
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

UDC 004.415.2

DETERMINATION OF INHERITANCE RELATIONS AND
RESTRUCTURING OF SOFTWARE CLASS MODELS IN THE PROCESS

OF DEVELOPING INFORMATION SYSTEMS

Kungurtsev O. B. – PhD, Professor of the Software Engineering Department, Odessа Polytechnic National Univer-

sity, Odessa, Ukraine.
Vytnova A. I. – Student of the Software Engineering Department, Odessа Polytechnic National University, Odessa,

Ukraine.

ABSTRACT
Context. The implementation of different use-cases may be performed by different development teams at different times. This

results in a poorly structured code. The problem is exacerbated when developing medium and large projects in a short time.
Objective. Since inheritance is one of the effective ways to structure and improve the quality of code, the aim of the study is to

determine possible inheritance relationships for a variety of class models.
Method. It is proposed to select from the entire set of classes representing the class model at a certain design stage, subsets for

which a common parent class (in a particular case, an abstract class) is possible. To solve the problem, signs of the generality of
classes have been formulated. The mathematical model of the conceptual class has been improved by including information about the
responsibilities of the class, its methods and attributes. The connection of each class with the script items for which it is used has
been established. A system of data types for class model elements is proposed. Description of class method signatures has been ex-
tended. A method for restructuring the class model, which involves 3 stages, has been developed. At the first stage, the proximity
coefficients of classes are determined. At the second, subsets of possible child classes are created. At the third stage, an automated
transformation of the class structure is performed, considering the identified inheritance relationships.

Results. A software product for conducting experiments to identify possible inheritance relationships depending on the number
of classes and the degree of their similarity has been developed. The results of the conducted tests showed the effectiveness of the
decisions made.

Conclusions. The method uses an algorithm for forming subsets of classes that can have one parent and an algorithm for auto-
matically creating and converting classes to build a two-level class hierarchy. An experiment showed a threefold reduction in errors
in detecting inheritance and a multiple reduction in time in comparison with the existing technology.

KEYWORDS: class model, class attribute, class method, data types, use case, inheritance.

ABBREVIATIONS
UC is a use-case;
OOP is an object-oriented programming;
OOA is an object-oriented analysis;
SP is a software product;
OOT is an object-oriented technologies.

NOMENCLATURE

Cpj is a parent class;
Cjq

` is q-th descendant class that passed common at-
tributes and methods to the parent class;

cHead is a class header;
mMeth is a set of functions (methods) of the class;
mAttr. is a set of class attributes;
cName is a name of the class;
mResp is a set of class responsibilities;
uName is the name of the UC and the number of the

point where the class was created, or a function was
added to the class;

nP is a class responcibility, represented by a single
phrase;

abstract is an abstract class;
cName1 is a name of the parent class for the cName

class;
mChildCl is a set of child classes (filled only for an

abstract class);
Numb is a number format;

Bool is a boolean value;
Text is any text;
Void is a function does not return the value;
NameS is a name of the type;
NameFi and Typei are the name and type of the i-th

field;
NameL is a name of the type;
NameE is a name of the list element;
CPName is a type name (class name).
attrName is an identifier of the attribute;
attrResp is an attribute responsibility;
attrType is an attribute type;
fName is a name of the method;
fRespo is a responsibility of the method;
mRCi is a set of class Ci responsibilities;
CimRCi is a number of class Ci responsibilities;
mRCj is a set of class Cj responsibilities;
CjmRCj is a number of class Cj responsibilities;
mArgs is a set of method arguments;
returnVal is a function return value;
mRsArgs is a set of arguments that return the result of

the calculation;
CAi is an abstract class;
mChildCi is the set of its child classes;
CAS is the concatenation of the names of all classes

that are included in the set `
rmChildC (hereinafter, the

name is edited by the expert).

98

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

INTRODUCTION
The theory of OOP and OOA was elaborated in detail

in the works of G. Booch and his colleagues [1] and con-
tinues to be developed and promoted [2, 3]. However, the
practice of applying theoretical principles in the develop-
ment of SPs faces many unsolved problems. The use of
flexible technologies significantly speeds up the process
of designing software products [4], however, it is possible
to perform OOA to full extent only within the framework
of the cascade model of the software life cycle [5]. In
most OOT for creating software products functional re-
quirements are written in the form of use cases (UC) [6].
UML is used to create UC diagrams, interaction diagrams,
and class specifications. Stages of compiling the text of
UC, class analysis, defining possible hierarchical relation-
ships between them are not usually supported by design
tools. The implementation of all main design stages
within one iteration, which is typical for flexible tech-
nologies, allows carrying out a detailed OOA only for
some fragments of the subject area. This creates a number
of problems for the project [7], including defects in the
architecture and structure of the class model. As a result,
the program code requires detailed refactoring [8]. This is
especially evident for medium and large projects, when
teams of developers work in parallel to solve different
problems (Fig. 1.). Under such conditions, there is a high
probability that a possible “kinship” between classes will
go unnoticed or will not cover all potential members of
the hierarchy.

