p-ISSN 1607-3274 PanioenekrpoHika, iHpopmaTuka, ynpasiinss. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

UDC 004.415.2

DETERMINATION OF INHERITANCE RELATIONS AND
RESTRUCTURING OF SOFTWARE CLASS MODELS IN THE PROCESS
OF DEVELOPING INFORMATION SYSTEMS

Kungurtsev O. B. — PhD, Professor of the Software Engineering Department, Odessa Polytechnic National Univer-
sity, Odessa, Ukraine.

Vytnova A. 1. — Student of the Software Engineering Department, Odessa Polytechnic National University, Odessa,
Ukraine.

ABSTRACT

Context. The implementation of different use-cases may be performed by different development teams at different times. This
results in a poorly structured code. The problem is exacerbated when developing medium and large projects in a short time.

Objective. Since inheritance is one of the effective ways to structure and improve the quality of code, the aim of the study is to
determine possible inheritance relationships for a variety of class models.

Method. It is proposed to select from the entire set of classes representing the class model at a certain design stage, subsets for
which a common parent class (in a particular case, an abstract class) is possible. To solve the problem, signs of the generality of
classes have been formulated. The mathematical model of the conceptual class has been improved by including information about the
responsibilities of the class, its methods and attributes. The connection of each class with the script items for which it is used has
been established. A system of data types for class model elements is proposed. Description of class method signatures has been ex-
tended. A method for restructuring the class model, which involves 3 stages, has been developed. At the first stage, the proximity
coefficients of classes are determined. At the second, subsets of possible child classes are created. At the third stage, an automated
transformation of the class structure is performed, considering the identified inheritance relationships.

Results. A software product for conducting experiments to identify possible inheritance relationships depending on the number
of classes and the degree of their similarity has been developed. The results of the conducted tests showed the effectiveness of the
decisions made.

Conclusions. The method uses an algorithm for forming subsets of classes that can have one parent and an algorithm for auto-
matically creating and converting classes to build a two-level class hierarchy. An experiment showed a threefold reduction in errors
in detecting inheritance and a multiple reduction in time in comparison with the existing technology.

KEYWORDS: class model, class attribute, class method, data types, use case, inheritance.

ABBREVIATIONS Bool is a boolean value;
UC is a use-case; Text is any text;
OOFP is an object-oriented programming; Void is a function does not return the value;
OOA is an object-oriented analysis; NameS is a name of the type;
SP is a software product; NameFi and Typei are the name and type of the i-th
OOT is an object-oriented technologies. field;
Namel is a name of the type;
NOMENCLATURE NamekE is a name of the list element;
Cp; is a parent class; CPName is a type name (class name).
Cj, is g-th descendant class that passed common at- attrName is an identifier of the attribute;
tributes and methods to the parent class; attrResp is an attribute responsibility;
cHead is a class header; attrType is an attribute type;
mMeth is a set of functions (methods) of the class; fName is a name of the method;
mAttr. is a set of class attributes; fRespo is a responsibility of the method;
cName is a name of the class; mRC; is a set of class C; responsibilities;
mResp is a set of class responsibilities; C:mRC;is a number of class C; responsibilities;
uName is the name of the UC and the number of the mRC; is a set of class C; responsibilities;
point where the class was created, or a function was CmRC; is a number of class C; responsibilities;
added to the class; mArgs is a set of method arguments;
nP is a class responcibility, represented by a single returnVal is a function return value;
phrase; mRsArgs is a set of arguments that return the result of
abstract is an abstract class; the calculation;
cNamel is a name of the parent class for the cName CA; is an abstract class;
class; mChildC; is the set of its child classes;
mChildCl is a set of child classes (filled only for an CAS is the concatenation of the names of all classes
abstract class); that are included in the set mChildC, (hereinafter, the

Numb is a number format; name is edited by the expert).

© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

98

p-ISSN 1607-3274 PanioenekrpoHika, iHpopmaTuka, ynpasiinss. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

INTRODUCTION

The theory of OOP and OOA was elaborated in detail
in the works of G. Booch and his colleagues [1] and con-
tinues to be developed and promoted [2, 3]. However, the
practice of applying theoretical principles in the develop-
ment of SPs faces many unsolved problems. The use of
flexible technologies significantly speeds up the process
of designing software products [4], however, it is possible
to perform OOA to full extent only within the framework
of the cascade model of the software life cycle [5]. In
most OOT for creating software products functional re-
quirements are written in the form of use cases (UC) [6].
UML is used to create UC diagrams, interaction diagrams,
and class specifications. Stages of compiling the text of
UC, class analysis, defining possible hierarchical relation-
ships between them are not usually supported by design
tools. The implementation of all main design stages
within one iteration, which is typical for flexible tech-
nologies, allows carrying out a detailed OOA only for
some fragments of the subject area. This creates a number
of problems for the project [7], including defects in the
architecture and structure of the class model. As a result,
the program code requires detailed refactoring [8]. This is
especially evident for medium and large projects, when
teams of developers work in parallel to solve different
problems (Fig. 1.). Under such conditions, there is a high
probability that a possible “kinship” between classes will
go unnoticed or will not cover all potential members of
the hierarchy.

