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ABSTRACT

Context. The problem of generating vectors consisting of different representatives of a given set of sets is considered. Such
problems arise, in particular, in scheduling theory, when scheduling appointments. A special case of this problem is the problem of
generating permutations.

Objective. Problem is considered from the point of view of a permanent approach and a well-known one, based on the concept of
lexicographic order.

Method. In many tasks, it becomes necessary to generate various combinatorial objects: permutations, combinations with and
without repetitions, various subsets. In this paper we consider a new approach to the combinatorial objects generation, which is based
on the procedure of the permanent decomposition. Permanent is built for the special matrix of incidence. The main idea of this
approach is including to the process of the algebraic permanent decomposition by row additional function for the column identifiers
writing into corresponding data structures. In this case, the algebraic permanent in not calculated, but we get a specific recursive
algorithm for generating a combinatorial object. The computational complexity of this algorithm is analyzed.

Results. It is investigated a new approach to the generation of complex combinatorial objects, based on the procedure of
decomposition of the modified permanent of the incidence matrix by line with memorization of index elements.

Conclusions. The permanent algorithms of the combinatorial objects generation is investigated. The complexity of our approach
in the case of permutation is compared with the lexicographic algorithm and the Johnson-Trotter algorithm.

The obtained results showed that our algorithm belongs to the same complexity class as the lexicographic algorithm and the
Johnson-Trotter method. Numerical results confirmed the effectiveness of our approach.

KEYWORDS: algorithm, permutation, permanent, decomposition, complexity.

ABBREVIATIONS class SDR is special class in C++ notation for storing
JSP is a job-shop problem; information about SDR;
NP-Complete is a nondeterministic polynomial-time SDR() is constructor of the class SDR;
complete; s, p, next, sizes, sizep, n are fields of the class SDR;
PD-algorithm is a permanent decomposition _p,_n, psize are parameters of the constructor SDR;
algorithm; head is first element of the list;
PD-approach is a permanent decomposition approach; generic() is recursive function for the permutation
SDR is a system of different representatives. generation;
sl, pl are additional arrays in the function generic();
NOMENCLATURE —> is class field access operator via pointer.
i, j are indices of vectors and matrix elements;
a; is element of the sets; INTRODUCTION

Task planning can be defined as a procedure of
allocation of resources for a specific job at a specific time.
The most important goal of planning is use of
the set S;; resources. The goal is to minimize waiting time planning.
A good time algorithm provides a good system
productivity. Problems of combinatorial object generation

S; is set of the elements;
njj is the number of occurrences of the element a; in

R; is a row of the schedule matrix;

pe_med is modified permanent; often arise in computer modeling, cryptography, theory of
n is size of the array ; . schedules.

Q(n) is computational complexity; In this paper we consider a new approach to the
O() is complexity class; generation of generalized combinatorial objects of special
(V1,Va,...,Vyy) is SDR; structure that are well suited for some scheduling tasks
v;; is element of the schedule; (schedule of meetings). Scheduling problems is the most

ij
n! is factorial number 1*2%*..*n;
e is natural number;

widely studied problems in computer science. There are
well known Job-shop scheduling or the job-shop problem
(JSP) , the nurse operations research problem of finding
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an optimal way to assign nurses to shifts, typically with a
set of hard and soft constraints. The complexity of the
corresponding algorithms in such problems is a critical
parameter that allows us to assess the possibility of using
a particular algorithm in practice. [1]

At the heart of our approach are procedures for the
permanent decomposition of incidence matrices with
memorization of identifier elements. We called our
approach PD-methods.

The object of study is combinatorial objects
generation in the task of Job-shop scheduling.

Despite the large number of publications on the
generation of combinatorial objects, the development of
new algorithms and approaches is relevant due to their
computational complexity.

The subject of study is permanent decomposition
algorithms for the combinatorial objects generation.

The purpose of the work is to develop methods for
generating combinatorial objects that can be extended to
solving complex scheduling problems.