Figure 1 – Parallel development of the class structure

The purpose of the study is to select from the set of
classes that represent the class model at a certain design
stage, subsets for which a common parent class and
automated restructuring of all classes related by
inheritance relations are possible.

To achieve the stated goal, it is necessary to solve the
following tasks:

– To formulate signs of class commonality;
– To improve the class model in order to provide

comparison with other classes;
– To develop a method for restructuring the class

model taking into account inheritance;
– To perform approbation of the research results.

1 PROBLEM STATEMENT

Let },...,,...,,{ 21 ni CCCCmC  be the set of class

models of some software project. It is necessary to extract
from mC such subsets of classes mC1, mC2, …, mCk, for
which common parent classes can be created. If some

subset },...,,{ 21 jqjjj CCCmC  is found, then it is trans-

formed to the form < },...,,{ ''
2

'
1 jqjjj CCCCp >.

2 REVIEW OF THE LITERATURE

A good practical guide to inheritance is provided by
[9], but it does not address the issue of inheritance of
classes represented by models. In [10], it is proposed to
put an abstract class as the basis of the hierarchy. It is
shown that the effect of using an abstract class occurs
when a number of subclasses are created on its basis in
accordance with different specializations of the tasks
being solved. However, the question of finding these
specializations remains open. Disadvantages in the
representation of classes in UML models are noted in
[11]. The author suggests deepening your understanding
of object-oriented concepts by determining relationships
between actions and attributes, without considering the
similarity of classes in terms of actions and attributes. In
[12], the problem of the transition from the class model to
the domain ontology is considered. An extension of the
representation of classes, which, however, does not affect
the identification of inheritance relations, is proposed.

In [13], the remodularization of object-oriented
software systems is proposed, considering the
connectivity, concatenation, index of the number and
sizes of packages. The said principles of restructuring at
the package level can be partly transferred to the class
level.

The work [14] is devoted to the analysis of software
quality at three levels. At the class level, it is proposed to
introduce additional quality assessment metrics. However,
they do not provide an assessment of the existing or
possible hierarchical relationships between classes.

In [15], a two-level clustering of class models is
proposed: at the level of semantics and structure.
Obviously, this approach makes it possible to select
“similar” classes. However, the analysis of the possible
“kinship” between such classes was not performed in the
work. A similar problem of determining groups of “close”
classes was solved in [16]. But here the aim was to reduce
testing resources, not to restructure classes.

The question of the comparative efficiency of manual
and automated search for features of functions was
considered in [17]. The idea of organizing the search for
features not only in the code, but also in models is very
productive.

The analysis of hierarchical relations of classes was
performed in [18]. However, it is not the process of
forming a hierarchical structure that is being studied, but
its analysis for the purpose of preserving secret
information in inherited methods.

In [19], a method for automated description of UC
was proposed, which made it possible to further automate
the process of building a model of conceptual classes
[20]. At the same time, additional information about the
connection of the class with the UC, methods and
attributes of the class was placed in the model. Such a
model [20] contains more information for searching for

99

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

class “kinship”, but without significant development it
cannot solve such a problem.

3 MATERIALS AND METHODS

Let start with an improved model class. In [20], a
class model is proposed that can be taken as a basis.
However, the specific task of finding a set of classes that
can have a common “parent” requires a significant devel-
opment of the said model. Let us formulate new require-
ments for the model:

– the class header is a comparison element. It must
have the characteristic of responsibility.

– the class attribute is a comparison element. It must
have the characteristic of responsibility and type;

– the class method is a comparison element. It must be
represented by a responsibility and a signature;

– a class must have characteristics that define its role
and relationships in the class hierarchy.

Basing on the foregoing, we will represent all the
classes that are included into the project as a set:

},{cmC  (1)

and each class as a tuple:

.,,  mAttrmMethcHeadc (2)

Now let’s talk about a class header. To compare
classes, it is proposed to introduce a set of responsibilities
for which the class is used, formulated as separate sen-
tences in the header of the class. In accordance with the
technology of constructing a class model [21], a class is
created when the UC “Create” item is implemented in the
class model. At the same time, the first responsibility pro-
posal is formed. For each subsequent point in the script,
when the class must perform an action, a responsibility
for the corresponding function, which is included into the
set of class responsibilities is formed. For a possible trac-
ing from the class model to the requirements (scenarios),
the name of the corresponding UC and the number of the
scenario item correspond to each new responsibility.