Team]ii
J

Project

Figure 1 — Parallel development of the class structure

The purpose of the study is to select from the set of
classes that represent the class model at a certain design
stage, subsets for which a common parent class and
automated restructuring of all classes related by
inheritance relations are possible.

To achieve the stated goal, it is necessary to solve the
following tasks:

— To formulate signs of class commonality;

— To improve the class model in order to provide
comparison with other classes;

— To develop a method for restructuring the class
model taking into account inheritance;

— To perform approbation of the research results.

1 PROBLEM STATEMENT
Let mC ={C,,C,,...,C,...,C,} be the set of class
models of some software project. It is necessary to extract
from mC such subsets of classes mC;, mC,, ..., mC;, for
which common parent classes can be created. If some

© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

subset mC, ={C;,C,,,...,
formed to the form <Cp {C ,,C,,...,C,,}>

qu} is found, then it is trans-

2 REVIEW OF THE LITERATURE

A good practical guide to inheritance is provided by
[9], but it does not address the issue of inheritance of
classes represented by models. In [10], it is proposed to
put an abstract class as the basis of the hierarchy. It is
shown that the effect of using an abstract class occurs
when a number of subclasses are created on its basis in
accordance with different specializations of the tasks
being solved. However, the question of finding these
specializations remains open. Disadvantages in the
representation of classes in UML models are noted in
[11]. The author suggests deepening your understanding
of object-oriented concepts by determining relationships
between actions and attributes, without considering the
similarity of classes in terms of actions and attributes. In
[12], the problem of the transition from the class model to
the domain ontology is considered. An extension of the
representation of classes, which, however, does not affect
the identification of inheritance relations, is proposed.

In [13], the remodularization of object-oriented
software systems is proposed, considering the
connectivity, concatenation, index of the number and
sizes of packages. The said principles of restructuring at
the package level can be partly transferred to the class
level.

The work [14] is devoted to the analysis of software
quality at three levels. At the class level, it is proposed to
introduce additional quality assessment metrics. However,
they do not provide an assessment of the existing or
possible hierarchical relationships between classes.

In [15], a two-level clustering of class models is
proposed: at the level of semantics and structure.
Obviously, this approach makes it possible to select
“similar” classes. However, the analysis of the possible
“kinship” between such classes was not performed in the
work. A similar problem of determining groups of “close”
classes was solved in [16]. But here the aim was to reduce
testing resources, not to restructure classes.

The question of the comparative efficiency of manual
and automated search for features of functions was
considered in [17]. The idea of organizing the search for
features not only in the code, but also in models is very
productive.

The analysis of hierarchical relations of classes was
performed in [18]. However, it is not the process of
forming a hierarchical structure that is being studied, but
its analysis for the purpose of preserving secret
information in inherited methods.

In [19], a method for automated description of UC
was proposed, which made it possible to further automate
the process of building a model of conceptual classes
[20]. At the same time, additional information about the
connection of the class with the UC, methods and
attributes of the class was placed in the model. Such a
model [20] contains more information for searching for

99

p-ISSN 1607-3274 PanioenekrpoHika, iHpopmaTuka, ynpasiinss. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

class “kinship”, but without significant development it
cannot solve such a problem.

3 MATERIALS AND METHODS

Let start with an improved model class. In [20], a
class model is proposed that can be taken as a basis.
However, the specific task of finding a set of classes that
can have a common “parent” requires a significant devel-
opment of the said model. Let us formulate new require-
ments for the model:

— the class header is a comparison element. It must
have the characteristic of responsibility.

— the class attribute is a comparison element. It must
have the characteristic of responsibility and type;

— the class method is a comparison element. It must be
represented by a responsibility and a signature;

— a class must have characteristics that define its role
and relationships in the class hierarchy.

Basing on the foregoing, we will represent all the
classes that are included into the project as a set:

mC = {c}, (D
and each class as a tuple:

¢ =< cHead ,mMeth,mAttr > . (2)

Now let’s talk about a class header. To compare
classes, it is proposed to introduce a set of responsibilities
for which the class is used, formulated as separate sen-
tences in the header of the class. In accordance with the
technology of constructing a class model [21], a class is
created when the UC “Create” item is implemented in the
class model. At the same time, the first responsibility pro-
posal is formed. For each subsequent point in the script,
when the class must perform an action, a responsibility
for the corresponding function, which is included into the
set of class responsibilities is formed. For a possible trac-
ing from the class model to the requirements (scenarios),
the name of the corresponding UC and the number of the
scenario item correspond to each new responsibility.

Further we will consider parent classes as abstract
ones, since in our case they will not generally represent
real objects of the subject area. Thus, the class header is
represented as a tuple:

cHead =< cName,mRe sp,inheritance > . 3)

Each element of the set mResp is represented by a tuple
<uName,nP,r>. 4
An inheritance relationship is represented by a tuple:
<inheritTrait,nChildCI>, 5)

where inheritTrait can take the following values: abstract,
cNamel, null (the class has no inheritance relationship
with other classes), mChildCl.

In [20], a system of data types for a class model is
proposed. In this work, this system has been developed at
the expense of structured types.