1 PROBLEM STATEMENT
Suppose we have n elements (a;,4a,,...,a,), that can

be part of m sets (S;,S,,...,S,) and the occurrence of the

same element several times is allowed. Information about
which elements are included in the corresponding sets
will be given in the form of an incidence matrix:

a a .. a,
S My Ny e gy
Sy My Ny .. My (1
Sm M1 Mm2 N

The elements (&;,8,,....,a,) Wwill be called the

identifiers of the columns of the incidence matrix. The
system of different representatives (SDR) will be called a
vector of the form:

(V1,V25e0 V) 5 Vi € Sj, i =1L, m,y; ;tvj,i £].

We divide identifier elements on regular and “stream”.
If the element @& is “stream”, then it must be
simultaneously written in all positions of the sample
vector, where the correspondent incidence matrix column
contains non-zero eclements. An arbitrary vector of
samples (or a matrix, the rows of which are samples) will

be called a schedule.
The schedule

((Vll,Vlz,...,Vlm),(V21,V22,...,V2m),...,(Vkl,sz,...,Vkm))

will be considered correct under the conditions:
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1.Vje{l,2,.,m}:
VU2 jU-Uvigr = *ailUnjo *aoJ--Unjn *an}
l*a=1{a,,a,,....a},a =a,i=11.
2.Vie{l,2,...K} :Vjj # Vi, j # 1., elements Vjj,Vjp , are
non-stream.
Obviously, in the case when each element is included

in each set only once and all elements are non-stream,
matrix of incidence is

a; a, a
S 1 1 .1
S, 11 .1 )
s, 1 1 1

Then one of the variants of the correct schedule can be
written in the form:

8 & 8 a,

a, a, a, a,

a; a, as 8y . 3)
I ) ap

The rows of schedule matrix consist of n permutations
of the corresponding elements. The algorithm of cyclic
shift of column or row eclements is implemented here.
Obviously, the number of correct schedules constructed
by the cyclic shift algorithm is n!. The task of scheduling
is very complex, NP-complete. In the general case, to
construct all possible variants of correct schedules, it is
necessary to analyze all possible SDR variants. Therefore,
using any algorithm for solving the problem of generating
permutations in the “same place”, it is necessary to
additionally store each variant of permutations in
memory. Therefore, we must use the most optimal
algorithm for generating all possible permutations. In this
paper, from the point of view of complexity, an approach
is investigated that is based on the use of the procedure
for decomposing the permanent of the incidence matrix. It
requires the development of new approaches, in
particular, to the problems of generating combinatorial
objects.

2 REVIEW OF THE LITERATURE
Despite the fact that a significant number of
algorithms have been developed to generate various
combinatorial objects, such as permutations, permutations
with repetitions of different types, systems of subsets of
some sets of elements [1-4, 6-13], new approaches and
algorithms are still emerging.
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Given the novelty of the combination of permanent
and decomposition solutions within the calendar
calculation — it is difficult to rely on similar literature.

Consider the most relevant areas of application of
such solutions.

A significant amount of most recent research has
focused on the tasks of scheduling within cloud
computing. There are numerous and excellent resources
available in the cloud. The cost of performing tasks in the
cloud depends on what resources are used. Cloud
planning is different from traditional planning. In the
environment of cloud computing, the task of scheduling is
the biggest and most difficult issue. Task scheduling
problem is the NP-complete problem. Many heuristics
have introduced scheduling algorithms, but more
improvements are needed to make the system faster and
more responsive [5].

A detailed overview of the combinatorial algorithms
can be given by Knuth [6], Ruskey [7] which considers
the concept of combinatorial generation and distinguishes
the following tasks: listing-generating elements of a given
combinatorial set sequentially, ranking — numbering
elements of a given combinatorial set, unranking —
generating elements of a given combinatorial set in
accordance with their ranks and random selection—
generating elements of a given combinatorial set in
random order.

General methods for developing combinatorial
generation algorithms were studied by such researchers as
S. Bacchelli [1, 2], E. Barcucci [2], A. Del Lungo [3, 4],
V.V. Kruchinin [8, 9], P. Flajolet [10] and others. It is
wellknown algorithms for the permutation generation
[11-14], such as Bottom-Up, Lexicography, Johnson-
Trotter [8], PIndex [15], Inversion [15].