Further we will consider parent classes as abstract
ones, since in our case they will not generally represent
real objects of the subject area. Thus, the class header is
represented as a tuple:

 ceinherispmcNamecHead tan,Re, . (3)

Each element of the set mResp is represented by a tuple

<uName,nP,r>. (4)

An inheritance relationship is represented by a tuple:

<inheritTrait,mChildCl>, (5)

where inheritTrait can take the following values: abstract,
cName1, null (the class has no inheritance relationship
with other classes), mChildCl.

In [20], a system of data types for a class model is
proposed. In this work, this system has been developed at
the expense of structured types.

Simple types: Numb, Bool, Text, Void.

Structured types. Struct – structure, in the general
case, contains several fields of different types. The struc-
ture declaration has the following form:

Struct>NameS(n)(NameF1:Type1,NameF2:Type2,
…NameK:TypeK).

A List can represent a linear list, an array, a set, and so
on.

The list declaration looks as:

List > NameL(NameE:Type).

The declaration of a reference to an object of the
CPType class looks as:

CPType > CPName.

To provide the ability to compare class attributes it is

proposed: to introduce the concept of the purpose (re-
sponsibility) of an attribute and data types.

As a result, each attribute from the set mAttr will be
presented as:

 attrTypespattrattrNameAttr ,Re, . (6)

To provide the possibility of comparing class
methods, it is proposed: for each method to formulate its
obligation in the form of a short phrase, for instance,
“calculation of the cost of the order”; for method
arguments to use the rules formulated earlier for
attributes.

As a result, each method from set mMeth(2) will take
the form:

 mRsArgsreturnValmArgsspoffNamefunc ,,,Re, . (7)

Figure 2 illustrates the resulting class model.

Figure 2 – The structure of the class model

100

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

The class model restructuring method involves four
steps.

The first step is to determine the proximity of classes.
Comparing two classes involves comparing class respon-
sibilities, methods, and class attributes. To do this, it is
necessary to compare various elements of the description
of one class with other classes within the framework of
the program class model, represented by a set mC (the
total number of classes nC=|mC|).

For each comparison position, it is proposed to calcu-
late the proximity coefficient

elementsofnumberTotal

elementsmatchingofNumber
K

 . (8)

When comparing the elements represented by the text,

fuzzy string comparison functions were used [22]. There-
fore, the result of the comparison will be a number not
exceeding 1. A threshold value of the coefficient of prox-
imity of responsibilities of the class Kcmin has been in-
troduced, below which it makes no sense to search for the
“kinship” of classes.

To compare the responsibilities of classes, we trans-
form the set of responsibilities mRespi (3) of a certain
class Сi, excluding references to the UC and the scenario
item.

ii mRCspm Re , (9)

where },...,{ ,1, niiii rrmRCC  , || iii mRCnRCC  ,

},...,{ ,1, mjjj rrmRC  and },...,{ ,1, njjjj rrmRCC  ,

|| jj mRCnRC  .

Let us define a set of overlapping responsibilities of
classes Сi and Сj

}|{ ,,, pjqjiqqji rrorroromRC  , (10)

and their number

|| ,, jiji mRCnRC  . (11)

If 0, jinRC , then class comparison stops.

When comparing class methods, we proceed from the
following considerations. Each time when a class is used
to implement a script item, a responsibility is added to the
class header. The same responsibility is attributed to the
class function that implements it in the script item. To
determine the identity of two functions with overlapping
responsibilities from classes Ci and Сj, to match of all
elements from (7) except the function names is required.
Let us represent the set of coinciding functions of classes
Ci and Сj in the form jimMethC , . If no match is found for

a pair of functions, then jinRC , is reduced by one.

Match of class attributes does not affect the assess-
ment of class proximity degree, because there are meth-
ods that do not use the attributes of their class. However,
matching attributes must be identified for further class
transformation. To determine the identity of two attributes
from classes Ci and Cj, their types and responsibilities
must match. Let us represent the set of matching attributes
of classes Ci and Cj in the form jimAttrC , .