Simple types: Numb, Bool, Text, Void.

© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

100

Structured types. Struct — structure, in the general
case, contains several fields of different types. The struc-
ture declaration has the following form:

Struct>NameS(n)(NameF I:Typel NameF2:Type2,
...NameK:TypeK).

A List can represent a linear list, an array, a set, and so
on.
The list declaration looks as:

List > NameL(NameE:Type).

The declaration of a reference to an object of the
CPType class looks as:

CPType > CPName.

To provide the ability to compare class attributes it is
proposed: to introduce the concept of the purpose (re-
sponsibility) of an attribute and data types.

As a result, each attribute from the set mAttr will be
presented as:

Attr =< attrName, attr Re sp, attrType > . (6)

To provide the possibility of comparing -class
methods, it is proposed: for each method to formulate its
obligation in the form of a short phrase, for instance,
“calculation of the cost of the order”; for method
arguments to use the rules formulated earlier for
attributes.

As a result, each method from set mMeth(2) will take
the form:

func =< fName, f Re spo,mArgs, returnVal,mRsArgs >. (7)

Figure 2 illustrates the resulting class model.

Class model

Atributes

Header

Name

Methods

Method

Responsibility
Elements of Resposibility

responsibilities|

Argur;er;t-

Name of UC

UC tem number

Responsibility

Inheritance
characteristic

Child classes

Child class
name

Figure 2 — The structure of the class model

p-ISSN 1607-3274 PanioenekrpoHika, iHpopmaTuka, ynpasiinss. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

The class model restructuring method involves four
steps.

The first step is to determine the proximity of classes.
Comparing two classes involves comparing class respon-
sibilities, methods, and class attributes. To do this, it is
necessary to compare various elements of the description
of one class with other classes within the framework of
the program class model, represented by a set mC (the
total number of classes nC=|m(l).

For each comparison position, it is proposed to calcu-
late the proximity coefficient

_ Number _of _matching _elements

®)

Total _number _of _elements

When comparing the elements represented by the text,
fuzzy string comparison functions were used [22]. There-
fore, the result of the comparison will be a number not
exceeding 1. A threshold value of the coefficient of prox-
imity of responsibilities of the class Kcmin has been in-
troduced, below which it makes no sense to search for the
“kinship” of classes.

To compare the responsibilities of classes, we trans-
form the set of responsibilities mResp; (3) of a certain
class C;, excluding references to the UC and the scenario
item.

mResp; = mRC;, 9)
where CimRC; ={ri 15eslip} C;nRC; =l mRC; |,
mRC] I{Vj’l,...,rj’m} and C]mRC] :{rj,l,...,rj’n},
nRC; =|mRC |-

Let us define a set of overlapping responsibilities of
classes C; and C;

mRC, , ={ro,|ro,=r1,; ATO, =7, }, (10)
and their number

nRC; ; = mRC; ;|- (11)

If nRC,, =0, then class comparison stops.

When comparing class methods, we proceed from the
following considerations. Each time when a class is used
to implement a script item, a responsibility is added to the
class header. The same responsibility is attributed to the
class function that implements it in the script item. To
determine the identity of two functions with overlapping
responsibilities from classes C; and C;, to match of all
elements from (7) except the function names is required.
Let us represent the set of coinciding functions of classes
C; and C; in the form mMethC; ;. If no match is found for

a pair of functions, then nRC; ; is reduced by one.

Match of class attributes does not affect the assess-
ment of class proximity degree, because there are meth-
ods that do not use the attributes of their class. However,
matching attributes must be identified for further class
transformation. To determine the identity of two attributes
from classes C; and C;, their types and responsibilities
must match. Let us represent the set of matching attributes
of classes C; and C; in the form mAtirC; ;.

The result of comparing two classes is called the prox-
imity coefficient of the said classes ER. Its value must be
different for classes C; and C;. For a class C;:

ER, =BG (12)
J nRCl
For a class C;:
St nRCj
The overall coefficient:
ER; . +ER ; ;
ERO; ; =—2L— 11 > LAy (14)

The second stage is the construction of the class prox-
imity matrix. To identify the possible “kinship” of classes
from set mC(1), it is proposed to use the matrix of class
proximity. An example of such a matrix is presented in
Table 1.

Table 1 — Matrix of class proximity

Classes Cl 2 c3 C4 cs C6 c7 C8 C9
Cl X 0 ER,; 0 0 ERy, 0 ER 5 0
C2 0 X ER,; 0 ER, ER,, 0 0 0
C3 ER;, ER;, X ERs, 0 0 0 0 ER;,
C4 0 0 ER. X ER.s ER., 0 0 0
cs 0 ER;., 0 ER;, X 0 0 0 0
C6 ERg, ERs. 0 ER,4 0 X 0 ER; 0
C7 0 0 0 0 0 0 X 0 0
C8 ERs, 0 0 0 0 ERss 0 X ERss
C9 0 0 ER, 0 0 0 0 ERy 5 X

© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

101

p-ISSN 1607-3274 PagnioenexkrpoHika, iHpopmaTuka, ynpasiinss. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

The cells of the matrix contain the values of the prox-
imity coefficients for all pairs of classes from set mC. For
instance, it follows from the matrix that there is no com-
monality between classes C; and C,, but there is a com-
monality between classes C, and Cs.

