grid.

First, we construct a discontinuous bilinear approxi-
mation spline on a given rectangular grid, for which we
use the formula of the approximation spline [18] in each
element of the partition

X=X Y-Vj
Xi-1 =X Yj-17Yj
Ci:,j X=% Y=Y +ij+—1x_xi_1 Y—VYj
Xi1 =X Yj=Yja X = Xic1 Yj-17Yj
ACi X=Xy Y~Yj
X = X1 ¥Yj = Yja

Lij (% ¥) = Ci ji +

+

, (X y) elly,

where C — matrix of unknown coefficients.
In this case, the experimental data are the values of the
function at the corner points of the rectangular grid, i.e.

f77(0.5,0)=0.25, f7(0.5,0)=-0.25,
f77(0;0.5)=0.25, f7(0;0.5)=-0.25,
f77(0.5;0.5)=0.5, f77(0.5;0.5) =0,
f%7(0.5,0.5)=—-0.5, f77(0.5;0.5)=0,
f7(1;0.5)=-0.75, f~"(1;0.5)=—1.25,
f77(0.51)=-0.75, f*7(0.5;1) =—-1.25.

Next, using the method of least squares, we solve the
minimization problem:

F(C)= ﬂ( £(X,y) = L(X, y,C))? dxdy —> min.
D

This problem was solved in the computer mathematics
system MathCad and the following matrix of coefficients
was obtained:

—0.083 0.167 0.167 0.417
co -0.25 0 -1 -0.75
-0.25 -1 0 —0.75
-0.417 -1.167 -1.167 -1.917

That is, the bilinear approximating spline takes the
form (Fig. 3).

0.5x+0.5y-0.083, (X, y)ell,;
L(x.y) = 0.5x-1.5y+0.5, x,y)ell,,;
’ ~-1.5x+0.5y+0.5, (x,y)ell,;

—1.5x-1.5y+1.083, (Xx,y)ell,,.
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Now on a given grid of nodes for a given discontinu- I, : oli(y)= lim f(x,y)=y>-0.25,
ous function f(X,y) we construct a discontinuous interli- beyeos
nation spline in the form of formula (1), which for our ol (y)= lim f(x,y)=y>-1;
case takes the form Saycos
2:(xX)= lim f(x,y)=-x?
S(x.Y) =5, (x.Y). (x.y) e TT;, 92000 =1 T00Y)
S; (%, y) = S1, (X, y) + 52, (X,y) - 02, ()= Tim f(xy)=025-x";
0.5<x<1
_Slzi'(xa y),(X, y)EHi- = D, + .
: ' IL,: (Plo(y)zx_l)l(g{ro f(x,y)=-y*-0.25,
0.5<y<1
X—X _ X—Xij_
SLij (%, Y) = ol iy (y)- ol (y) — ol (y)= lim f(x,y)=—y’—1;
Xi—l - Xi - Xi—l X—>1-0
0.5<y<1
52,0, Y) = 92", ,(X)- Y-y +¢2—j(x).m; 92;(0= lim f(xy)=-x"-025,
i1 Y —Yiu 0.5<x<1
. - X —X_ 2,(x)= lim f(x,y)=-x"-1.
S12,(x,Y) = 01, (¥) 2 ol () 22t 07 (0= 1m, FOoY)
XI71 | | xi71 5<x<1
312". (X, y)= CI*Y] lﬂ& And a given matrix of interpolation data in the nodes of a
Xii =% Yia =Y, given grid
o X=X Y=V, o X=X, YTV,
+Ch AL S I o At S A4 I
M- x Y~ Y Y Y-y, 0 025 025 05
Xex . Y=y o 0.25 1 0 0.75
c[}ﬁﬁ; 1025 0 -1 -075]
Lo o 0.5 -125 -125 -2
where
Construct an interlination spline for a rectangular ele-
C|+Jlr] 1= 111’1’1+ f(X, y)a C:;j = lj_n}m f(X, y)’ ment H” .
y»yj 140 y%ylj_fo
C..= lim f(xy) C.” = lim f(x,y). X — X _ X—
=1 e e " X—>Xj — ’ =ol" . 1 . 0 —
I o, Sy () =01, ()L =0l (1) =2
-0
To do this, the experimental data will be traces of the = y2 05 + (y* +0.25)- —O =
passed function along a given system of  lines

X=X, =0,Xx=%=0.5,x=X,=1,
y= yo :Oa y= y1 :0~5, y= y2 =l,nam€1y,
IT,, :cplg(y) = ng)l f(x,y)= y2’
0<y<0.5
ol (y)= lim f(x,y)=y*+0.25;
oortos
92,(x) = lim f(x,y)=x’,
$oxkos
02, (x)= lim f(x,y)=x+0.25;
y—0.5-0
0<x<0.5
Loly(y)= lim f(xy)=y,
0.5<y<1
ol (y)= lim f(x,y)=y*-0.25;
ooy
92/ (x)= lim f(x,y)=0.25-x",
y—0.5+0
0<x<0.5
02,(x) = lim f(xy)=1-x
y—l-
0<x<0.5
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=-2y*(x—0.5)+2x(y* +0.25);