The result of comparing two classes is called the prox-
imity coefficient of the said classes ER. Its value must be
different for classes Ci and Сj. For a class Сi:

i

ji
ji nRC

nRC
ER

,
,  . (12)

For a class Сj:

j

ji
ij nRC

nRC
ER ,

,  . (13)

The overall coefficient:

2
,,

,
ijji

ji
ERER

ERO


 . (14)

The second stage is the construction of the class prox-

imity matrix. To identify the possible “kinship” of classes
from set mC(1), it is proposed to use the matrix of class
proximity. An example of such a matrix is presented in
Table 1.

Table 1 – Matrix of class proximity
Classes C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 X 0 ER1,3 0 0 ER1,6 0 ER1,8 0

C2 0 X ER2,3 0 ER2,5 ER2,6 0 0 0

C3 ER3,1 ER3,2 X ER3,4 0 0 0 0 ER3,9

C4 0 0 ER4,3 X ER4,5 ER4,6 0 0 0

C5 0 ER5,2 0 ER5,4 X 0 0 0 0

C6 ER6,1 ER6,2 0 ER6,4 0 X 0 ER6,8 0

C7 0 0 0 0 0 0 X 0 0

C8 ER8,1 0 0 0 0 ER8,6 0 X ER8,9

C9 0 0 ER9,3 0 0 0 0 ER9,8 X

101

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

The cells of the matrix contain the values of the prox-

imity coefficients for all pairs of classes from set mC. For

instance, it follows from the matrix that there is no com-

monality between classes С1 and С2, but there is a com-

monality between classes С2 and С5.

The presence of commonality between class С1 and

classes 863 ,, CCC does not mean that there will be one

parent class for all these classes. The search for the opti-

mal solution will consist in the fact that for any class from

group 863 ,, CCC , the condition for combining with С1 is

the greatest value of proximity with this particular class.

For example, С6 will enter a group with С1 if

),,max(8,64,62,66,1 ERERERER  .

The third stage is the formation of a set of abstract

classes. At this stage, as a result of processing the matrix,

it is necessary to form a set of abstract (parent) classes

mCA (initially, the set is empty), each element of which

has the form

 iii mChildCCAmCA , . (15)

Previously, we will place classes that can potentially

become child classes in the set of child classes. Let us

denote such a set 'mChildC . The sequence of operations

for the formation of the said sets is represented by the

algorithm for identifying parent (abstract) classes:

1. To define the set of all classes and the set mC of ab-

stract classes c.

2. To fill in the generality matrix of the size KK  ,

where || mCK  . To set the matrix row index i=1 and the

abstract class index r=1.

3. For each proximity coefficient 0, njER , to calcu-

late the total proximity coefficients njERO , for

Kij ,1 .

4. If some ninj EROERO ,,  is found, then niERO , is

reset to zero. Otherwise, all njERO , are set to zero. If

there is no more than one ERO in the current line, then go

to step 6.

5. The set '
rmChildC contains all classes of the i-th

row for which 0, niER . Only the name of the abstract

class is entered as СAr. cName=CAS. To increase index r

by 1.

6. To increase index i by 1. If i<K, go to step 3.

7. Completion of the algorithm.

The fourth stage is the formation of parent (abstract)

and child classes. For each abstract class with the name

СASr, it is necessary to form a header, methods and at-

tributes using a set '
rmChildC of classes. Each class in the

set '
rmChildC must be converted into a derived class

СASr by changing the header, excluding methods and

attributes that passed into СASr.

The solution to this problem is formulated as a class

restructuring algorithm:

1. We determine the possible number of abstract

classes Ka=|mCA| and set the index of the first abstract

class i=1.

2. We determine the number of possible child classes

for the i-th abstract from |.| 'mChildCmCAKc ii  and de-

fine the responsibilities ispm Re of an abstract class СASi

by identifying, in accordance with (10), the general re-

sponsibilities of classes from '
imChildC . We write in the

inheritance relation abstractitinheritTra i  , in the set

imChildCl we write the names of classes from
'
imChildC .

3. We determine methods imMethCA of an abstract

class СASi by identifying common methods of classes

from '
imChildC .

4. We determine the attributes imAttrCA of an ab-

stract class СASi by identifying common attributes of

classes from '
imChildC .

5. We set the index of the child class j=1.

6. In the class header '
, . jiji mChildCmCAc  , we set

the inheritance flag jj CASitinheritTracHeadc .. .

7. We remove methods of class СASi ci,j from the class

mMethCASmMethcmMethc ijiji ..:. ,,  .

8. We remove attributes of class СASi ci,j from the

class mAttrCASmAttrcmAttrc ijiji ..:. ,,  .

9. We set j:=j+1. If j <= Kci , then go to step 6. Other-

wise, go to step 7.