The presence of commonality between class C; and
classes (;,C¢,Cy does not mean that there will be one
parent class for all these classes. The search for the opti-
mal solution will consist in the fact that for any class from
group Cs,Cq,Cy, the condition for combining with C; is
the greatest value of proximity with this particular class.
For example, Cs will enter a group with C; if
ERy s = max(ERg 5, ERg 4, ERg g) .

The third stage is the formation of a set of abstract
classes. At this stage, as a result of processing the matrix,
it is necessary to form a set of abstract (parent) classes
mCA (initially, the set is empty), each element of which
has the form

mCA4; =< CA;,mChildC; > . (15)

Previously, we will place classes that can potentially
become child classes in the set of child classes. Let us
denote such a set mChildC'" . The sequence of operations
for the formation of the said sets is represented by the
algorithm for identifying parent (abstract) classes:

1. To define the set of all classes and the set mC of ab-
stract classes c.

2. To fill in the generality matrix of the size K xK,
where K =|mC|. To set the matrix row index /=1 and the
abstract class index 7=1.

3. For each proximity coefficient ER; , # 0, to calcu-
late the total ERO; , for
j=i+1K.

4.1If some ERO; , > ERO;

in

proximity coefficients

is found, then ERO;, is
reset to zero. Otherwise, all ERO; , are set to zero. If
there is no more than one £RO in the current line, then go
to step 6.

5. The set mChildC; contains all classes of the i-th
row for which ER; , #0 . Only the name of the abstract
class is entered as CA,. cName=CAS. To increase index r
by 1.

6. To increase index i by 1. If i<K, go to step 3.

7. Completion of the algorithm.

The fourth stage is the formation of parent (abstract)
and child classes. For each abstract class with the name
CAS,, it is necessary to form a header, methods and at-
tributes using a set mChildC; of classes. Each class in the

© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

102

set mChildc; must be converted into a derived class
CAS, by changing the header, excluding methods and
attributes that passed into CAS,.

The solution to this problem is formulated as a class
restructuring algorithm:

1. We determine the possible number of abstract
classes Ka=|mCA| and set the index of the first abstract
class i=1.

2. We determine the number of possible child classes
for the i-th abstract from Kc; = mCAl-.mChildC' | and de-
fine the responsibilities m Resp; of an abstract class CAS;
by identifying, in accordance with (10), the general re-
sponsibilities of classes from mChildC;-. We write in the
inheritance relation inheritTrait; = abstract , in the set
mChildCl;
mChildC; .

3. We determine methods mMethC4;
class CAS; by identifying common methods of classes
from mChildC; .

4. We determine the attributes mAttrCA; of an ab-
stract class CAS; by identifying common attributes of

we write the names of classes from

of an abstract

classes from mChildC; .

5. We set the index of the child class j=1.

6. In the class header ¢; ; € mCAl-.mChildC} , We set
the inheritance flag c;.cHead.inheritTrait = CAS ; .

7. We remove methods of class CAS; c;; from the class
¢, /mMeth:=c, ,mMeth "~ CAS,.mMeth .

8. We remove attributes of class CAS; ¢;; from the
class ¢; ;.mAttr = c; ;. mAttr O\ CAS,;.mAtir .

9. We set j:=j+1. If j <= Kc¢; , then go to step 6. Other-
wise, go to step 7.

10. We demonstrate the analytics of the abstract class
CAS, and its child classes mCA;. mChildC" . If inheritance
is asserted, then each class from mC for which
mC.cName=mChildC; ;.cName is replaced by the corre-
sponding class mChildC;; and an abstract class named
CAS; is added to the set mC.

11. We set i:=i+1. If i<=Ka, then go to step 2.
Otherwise, finish the algorithm.

4 EXPERIMENTS
In accordance with [21], a simplified scheme for con-
structing a class model is shown in Fig. 3.

Yy

A

Requirements Module for automated -
Automated use case | I -
———— 1 description rmodule construction of a
P class model

Figure 3 — Simplified scheme for building a class model

p-ISSN 1607-3274 Paznioenexkrponika, inpopmaTuka, ynpasiinss. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

The system analyst, basing on the analysis of the sub-
ject area and consultations with an expert describes the
UC using the UseCaseEditor program [20]. Basing on the
obtained UCs, a programmer (perhaps a system analyst)
creates a class model using the ModelEditor program
[21].

To apply the proposed method of restructuring the
class model, a software product HeirClass+ was devel-
oped.

Within the framework shown in Fig. 3 the technology
(working mode), it is difficult to test the method of
searching for inheritance relations, since it is impossible
to select such UCs that would provide many classes in the
model with the necessary characteristics in advance.
Therefore, to test the decisions made, a software module
was developed that allows you to create a class model
bypassing the stage of automated UC description (ex-
perimental mode). Fig. 4 shows the class model restruc-
turing scheme in an experimental and operational modes.