3 MATERIALS AND METHODS

The main idea that we use in our approach to the
problem of generating combinatorial objects is based on
the using of the modified permanent properties.

Definition: Modified permanent of the incidence
matrix will be the sum of all possible products of the
numerical elements of the matrix, each of which contains
one element from each row and column, and the element
of the flow column (the column corresponding to the flow
element) cannot be in the product together with the
elements. Other rows corresponding to the same stream
element (the corresponding rows will be crossed out in
the schedule or with elements of other columns
corresponding to the same element).

In the case of flow elements absence, the modified
permanent is a normal permanent. The procedure for
finding a permanent can easily be implemented
recursively in the same way as finding the determinant of
a matrix by decomposition on any line. Based on the
definition, the decomposition procedure will be as
follows: a nonzero row element is multiplied on a
modified permanent matrix formed by the following rules
— if a row element belongs to a stream column, the matrix
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is formed by deleting the column where this element is
located and all rows corresponding to all elements of this
stream. If a row element does not belong to a stream
column, then the matrix is formed by deleting the row and
column where this element is situated, as well as all
stream columns at the intersection of which are non-zero
elements.

Obviously, the permanent of the square incidence
matrix consisting of 1 is equal to n! (we decompose on
the first line, then we have n components that already
contain matrices of dimension n—1, etc.).

The main idea of our algorithm construction: in the
process of permanent decomposition can be memorized
the identifiers of the current elements columns.

Consider an example. Let’s incidence matrix present
in the form:

1 2 3
R, 1 11
R, 1 1 1 @
2
R, 1 1 1
Thus, we have:
1 2 3
23
mm 11
per mod =1 permod|l 1|+
20 1 1
1 1
30 1 1
1 3 1 2
+1%permod|l 1|+1° permod|l 1|=
11 1 1
172 3 113 2
=11 permod1+ll permod1+
21 3 23 1
+171 permodl+11 permod1+

+13! permod| |+ 1’12 per mod

2 |
1 1|

1128 110822 2B 23 s 2 e 1A

As we see, in the case of a square matrix all elements
of which equals to 1, we can get all permutations by
decomposing the permanent with “memorization”. Based
on the decomposition procedure, the following general
recursive PD-algorithm for forming systems of different
representatives of sets is obvious:

1. The initial matrix of incidence is formed.

2. The first row of the matrix is viewed and all non-
zero elements are found.

3. For each non-zero element of the first line:

a) the corresponding identifier element is added to the
corresponding permutation;

b) a new incidence matrix is formed from the initial
one by deleting the column and row where the found non-
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zero element stands (memory is allocated and data is
copied);

c) is called recursively the generation function for the
new matrix.

4 EXPERIMENTS

Let’s consider in more detail the problem of
generating permutations. The specificity of our approach
to permutation generation is that we need to keep in mind
all permutations for their further use, in particular, in
scheduling tasks for scheduling generation. Note that the
incidence matrix has all the elements 1 and it is square. In
this case, during the decomposition of the permanent,
there is no need to store the incidence matrix in memory,
it is enough to know only the identifier elements. So, we
consider a permanent vector. We will use a singly linked
list to store all elements. Each item in the list will contain
information about the SDR. We can use two arrays — one
to represent the already written part of the SDR, another —
to place the elements that will still be used for
decomposition. We can use special class in C++ notation
for storing information about SDR:

class SDR {
public:
char *s;
char* p;
SDR¥* next;
int sizes;
int sizep;
intn;
SDR(char* _p, int _n, int psize)
{ n=_n; sizep=psize; sizes=_n-psize;
p=new char[psize];
for(int i=0;i<psize;it++) p[i]=_pl[il;
next=NULL; }
SDR(SDR* head, int k) {
sizes=1+head->sizes;
n=head->n;
sizep=n-sizes;
next=NULL;
s=new char[sizes];
p= new char[sizep];
for(int j=0;j<sizes-1;j++) s[j]=head->s[j];
s[sizes-1]=head->p[k];
int 1=0;
for(int i=0;i<sizep+1;i++)
if(i!'=k) p[l++]=head->p[i]; } };