10. We demonstrate the analytics of the abstract class

СASr and its child classes `.mChildCmCAi . If inheritance

is asserted, then each class from mC for which

cNamemChildCcNamemC ji .. , is replaced by the corre-

sponding class mChildCi,j and an abstract class named

СASi is added to the set mC.

11. We set i:=i+1. If i<=Ka, then go to step 2.

Otherwise, finish the algorithm.

4 EXPERIMENTS

In accordance with [21], a simplified scheme for con-

structing a class model is shown in Fig. 3.

Figure 3 – Simplified scheme for building a class model

102

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

The system analyst, basing on the analysis of the sub-

ject area and consultations with an expert describes the

UC using the UseCaseEditor program [20]. Basing on the

obtained UCs, a programmer (perhaps a system analyst)

creates a class model using the ModelEditor program

[21].

To apply the proposed method of restructuring the

class model, a software product HeirClass+ was devel-

oped.

Within the framework shown in Fig. 3 the technology

(working mode), it is difficult to test the method of

searching for inheritance relations, since it is impossible

to select such UCs that would provide many classes in the

model with the necessary characteristics in advance.

Therefore, to test the decisions made, a software module

was developed that allows you to create a class model

bypassing the stage of automated UC description (ex-

perimental mode). Fig. 4 shows the class model restruc-

turing scheme in an experimental and operational modes.

Figure 4 – Scheme for testing the decisions made

and testing modules

For performing experiments 15 programmers (3rd year

students) were involved. Of these, 5 teams were formed.

For each team, requirements to 4 classes were formulated

in the following form: “The class must perform The

class contains a method that, basing on ..., returns The

class contains an attribute that represents…”. The require-

ments were distributed in such a way that one team could

not be given the task of describing potentially related

classes. It was supposed that, in accordance with the re-

quirements, there could be 6 groups of “related” classes.

5 RESULTS

After completing the work on the models, the partici-

pants in the experiment were asked to identify potential

inheritance relationships in a variety of classes. Simultane-

ously the program HeirClass+ with identical source data

was started. After 2 hours, the teams identified 8 class

groups with signs of inheritance relationships out of 9 sup-

posed ones. Of these, 4 groups were accepted for restruc-

turing. Program HeirClass+ identified 8 groups within 10

seconds. Of these, 5 groups were accepted for restructuring

at a threshold commonality rate of 35%. In addition, Heir-

Class+ performed the restructuring flawlessly.

Table 2 shows the matrix of generality for the first 10

classes, obtained on the basis of the work of the program

HeirClass+(classes named C1-C10 for brevity).

Figure 5 presents a piece of information that is offered

to the developer for deciding about inheritance.

Table 2 – Class commonality matrix (experiment)
Classes C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 X 0% 29% 0% 43% 57% 29% 29% 43% 14%

C2 0% X 38% 0% 38% 13% 0% 38% 13% 50%

C3 20% 30% X 10% 10% 30% 0% 50% 0% 40%

C4 0% 0% 17% X 0% 0% 33% 0% 17% 0%

C5 38% 38% 13% 0% X 13% 13% 25% 50% 63%

C6 14% 57% 43% 0% 14% X 0% 43% 14% 14%

C7 20% 0% 0% 20% 10% 0% X 0% 20% 0%

C8 29% 43% 71% 0% 29% 43% 0% X 14% 29%

C9 30% 10% 0% 10% 40% 10% 20% 10% X 20%

C10 13% 50% 50% 0% 63% 13% 0% 25% 25% X

103

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

Figure 5 – Class comparison result

6 DISCUSSION

Until now, class inheritance has been studied in terms
of analyzing the effectiveness of its application [10],
building class libraries, developing conditions and rec-
ommendations for specializing generated classes [18]. In
this work, for the first time, the problem of automated
search for possible inheritance relations and their imple-
mentation for a set of classes is solved. Class conversion
automation is used in refactoring [8]. However, for refac-
toring, the object of modernization is the code, and the
operations are initiated by a specialist.

From what has been said, it follows that the proposed
method can only be compared with “manual” processing
of a set of classes. The experiment showed that automated
analysis was performed hundreds of times faster than
manual analysis with a significant reduction in the num-
ber of errors, and class conversion turned out to be error-
free.

CONCLUSIONS

It is shown that modern iterative software develop-
ment technologies lead to the creation of a poorly struc-
tured code, which requires refactoring at relatively late
stages of software design and is associated with high
costs.

The paper solves the problem of automated determina-
tion of inheritance relations for a set of classes. For this
purpose, signs of the generality of classes have been for-
mulated; the class model has been improved by defining
the concept of responsibility class, method, attribute; de-
tailed description of the method signature has been given;
a data type system for the class model has been proposed.