' ol gata EXPErimental mode . Work mode :
: of classes |, [Class Model Building | L - Madule for au !
I Module . Class construction of a |
Lol Model class model "
ol N !
[| | 1
. il '

: \’J Report on ' :
P) Possible , | Automated use case X
| ~ Inheritance description module 1
[/\ Relationships !
| 4 |§- 1

: 1
' Inheritance ; |
! decisions A Requirements |
Model Upgrade !

Module

Figure 4 — Scheme for testing the decisions made
and testing modules

For performing experiments 15 programmers (3rd year
students) were involved. Of these, 5 teams were formed.
For each team, requirements to 4 classes were formulated
The
class contains a method that, basing on ..., returns The

in the following form: “The class must perform

class contains an attribute that represents...”. The require-
ments were distributed in such a way that one team could
not be given the task of describing potentially related
classes. It was supposed that, in accordance with the re-
quirements, there could be 6 groups of “related” classes.

5 RESULTS

After completing the work on the models, the partici-
pants in the experiment were asked to identify potential
inheritance relationships in a variety of classes. Simultane-
ously the program HeirClass+ with identical source data
was started. After 2 hours, the teams identified 8 class
groups with signs of inheritance relationships out of 9 sup-
posed ones. Of these, 4 groups were accepted for restruc-
turing. Program HeirClass+ identified 8 groups within 10
seconds. Of these, 5 groups were accepted for restructuring
at a threshold commonality rate of 35%. In addition, Heir-
Class+ performed the restructuring flawlessly.

Table 2 shows the matrix of generality for the first 10
classes, obtained on the basis of the work of the program
HeirClass+(classes named C1-C10 for brevity).

Figure 5 presents a piece of information that is offered
to the developer for deciding about inheritance.

Table 2 — Class commonality matrix (experiment)

Classes C1 C2 C3 C4 Co6 c7 C8 c9 C10
C1 X 0% 29% 0% 43% 57% 29% 29% 43% 14%
C2 0% X 38% 0% 38% 13% 0% 38% 13% 50%
C3 20% 30% X 10% 10% 30% 0% 50% 0% 40%
C4 0% 0% 17% X 0% 33% 0% 17% 0%
Cs 38% 38% 13% 0% 13% 13% 25% 50% 63%
Co6 14% 57% 43% 0% 14% X 0% 43% 14% 14%
Cc7 20% 0% 0% 20% 10% 0% X 0% 20% 0%
C8 29% 43% 1% 0% 29% 43% 0% X 14% 29%
c9 30% 10% 0% 10% 40% 10% 20% 10% X 20%
C10 13% 50% 50% 0% 63% 13% 0% 25% 25% X

© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

103

p-ISSN 1607-3274 Paznioenexkrponika, inpopmaTuka, ynpasiinss. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

@ HeirClass+

o]

Search for similar classes

Similar classes

Add Use-Case C5-C10
Add Class G-
c4-C7

Sign out

Similarity percentage
62%

60%

26%

Threshold 35%

Figure 5 — Class comparison result

6 DISCUSSION

Until now, class inheritance has been studied in terms
of analyzing the effectiveness of its application [10],
building class libraries, developing conditions and rec-
ommendations for specializing generated classes [18]. In
this work, for the first time, the problem of automated
search for possible inheritance relations and their imple-
mentation for a set of classes is solved. Class conversion
automation is used in refactoring [8]. However, for refac-
toring, the object of modernization is the code, and the
operations are initiated by a specialist.

From what has been said, it follows that the proposed
method can only be compared with “manual” processing
of a set of classes. The experiment showed that automated
analysis was performed hundreds of times faster than
manual analysis with a significant reduction in the num-
ber of errors, and class conversion turned out to be error-
free.

CONCLUSIONS

It is shown that modern iterative software develop-
ment technologies lead to the creation of a poorly struc-
tured code, which requires refactoring at relatively late
stages of software design and is associated with high
costs.

The paper solves the problem of automated determina-
tion of inheritance relations for a set of classes. For this
purpose, signs of the generality of classes have been for-
mulated; the class model has been improved by defining
the concept of responsibility class, method, attribute; de-
tailed description of the method signature has been given;
a data type system for the class model has been proposed.

A method for restructuring the class model has been
developed. The method uses an algorithm for forming
subsets of classes that can have one parent and an algo-
rithm for automatically creating and converting classes to
build a two-level class hierarchy.

The results of the study are implemented in the Heir-
Class+ software product. An experiment using HeirClass+
showed a threefold reduction in errors in detecting inheri-
tance and a multiple reduction in time in comparison with
the existing technology.

© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

104

10.

12.