$2,,(6,y) = 92", (0)- LY 1 927, (x)- LYo =
yl _yo

0 1

2y05

=X =

+(O 25+ %) —5
=-2x’ (y—0.5)+2(0.25+x )Y

SIZH(X y) = C++ X=X Y- C(;rl— X=X y_yo+

X Yo Y X=X Y=Y
+Cl—0+ X— X y y] C77 X— X y y() —
0 yO yl 0 yl yO
x—0.5 y 25 X y—0.5+ .5ii:
-0.5 0.5 0.5 -0.5 0.50.5
—y(x—=0.5)—x(y —0.5)+2xy;

Sll(xay):Sl1l(X9Y)+5211(X9Y)_81211(X9y)=

“2y*(x=0.5)+2x(y* +0.25) = 2x*(y - 0.5) +

+2(0.25+x7)y = (X—0.5) + X(y —0.5) = 2xy = y* + X°.

=0.25
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Interlination splines are similarly constructed on other
rectangular elements. As a result, we obtain a discontinu-
ous interlination spline

X2+y2» xy)ell,,
(x,y)elIl,,,
_Xz + yZ’ (X’ y) € HZI’

_X2 - yZ’ (Xs y) € H22'

X -y,
S(x,y)=

5 RESULTS

This section provides a testing discontinuous ap-
proximation and interlination splines to recover a discon-
tinuous function of two variables. Information about the
function f (x, y) is given by the corresponding one-sided
traces of a discontinuous function along a given system of
lines for an interlining spline and one-sided values of the
function at the nodes of a given perpendicular grid for a
discontinuous approximation spline. We determine the
maximum deviation of the approximate function f(X,Yy)

from the constructed bilinear spline L(X,Y)
max| f (X, y) - L(x, y)| = 0.064.

Based on the obtained form of discontinuous interlina-
tion spline L(X,y), it completely coincides with the ap-

proximating function, i.e. max| f(x,y)—S(x, y)| =0.

Figure 3 — Graphical view of the given function f(X,Y) (gray
color) and the received spline L(X,Y) (black color)

6 DISCUSSION

We can conclude that the interlination discontinuous
spline accurately restores a given discontinuous function
on a given rectangular grid of nodes in contrast to the
discontinuous approximation spline. This indicates that
the numerical experiment confirms the theoretical results
presented in this paper.

However, it should be noted that the discontinuous
structures constructed in the article are used for experi-
mental data of a different nature (values of the desired
function at points and on lines).
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DOI 10.15588/1607-3274-2022-4-3

CONCLUSIONS

The problem of development and research of methods
for approximation of discontinuous functions by
discontinuous interlination splines and its further
application to problems of computed tomography are
considered in this paper.

The scientific novelty is that for the first time a
discontinuous interlining operator has been constructed to
restore functions of two variables that have discontinuities
of the first kind. The main difference from classical
approximation methods is that discontinuous interlining
uses one-sided traces as information functions along
given lines. Constructed discontinuous structure high
approximation accuracy.

The practical significance of this work is that new
methods using information about a function in the form of
one-sided traces of a function along a given system of
lines opens up new ways in the construction of mathe-
matical models, particularly in computed tomography.

Prospects for further research are to construct and
study of a method for finding lines of discontinuity of a
function of two variables in the case when information
about the function is given in the form of traces of a func-
tion on a given system of lines and to develop a theory of
discontinuous splines on areas of complex shape bounded
by arcs of known curves.
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YK 519.6

BITHOBJIEHHSI PO3PUBHOI ®YHKIIIi PO3PUBHAMU IHTEPJIIHALIMHAMU CILIAMHAMHU

Hepmmna YO. I. — 1-p ¢di3.-mar. HayK, JOLEHT, 3aBigyBay Kadeapy BUIIOi MaTeMaTuKH HalioHaapHOTO TEXHIYHOTO yHIBEpCHUTe-
Ty «XapKiBCbKUI HOJIITEXHIYHUN IHCTUTYT», XapKiB, YKpaiHa.