A method for restructuring the class model has been
developed. The method uses an algorithm for forming
subsets of classes that can have one parent and an algo-
rithm for automatically creating and converting classes to
build a two-level class hierarchy.

 The results of the study are implemented in the Heir-
Class+ software product. An experiment using HeirClass+
showed a threefold reduction in errors in detecting inheri-
tance and a multiple reduction in time in comparison with
the existing technology.

REFERENCES
1. Booch G., Maksimchuk R. A., Engle M. W., Young B. J.,

Conallen J., Houston K. A., Wesley A. Object-Oriented
Analysis and Design with Applications 3rd Edition. Boston,
Addison-Wesley Professional, 2007, 694 p.

2. Lee G. Modern Programming: Object Oriented Program-
ming and Best Practices. Birmingham, Packt, 2019, 266 p.

3. Baesens B., Backiel A., Broucke S. Beginning Java Pro-
gramming: The Object-Oriented Approach. Birmingham,
Wrox, 2015, 672 p.

4. Brand M., Tiberius V., Bican P. M., Brem A. Agility as an
innovation driver: towards an agile front end of innovation
framework. Potsdam, Springer, 2021, pp. 157–187.

5. Adeagbo M. A., Akinsola J., Awoseyi A. A., Kasali F. Pro-
ject Implementation Decision Using Software Devel-opment
Life Cycle Models: A Comparative Approach, Journal of
Computer Science and Its Application, 2021, No. 28,
pp. 122–133.

6. Jacobson I., Spence I., Bittner K. USE-CASE 2.0 The Guide
to Succeeding with Use Cases [Electronic Recourse]. Access
mode:
https://www.ivarjacobson.com/sites/default/files/field_iji_fil
e/article/use-case_2_0_jan11.pdf

7. Arcos-Medina G., Mauricio D. The Influence of the Appli-
cation of Agile Practices in Software Quality Based on
ISO/IEC 25010 Standard, International Journal of Informa-
tion Technologies and Systems Approach, 2020, №13, pp.
1–27.

8. Mohan M., Greer D. A survey of search-based refactoring
for software maintenance, Journal of Software Engineering
Research and Development, 2018, №6, pp. 1–52.

9. Ryan M. Mastering OOP: A Practical Guide to Inheritance,
Interfaces, and Abstract Classes [Electronic Recourse]. Ac-
cess mode:
https://www.smashingmagazine.com/2019/11/guide-oop-
inheritance-interfaces-abstract-classes/

10. Taubler D. When to Use Abstract Classes [Electronic Re-
course]. Access mode: https://betterprogramming.pub/when-
to-use-abstract-classes-70fe526165ac

11. AI-Fedaghi S. Classes in Object-Oriented Modeling (UML):
Further Understanding and Abstraction, International Jour-
nal of Computer Science and Network Security, 2021, №21.
pp. 139–150.

12. Minh Hoang Lien Vo, Hoang Q. Transformation of UML
class diagram into OWL Ontology, Journal of Information
and Telecommunication, 2020, No. 4, Issue 1.

104

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

13. Gandhi P., Pradeep K. Optimization of Object-Oriented
Design using Coupling Metrics, International Journal of
Computer Applications, 2011, No. 27, pp. 41–44.

14. Saeed M. G., Alasaady M. T. Three Levels Quality Analysis
Tool for Object Oriented Programming, International Jour-
nal of Advanced Computer Science and Applications, 2018,
№ 9, pp. 522–536.

15. Zongmin Ma, Zhongchen Yuan, Yan Li Two-level cluster-
ing of UML class diagrams based on semantics and struc-
ture, Information and Software Technology, 2021, No. 130,
106456.

16. Miao Zhang, Jacky Wai Keung, Yan Xiao, Md Alamgir
Kabir Evaluating the effects of similar-class combination on
class integration test order generation, Information and
Software Technology, 2021, №129, 106438.

17. Pérez F., Echeverría J., Lapeña R., Cetina C. Comparing
manual and automated feature location in conceptual mod-
els: A Controlled experiment, Information and Software
Technology, 2020, No. 125, 106337.

18. Benlhachmi K., Benattou M. A Formal Model of Confor-
mity and Security Testing of Inheritance for Object Oriented

Constraint Programming, Journal of Information Security,
2013, №4, pp. 113–123.

19. Vozovikov Yu. N., Kungurtsev A. B., Novikova N. A. In-
formation technology for automated compilation of use
cases, Science practices of Donetsk National Technical Uni-
versity, 2017, No. 1 (30), pp. 46–59.