REFERENCES
Booch G., Maksimchuk R. A., Engle M. W., Young B. J.,
Conallen J., Houston K. A., Wesley A. Object-Oriented
Analysis and Design with Applications 3rd Edition. Boston,
Addison-Wesley Professional, 2007, 694 p.
Lee G. Modern Programming: Object Oriented Program-
ming and Best Practices. Birmingham, Packt, 2019, 266 p.
Baesens B., Backiel A., Broucke S. Beginning Java Pro-
gramming: The Object-Oriented Approach. Birmingham,
Wrox, 2015, 672 p.
Brand M., Tiberius V., Bican P. M., Brem A. Agility as an
innovation driver: towards an agile front end of innovation
framework. Potsdam, Springer, 2021, pp. 157-187.
Adeagbo M. A., Akinsola J., Awoseyi A. A., Kasali F. Pro-
ject Implementation Decision Using Software Devel-opment
Life Cycle Models: A Comparative Approach, Journal of
Computer Science and Its Application, 2021, No. 28,
pp- 122—-133.
Jacobson 1., Spence L., Bittner K. USE-CASE 2.0 The Guide
to Succeeding with Use Cases [Electronic Recourse]. Access
mode:
https://www.ivarjacobson.com/sites/default/files/field_iji_fil
e/article/use-case 2 0 janll.pdf
Arcos-Medina G., Mauricio D. The Influence of the Appli-
cation of Agile Practices in Software Quality Based on
ISO/IEC 25010 Standard, International Journal of Informa-
tion Technologies and Systems Approach, 2020, Nel3, pp.
1-27.
Mohan M., Greer D. A survey of search-based refactoring
for software maintenance, Journal of Software Engineering
Research and Development, 2018, Ne6, pp. 1-52.
Ryan M. Mastering OOP: A Practical Guide to Inheritance,
Interfaces, and Abstract Classes [Electronic Recourse]. Ac-
cess mode:
https://www.smashingmagazine.com/2019/11/guide-oop-
inheritance-interfaces-abstract-classes/
Taubler D. When to Use Abstract Classes [Electronic Re-
course]. Access mode: https://betterprogramming.pub/when-
to-use-abstract-classes-70fe526165ac

. Al-Fedaghi S. Classes in Object-Oriented Modeling (UML):

Further Understanding and Abstraction, International Jour-
nal of Computer Science and Network Security, 2021, Ne21.
pp- 139-150.

Minh Hoang Lien Vo, Hoang Q. Transformation of UML
class diagram into OWL Ontology, Journal of Information
and Telecommunication, 2020, No. 4, Issue 1.

p-ISSN 1607-3274 Panioenexkrpownika, iHpopmartuka, yrnpapiinas. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

13. Gandhi P., Pradeep K. Optimization of Object-Oriented Constraint Programming, Journal of Information Security,

Design using Coupling Metrics, International Journal of 2013, N4, pp. 113-123.

Computer Applications, 2011, No. 27, pp. 41-44. 19. Vozovikov Yu. N., Kungurtsev A. B., Novikova N. A. In-
14. Saeed M. G., Alasaady M. T. Three Levels Quality Analysis formation technology for automated compilation of use

Tool for Object Oriented Programming, International Jour- cases, Science practices of Donetsk National Technical Uni-

nal of Advanced Computer Science and Applications, 2018, versity, 2017, No. 1 (30), pp. 46-59.

Ne 9, pp. 522-536. 20. Kungurtsev O., Novikova N., Reshetnyak M., Cherepinina
15. Zongmin Ma, Zhongchen Yuan, Yan Li Two-level cluster- Ya., Gromaszek K., Jarykbassov D. Method for defining

ing of UML class diagrams based on semantics and struc- conceptual classes in the description of use cases. Odessa:

ture, Information and Software Technology, 2021, No. 130, Photonics Applications in Astronomy, Communications, In-

106456. dustry, and High-Energy Physics Experiments 2019, 2019,
16. Miao Zhang, Jacky Wai Keung, Yan Xiao, Md Alamgir 1117624.

Kabir Evaluating the effects of similar-class combination on ~ 21. Kungurtsev O. B., Novikova N. O., Zinovatna S. L., Kom-

class integration test order generation, Information and leva N. O. Automated object-oriented for software module

Software Technology, 2021, Ne129, 106438. development, Applied Aspects of Information Technology,
17. Pérez F., Echeverria J., Lapeila R., Cetina C. Comparing 2021, Ne4, pp. 338-353.

manual and automated feature location in conceptual mod- 22. Winkler W. E. String Comparator Metrics and Enhanced

els: A Controlled experiment, Information and Sofiware Decision Rules in the Fellegi-Sunter Model of Record Link-

Technology, 2020, No. 125, 106337. age, Proceedings of the Section on Survey Research Meth-
18. Benlhachmi K., Benattou M. A Formal Model of Confor- ods, 1990, pp. 354-359.

mity and Security Testing of Inheritance for Object Oriented Received 10.09.2022.

Accepted 08.11.2022.

YK 004.415.2

BU3HAYEHHS BITHOCHH YCHAJKYBAHHSI TA PECTPYKTYPU3ALISL MOJIEJIEA IIPOTPAMHMX KJIACIB Y
MPOLECI PO3POBKHU IHOOPMALIMHUX CUCTEM

Kynrypues O. b. — xann. texH. Hayk, npodecop kadenpu ImxeHepii mporpamuoro 3ade3nedeHHs HamioHaapHOTO yHIBEPCUTETY
«Opecpka moitexHika», Oneca, YkpaiHa.

ButnoBa A.I. — crynentka xadenpm Imxenepii mporpamsoro 3abesmeuenHst HamionamsHoro ymiBepcurery «Opecbka
moniTexHikay, Omeca, YkpaiHa.