AHOTAIIA

AkrtyanabHicTb. [IpoGiemMa po3poOKM Ta [JOCTIKEHHS METOAIB ampoOKCcHMamii pO3pUBHUX (QYHKIIH PO3PHBHUMH
IHTepIiHALIHHAMY CIUTaifHAMHM Ta ii OJajbIe 3aCTOCYBAaHHS A0 33/1a4 KOMII I0TepHOi ToMorpadii. O6’€KTOM AOCTiIKEHHS € MOJe-
JIIOBaHHS 00’ €KTIB 3 PO3PHBHOIO BHYTPILIHEOIO CTPYKTYypot0. MeTa poOOTH — HOCITIIKEHHS Ta PO3po0Ka 3aralbHOr0 METOy Mo0y-
JIOBH PO3PHBHHX IHTEpITiHANIHUX MONIHOMIaJbHUX CIUIANHIB, AKi, SIK OKpPEeMHil BHIIAJOK, BKIIOYAIOTh PO3PHBHI Ta HEHNEpPEpPBHO-
nudepeHIiiioBaHi CraiHu.

Metoa. CyuacHi MeTOaM BiJJHOBJICHHS (DYHKIIH XapaKTepU3YIOTHCS HOBHMH IIJXOAaMH JI0 OTPUMaHHs, oOpoOKH Ta aHamizy
indopwmarii. Bunukae norpeda B moOyq0Bi MaTeMaTHYHUX MOENEH, B SKUX iHGOpMAaLlist MOke OyTH NpelncTaBieHa HE TIJIbKU 3Ha-
4yeHHsAMH (YHKIIT B TOUKax, a i y BUNIAI Habopy ciixiB GyHKLi# Ha rurompHax abo mpsamux. BopHowac mpakTka mokasye, 1o
cepen 0araTOBIMipHUX 00’ €KTIB, SIKi MOTPEOYIOTh AOCIiKCHHS, O1TbIIe TPOOIEM OMUCYIOThCSA PO3PUBHIMHU (PYHKITISIMU.

VY crarTi po3pobieHo 3aransHUK METOA MOOYIOBH PO3PHBHUX IHTEPIIHAIIHUX MOMTHOMIaTbHUX CIUIAWHIB, 10 CKIAAY SKUX, K
OKpEeMUi BUIIA/IOK, BXOAATh PO3PUBHI Ta HENEepepBHO AudepeHniioBani ciutaifnn. BaxkaeTbes, mo o6yacTh BU3HAYEHHS IIyKaHOT
JBOBHMIpHOI (yHKHii po3bura Ha npsAMOKyTHI eneMeHTH. CQOpMyIbOBaHO Ta JOBEAEHO TEOPEMH IIpO IHTEpIiHAWiHHI Ta
aIpoKCHMAalliifHi BIIaCTUBOCTI TaKUX PO3PHBHHUX KOHCTPYKLii. Po3pobiieHo MeTo anpokcumanii po3puBHUX (QYHKIIH ABOX 3MiHHHX
Ha OCHOBI NMOOYJOBaHMX PO3PHBHUX CIUIAiHIB. BXimHMMH naHuMu € ciign HeBimomoi QyHKIIT B3OBXK 3a7aHOI CHCTEMH B3a€EMHO
MEPIICHANKYJIIPHUX HPSIMHX. 3aIPOIIOHOBAHUI METOJl Ma€ He TUIbKHM TEOPETHYHE 3HAUCHHS, a i IPaKTHYHE 3aCTOCYBaHHA B cdepi
IT, ocobnuBO B KOMIT 10TepHii ToMOrpadii, 0 J03BOJISAE GBI TOYHO BiIHOBUTH BHYTPIIIHIO CTPYKTYPY OpraHi3my.

PesyabTaTn. J{ociimkeHo onepatop po3pUBHOI iHTEpIIiHAMLIT 32 BIIOMHUMHU CIlizaMi (YHKIII ABOX 3MIHHHX Ha CHCTEMi B3a€EMHO
MEPIICH/TUKYJISIPHUX PSIMHX.

BucnoBkn. OyHKIil [BOX 3MIHHHX, SIKI € PO3PUBHUMH B JESKUX TOUYKax a00 Ha JSSIKHX JIHISAX, Kpalle alpoKCHMYIOTBCS PO3-
PHMBHHMH iHTEpIIiHALIHHUMY cIUTaiiHaMu. IIpu bOMy MOYKHA OTPHMATH OJIHAKOBO BHCOKI OLIHKK HabmmwkeHHs . OTpHUMaHi pe3yJibTa-
TH MaloTh 3HA4HI NepeBaru IepeJ iCHyIOUMMH METOJAMM IHTEpIOJALil Ta ampoKcHUManii po3pMBHHMX (yHKUiH. Y momanbmmx
JOCIIIJUKEHHSAX aBTOPH IUIAHYIOTH PO3BHHYTH TEOPIiI0 PO3PHMBHHX CIUIAHHIB Ha IUSIHKAX CKJIAMHOI (GopMH, OOMEXKEHHUX ayramu
BiZIOMUX KPUBHX.

KJIFOYOBI CJIOBA: 06po6ka curHaiis, ojiHOMIaIbHU# CIUIaliH, IHTepIiHALS, pO3pUBHI (YHKLIT, aTPOKCHMALIis.
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