20. Kungurtsev O., Novikova N., Reshetnyak M., Cherepinina
Ya., Gromaszek K., Jarykbassov D. Method for defining
conceptual classes in the description of use cases. Odessa:
Photonics Applications in Astronomy, Communications, In-
dustry, and High-Energy Physics Experiments 2019, 2019,
1117624.

21. Kungurtsev O. B., Novikova N. O., Zinovatna S. L., Kom-
leva N. O. Automated object-oriented for software module
development, Applied Aspects of Information Technology,
2021, №4, pp. 338–353.

22. Winkler W. E. String Comparator Metrics and Enhanced
Decision Rules in the Fellegi-Sunter Model of Record Link-
age, Proceedings of the Section on Survey Research Meth-
ods, 1990, pp. 354–359.

Received 10.09.2022.
Accepted 08.11.2022.

УДК 004.415.2

ВИЗНАЧЕННЯ ВІДНОСИН УСПАДКУВАННЯ ТА РЕСТРУКТУРИЗАЦІЯ МОДЕЛЕЙ ПРОГРАМНИХ КЛАСІВ У

ПРОЦЕСІ РОЗРОБКИ ІНФОРМАЦІЙНИХ СИСТЕМ

Кунгурцев О. Б. – канд. техн. наук, професор кафедри Інженерії програмного забезпечення Національного університету
«Одеська політехніка», Одеса, Україна.

Витнова А. І. – студентка кафедри Інженерії програмного забезпечення Національного університету «Одеська
політехніка», Одеса, Україна.

AНОТАЦІЯ

Актуальність. Реалізація різних варіантів використання може виконуватись різними командами розробників у різний
час. Це призводить до створення погано структурованого коду. Проблема ускладнюється при розробці середніх та великих
проектів у стислий термін.

Мета. Оскільки успадкування є одним із ефективних способів структурування та покращення якості коду, метою
дослідження є визначення можливих зв’язків успадкування для різноманітних моделей класів.

Метод. Запропоновано виділення з множини класів, що представляють модель класів на певному етапі проектування,
підмножин, для яких можливий загальний батьківський клас (в окремому випадку абстрактний клас). Для вирішення
завдання сформульовано ознаки спільності класів. Удосконалено математичну модель концептуального класу за рахунок
включення інформації про обов’язки класу, його методи та атрибути. Встановлено зв’язок кожного класу з сценаріями, для
яких він використовується. Запропоновано систему типів даних для елементів моделі класу. Розширено опис сигнатур
методів класів. Розроблено метод реструктуризації моделі класів, що передбачає 3 етапи. У першому визначаються
коефіцієнти близькості класів. На другому створюються підмножини можливих дочірніх класів. На третьому виконується
автоматизоване перетворення структури класів з урахуванням виявлених відносин спадкування.

Результати. Розроблено програмний продукт для проведення експериментів щодо виявлення можливих відносин
успадкування залежно від кількості класів та ступеня їхньої подібності. Результати проведених випробувань показали
ефективність ухвалених рішень.

Висновки. Метод використовує алгоритм формування підмножин класів, які можуть мати одного предка та алгоритм
автоматичного створення та перетворення класів для побудови дворівневої ієрархії класів. Результати дослідження
реалізовані у програмному продукті. Експеримент показав триразове скорочення помилок при виявленні наслідування та
багаторазове скорочення часу порівняно з існуючою технологією.

КЛЮЧОВІ СЛОВА: модель класу, атрибут класу, метод класу, типи даних, варіант використання, спадкування.

ЛІТЕРАТУРА / ЛІТЕРАТУРА
1. Object-Oriented Analysis and Design with Applications 3rd

Edition / [G. Booch, R. A. Maksimchuk, M. W. Engle et
al.]. – Boston : Addison-Wesley Professional, 2007 – 694 p.

2. Lee G. Modern Programming: Object Oriented Program-
ming and Best Practices / G. Lee. – Birmingham : Packt,
2019. – 266 p.

3. Baesens B. Beginning Java Programming: The Object-
Oriented Approach / B. Baesens, A. Backiel, S. Broucke. –
Birmingham : Wrox, 2015. – 672 p.

4. Agility as an innovation driver: towards an agile front end of
innovation framework / [M. Brand, V. Tiberius, P. M. Bi-
can, A. Brem]. – Potsdam : Springer, 2021. – P. 157–187.