AHOTAIIA

AKTyaJabHicTb. Peamizanis pisHUX BapiaHTIB BUKOPUCTAaHHS MOKE BHKOHYBATHCh PI3HUMH KOMaHIaMH PO3POOHHKIB y Pi3HUIMA
yac. [le npu3BOANTE O CTBOPEHHS IIOTAHO CTPYKTYpOBaHOTo Koxy. [IpobieMa yCKkiIaqHIOETBCS IPH pO3po0IIi cepeiHiX Ta BEMUKIX
MIPOEKTIB y CTUCIIUH TePMiH.

Meta. OCKiNbKM yCIaJKyBaHHSI € OIHUM i3 €(QEKTHBHHUX CIIOCOOIB CTPYKTypyBaHHS Ta IOKPAIUEHHS SKOCTI KOAYy, METOIO
JOCIIIJDKEHHS € BU3HAYCHHSI MOXKJIMBUX 3B SI3KIB yCIIaIKyBaHHS [UIsl PI3HOMaHITHUX MOJIEIIeH KIIaciB.

MeTtoa. 3anponoHOBaHO BHIUICHHS 3 MHOXKMHH KJAcCiB, 110 NPEICTABISAIOTh MOJCIb KJIAaciB Ha NEBHOMY €Talli IPOEKTYBaHHS,
MiAMHOXHH, AJIs SIKMX MOJMJIMBHIM 3aralbHuil OaThKIiBChKHU Kiac (B OKpeMOMy BHUMaaKy abcTpakTHuit kiac). J[ns BupimieHHs
3aBJlaHHs COPMYJIHOBAHO O3HAKH CHIJIBHOCTI KJIACiB. YJOCKOHAICHO MaTeMaTH4HYy MOJENb KOHLENTYalIbHOIO KIAaCy 3a PaxyHOK
BKITIOUEHHS iH(opMmaii mpo 060B’I3KU Kiacy, HOro METOAM Ta aTpruOyTH. BcTaHOBIIEHO 3B’ 30K KOKHOTO KJIacy 3 CIEHApiIMH, IS
SIKUX BiH BHKOPHCTOBYETHCS. 3alpOIIOHOBAHO CHUCTEMY THIIIB JaHWUX JUIS €JEMEHTIB MoJemi Kiacy. Po3mupeHo omuc CHUTHATYp
MeTOAiB KiaciB. Po3pobiieHo MeTox pecTpyKTypu3alii Mojemi KiaciB, mo nependadae 3 eramd. Y MNEpHIOMY BU3HAYAOTHCS
koedimieHTn Gim3bKoCTI KiaciB. Ha npyromy CTBOPIOIOTHCS IMJMHOXKHHH MOMJIMBHX IOUIpHIX KiaciB. Ha TpeThoMy BHKOHYeETHCS
ABTOMATH30BaHEe NIEPETBOPEHHS CTPYKTYPH KJIACIB 3 ypaxXyBaHHSM BHSBIICHUX BiTHOCHH CIIaJIKyBaHHSI.

PesyabTatn. Po3po0ieHo mnporpaMHuil HpPOAYKT Ul NPOBEJCHHS EKCIIEPUMEHTIB IOJ0 BHSBICHHS MOJMJIMBHX BiJHOCHH
yCIaaKyBaHHs 3aJIeKHO Bi KINBKOCTI KJIaciB Ta CTyHeHs iXHboI momiOHocTi. Pe3ynbraT mpoBefeHHX BUIPOOYBaHb MMOKA3aid
e(eKTHBHICTh YXBAJICHUX PIllICHb.

BucHoBku. MeTO BUKOPHCTOBY€E alropuT™M (GOpMyBaHHS MiAMHOXHH KJIACiB, SIKI MOXXYTh MaTH OJHOTO IpEJKa Ta aJrOpHTM
ABTOMATUYHOTO CTBOPCHHS Ta NEPETBOPEHHS KiIAciB sl MOOYIOBH OBOPIBHEBOI iepapxii kiaciB. Pesymbratu mociimkeHHS
peanizoBaHi y IporpaMHOMY NpOAyKTi. EKcliepuMeHT 1moka3aB TpHpa30Be CKOPOUCHHS ITOMIJIOK IPH BHSBICHHI HACIIiyBaHHS Ta
OaraTopa3oBe CKOPOUCHHS 4acy ITOPIBHSIHO 3 ICHYIOUOIO TEXHOJIOTIEIO0.

KJIIOYOBI CJIIOBA: mozens kiacy, arpulyT Kilacy, METOX KJIacy, THIIH IaHUX, BapiaHT BUKOPHCTAHHS, CIIaIKyBaHHSL.