In this class we create two constructors: SDR(char*
p, int n, int psize) for the first initialization end
SDR(SDR* head, int k) for the creation new class
member on the base of head in which k-th element of
array p writes to the arrays. Obviously, using a singly
linked list, we must correctly insert the newly created
element after the head element in the list:

SDR *tmp=new SDR(head,i);

tmp->next=head->next;
head->next=tmp;
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Thus we can construct recursive function for the
permutation generation according to our approuch:

void generic(SDR* head) {
if (head->sizes<head->n) {

for(int i=head->sizep-1;1>0;i--) {
SDR *tmp=new SDR(head,i);
tmp->next=head->next;
head->next=tmp;

generic(tmp); }

char* s1=new char[head->sizes+1];

char* pl=new char[head->sizep-1];

for(int j=0;j<head->sizes;j++)
s1[j]=head->s[j];

s1[head->sizes]=head->p[0];

for(int i=0;i<head->sizep-1;i++)
pl[i]=head->p[i+1];

delete head->s;

delete head->p;

head->s=0;

head->p=0;

head->s=sl;

head->p=pl;

head->sizes++;

head->sizep--;

generic(head); } }

v, § input

Figure 1 — Example of the program running, online GDB
C++compiler

We can consider small examples of the our program
running, results is on the Fig.l, where initial array is
char p[]={'1"'2",'3"'4"} and on the Fig. 2, where initial
array is char p[]={"r','1,'v',n',’e’}.

input
rinev rievn rienv rvine
rniev ravie rovel rneiv
renvi irve i1rven irnve
1VNeIr 1Vern 1venr 1nIve
1ernv levrn 1evnr ienrv
vrenl virne viren vinre
VLLEr VNerl vneir verin
Nriev Nrvie Nrvel Nrelv
nievr nvrie nvrel nvire
neivr nevri nevir erivn
LIV ELVIN E1VII E1NIV
Figure 2 — Example of the program running, online GDB C++
compiler

5 RESULTS
Let us consider complexity of the PD-approach for
permutation generation (see function generic()). In order
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to compare the computational complexity of our approach
with the known methods, we will take into account that in
most cases, are used algorithms that do not require
recording all variants of permutations, the so-called
generation algorithms “in the same place”. When
calculating the number of copies, we assume that copying
to the array s is constructive in the case when all
permutations are stored in memory, and copying to the
array p creates an additional computational load and must
be taken into account:

p=new char[sizep];// ~n-1 assignments

int [=0;// 1 assignment
for(int i=0;i<sizep+1;i++)//n increments
if(i!=k) p[l++]=head->p[i]; // n-1 assignments, 1 //increment, n-
1 class field access, n comparisons

The size of the array p sizep will decrease from n (initial
iteration) to 0.

Let Q(n) be a number of assignments and increments, n-

size of array p. Obviously, that Q(1) =1. Then we have:

Q) =n(Q(n-1)+3n)=nQ(n—1)+3n* =
=n(n-1)Q(n-2)+3n(n—1)> +3n% =
=n(n-1)(n-2)Q(n-3)+3n(n-1)(n-2)% +
+3n(n=1D%+3n% =...=n(n=1)..n—K)Q(N -k 1) +
+3n(n=1)..n—k +(n—k)* +
+3n(n=1)..n=K+2)(N—Kk+1)> +...+
+3n(n=1)(n-2)% +3n(n-1)% +3n? =
=n3n(n=1)..322 +...+3n(n-1)(n-2)% +

+3n(n—1)> +3n? = n43n!(2 +%+%+...+

n-k-2+1 n_Hl):n!+3n!(1+1+i+...+
(n—-k-=2)! (n=1)! 2!

+ ! +.t ! )+3n!(1+l+...+ ! ) <
(n=k-1)! (n=2)! 2! (n=1!