5. Project Implementation Decision Using Software Devel-
opment Life Cycle Models: A Comparative Approach / [M.
A. Adeagbo, J. Akinsola, A. A. Awoseyi, F. Kasali] // Jour-

105

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2022. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. № 4

© Kungurtsev O. B., Vytnova A. I., 2022
DOI 10.15588/1607-3274-2022-4-8

nal of Computer Science and Its Application. – 2021. –
№ 28. – P. 122–133.

6. Jacobson I. USE-CASE 2.0 The Guide to Succeeding with
Use Cases [Electronic Recourse] / I. Jacobson, I. Spence, K.
Bittner. – Access mode:
https://www.ivarjacobson.com/sites/default/files/field_iji_fil
e/article/use-case_2_0_jan11.pdf

7. Arcos-Medina G. The Influence of the Application of Agile
Practices in Software Quality Based on ISO/IEC 25010
Standard / G. Arcos-Medina, D. Mauricio // International
Journal of Information Technologies and Systems Ap-
proach. – 2020. – №13. – P. 1–27.

8. Mohan M. A survey of search-based refactoring for software
maintenance / M. Mohan, D. Greer // Journal of Software
Engineering Research and Development. – 2018. – №6. – P.
1–52.

9. Ryan M. Mastering OOP: A Practical Guide to Inheritance,
Interfaces, and Abstract Classes [Electronic Recourse] /
M. Ryan. – Access mode:
https://www.smashingmagazine.com/2019/11/guide-oop-
inheritance-interfaces-abstract-classes/

10. Taubler D. When to Use Abstract Classes [Electronic Re-
course] / D. Taubler. – Access mode:
https://betterprogramming.pub/when-to-use-abstract-classes-
70fe526165ac

11. AI-Fedaghi S. Classes in Object-Oriented Modeling (UML):
Further Understanding and Abstraction / S. AI-Fedaghi // In-
ternational Journal of Computer Science and Network Secu-
rity. – 2021. – №21. – P. 139–150.

12. Minh Hoang Lien Vo Transformation of UML class diagram
into OWL Ontology / Minh Hoang Lien Vo, Q. Hoang //
Journal of Information and Telecommunication. – 2020. –
№4. – Issue 1.

13. Gandhi P. Optimization of Object-Oriented Design using
Coupling Metrics / P. Grandhi, K. Pradeep // International
Journal of Computer Applications. – 2011. – №27. – P. 41–
44.

14. Saeed M. G. Three Levels Quality Analysis Tool for Object
Oriented Programming / M. G. Saeed, M. T. Alasaady // In-
ternational Journal of Advanced Computer Science and Ap-
plications. – 2018. – №9. – P. 522–536.

15. Zongmin Ma Two-level clustering of UML class diagrams
based on semantics and structure / Zongmin Ma, Zhongchen
Yuan, Li Yan // Information and Software Technology. –
2021. – №130. – 106456.

16. Evaluating the effects of similar-class combination on class
integration test order generation / [Miao Zhang, Jacky Wai
Keung, Yan Xiao, Md Alamgir Kabir] // Information and
Software Technology. – 2021. – №129. – 106438.

17. Comparing manual and automated feature location in con-
ceptual models: A Controlled experiment / [F. Pérez,
J. Echeverría, R. Lapeña, C. Cetina] // Information and Soft-
ware Technology. – 2020. – №125. – 106337.

18. Benlhachmi K. A Formal Model of Conformity and Security
Testing of Inheritance for Object Oriented Constraint Pro-
gramming / K. Benlhachmi, M. Benattou // Journal of In-
formation Security. – 2013. – №4. – P. 113–123.

19. Vozovikov Yu. N. Information technology for automated
compilation of use cases / Yu. N. Vozovikov, A. B. Kun-
gurtsev, N. A. Novikova // Science practices of Donetsk Na-
tional Technical University. – 2017. – No. 1 (30). – P. 46–
59.

20. Method for defining conceptual classes in the description of
use cases / [O. Kungurtsev, N. Novikova, M. Reshetnyak et
al.]. – Odessa: Photonics Applications in Astronomy, Com-
munications, Industry, and High-Energy Physics Experi-
ments 2019, 2019 – 1117624.

21. Automated object-oriented for software module develop-
ment / [O. B. Kungurtsev, N. O. Novikova, S. L. Zinovatna,
N. O. Komleva] // Applied Aspects of Information Technol-
ogy. – 2021. – №4. – P. 338–353.

22. Winkler W. E. String Comparator Metrics and Enhanced
Decision Rules in the Fellegi-Sunter Model of Record Link-
age / W. E. Winkler // Proceedings of the Section on Survey
Research Methods. – 1990. – P. 354–359.

106