JITEPATYPA / JIITEPATYPA 3. Baesens B. Beginning Java Programming: The Object-
1. Object-Oriented Analysis and Design with Applications 3rd Oriented Approach / B. Baesens, A. Backiel, S. Broucke. —
Edition / [G. Booch, R. A. Maksimchuk, M. W. Engle et Birmingham : Wrox, 2015. - 672 p.
al.]. — Boston : Addison-Wesley Professional, 2007 — 694 p. 4. Agility as an innovation driver: towards an agile front end of
2. Lee G. Modern Programming: Object Oriented Program- innovation framework / [M. Brand, V. Tiberius, P. M. Bi-
ming and Best Practices / G. Lee. — Birmingham : Packt, can, A. Brem]. — Potsdam : Springer, 2021. — P. 157-187.
2019. - 266 p. 5. Project Implementation Decision Using Software Devel-

opment Life Cycle Models: A Comparative Approach / [M.
A. Adeagbo, J. Akinsola, A. A. Awoseyi, F. Kasali] // Jour-
© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

105

p-ISSN 1607-3274 Panioenexkrpownika, iHpopmartuka, yrnpapiinas. 2022. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2022. Ne 4

10.

11.

12.

13.

nal of Computer Science and Its Application. — 2021. —
No 28. —P. 122-133.

Jacobson I. USE-CASE 2.0 The Guide to Succeeding with
Use Cases [Electronic Recourse] / 1. Jacobson, 1. Spence, K.
Bittner. - Access mode:
https://www.ivarjacobson.com/sites/default/files/field iji_fil
e/article/use-case 2 0 janll.pdf

Arcos-Medina G. The Influence of the Application of Agile
Practices in Software Quality Based on ISO/IEC 25010
Standard / G. Arcos-Medina, D. Mauricio // International
Journal of Information Technologies and Systems Ap-
proach. —2020. — Ne13. — P. 1-27.

Mohan M. A survey of search-based refactoring for software
maintenance / M. Mohan, D. Greer // Journal of Software
Engineering Research and Development. — 2018. — No6. — P.
1-52.

Ryan M. Mastering OOP: A Practical Guide to Inheritance,
Interfaces, and Abstract Classes [Electronic Recourse] /
M. Ryan. - Access mode:
https://www.smashingmagazine.com/2019/11/guide-oop-
inheritance-interfaces-abstract-classes/

Taubler D. When to Use Abstract Classes [Electronic Re-
course] / D. Taubler. - Access mode:
https://betterprogramming.pub/when-to-use-abstract-classes-
70fe526165ac

Al-Fedaghi S. Classes in Object-Oriented Modeling (UML):
Further Understanding and Abstraction / S. Al-Fedaghi // In-
ternational Journal of Computer Science and Network Secu-
rity. —2021. — Ne21. — P. 139-150.

Minh Hoang Lien Vo Transformation of UML class diagram
into OWL Ontology / Minh Hoang Lien Vo, Q. Hoang //
Journal of Information and Telecommunication. — 2020. —
Ne4. —Issue 1.

Gandhi P. Optimization of Object-Oriented Design using
Coupling Metrics / P. Grandhi, K. Pradeep // International
Journal of Computer Applications. — 2011, — Ne27. — P. 41—
44.

© Kungurtsev O. B., Vytnova A. 1., 2022
DOI 10.15588/1607-3274-2022-4-8

106

14.

15.

16.

17.

18.

19.

20.

21

22.

Saeed M. G. Three Levels Quality Analysis Tool for Object
Oriented Programming / M. G. Saeed, M. T. Alasaady // In-
ternational Journal of Advanced Computer Science and Ap-
plications. — 2018. — Ne9. — P. 522-536.

Zongmin Ma Two-level clustering of UML class diagrams
based on semantics and structure / Zongmin Ma, Zhongchen
Yuan, Li Yan // Information and Software Technology. —
2021. — Ne130. — 106456.

Evaluating the effects of similar-class combination on class
integration test order generation / [Miao Zhang, Jacky Wai
Keung, Yan Xiao, Md Alamgir Kabir] // Information and
Software Technology. —2021. — Ne129. — 106438.
Comparing manual and automated feature location in con-
ceptual models: A Controlled experiment / [F. Pérez,
J. Echeverria, R. Lapeiia, C. Cetina] // Information and Soft-
ware Technology. —2020. — Ne125. — 106337.

Benlhachmi K. A Formal Model of Conformity and Security
Testing of Inheritance for Object Oriented Constraint Pro-
gramming / K. Benlhachmi, M. Benattou // Journal of In-
formation Security. — 2013. — Ne4. — P. 113-123.

Vozovikov Yu. N. Information technology for automated
compilation of use cases / Yu. N. Vozovikov, A. B. Kun-
gurtsev, N. A. Novikova // Science practices of Donetsk Na-
tional Technical University. — 2017. — No. 1 (30). — P. 46—
59.

Method for defining conceptual classes in the description of
use cases / [O. Kungurtsev, N. Novikova, M. Reshetnyak et
al.]. — Odessa: Photonics Applications in Astronomy, Com-
munications, Industry, and High-Energy Physics Experi-
ments 2019, 2019 — 1117624.

. Automated object-oriented for software module develop-

ment / [O. B. Kungurtsev, N. O. Novikova, S. L. Zinovatna,
N. O. Komleva] // Applied Aspects of Information Technol-
ogy. —2021. — Ne4. — P. 338-353.

Winkler W. E. String Comparator Metrics and Enhanced
Decision Rules in the Fellegi-Sunter Model of Record Link-
age / W. E. Winkler // Proceedings of the Section on Survey
Research Methods. — 1990. — P. 354-359.