1 1
<3N+ 1+—+..+—+..)+
2! n!

+3n!(1+l+...+
2! (n-1n!

=nl(6e—2)=0(n!).

+.)=nl(1+3e+3e-1)=

Consider the case of an arbitrary incidence matrix. In
this case, it is necessary to prepare a new incidence matrix
in the process of recursively calling the generation
function, allocate memory and copy data. Thus we’ll have

minimum 2(n —1)2 additional arithmetic operations. Let
all elements in the matrix be nonzero. Then we have:
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QM =nQM-1+2(n-1)%)=nQ(n-1)+2n(n-1)% =
=n(n-DQ(n-2)+2n(n-1)(n-2)> +2n(n—1)% =
=n(n-1D)(n-2)Q(n-=3)+2n(n-1)(n—=2)(n— 3)2 +
+2n(n=1)(n-2)> +2n(n-1)2=...=
=n+2n(n-1)(n-2)..217 +...+

2n(n—1)(n-2)..32% +..+2n(n=1)(n-2)* +

2 12
+2n(n—1)% = n2n1(1? N (n-1) )=
2! (n-1!
_ n-2
=nk2n!(1? +E+...+ (-1 ))=n4+2n! Y’ k+1_
n-3 1 n—21
= n!+2n!(zﬁ+ ZF) <nl(1+4e)=0(n!).
k=0 k=0
6 DISCUSSION

Thus, the use of a permanent approach for generating
permutations has made it possible to obtain an algorithm
whose computational complexity is comparable to the
fastest known algorithms. It is known [1] that, for
example, Johnson Trotter’s algorithm PMin(n) or
lexicographic algorithm Plex(n) also have computational
complexity O(n!) .

Obvious, that PD-algorithm generates the list of
permutation in lexicographic order. This order can be
defined by the initial array. If this array have standart
lexicographically  ordered  elements, we’ll  get
lexicographically ordered perturbations. We can consider
small example of the our program running (See Fig.1),
where char p[]={'1",'2",'3",'4"}. If we use initial array char
p[I={"r','1,'v',)n',’e’} than we define special order:

T'<1'<v'<'n'<’e’. Our perturbations are
according to this order (see Fig. 2).

An essential feature of our approach is the possibility
of modifying it to generate combinatorial objects of a
more complex structure. To do this, it is enough to specify
the appropriate incidence matrix. If it is necessary to
consider some additional conditions, then it may be
necessary to modify the definition of the permanent and,
accordingly, the procedure for decomposition by string
(for example, the impossibility of the presence in one
SDK the same elements, unless they are streamed). The
following modification can be considered. If the element
is not “stream” then we delete the column where it stands,
the row and all “stream” columns if non-zero elements
intersect with this row. If the running element is
streaming, then all rows where the streaming element and
all columns with the same identifiers to the current one is
crossed out. If there are non-zero elements of other
streams at the intersection with the stream rows, the
corresponding columns are also crossed out. Thus, we
obtain a solution to the problem of correctness of the
SDR: on the one hand in the SDR is not possible the
presence of two identical elements, on the other hand such
a presence is possible if the element is streaming.

ordered
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If the number of non-zero elements in each line of the
matrix of incidence is less than n or equal to k <n, the
number of arithmetic operations can be significantly less.
For example, for k=1 the number of recursive calls will
not exceed n. However, when viewing a row of such a
matrix, will be necessary comparison with 0 of each
elements. And that’s why we still have n! comparisons.
However, this problem is easily solved by considering the
rows of the incidence matrix as dynamic arrays with
numbers of nonzero elements. Then the complexity of the
algorithm at k = 1 will be O (n).

CONCLUSIONS

Thus, the paper considers a new approach to the
generation of complex combinatorial objects, based on the
procedure of decomposition of the modified permanent of
the incidence matrix by line with memorization of index
elements. The specificity of this approach is that certain
additional conditions imposed on the relevant SDRs are
taken into account at the stage of permanent
decomposition procedures. Thus, in the case when the
matrix consists of only 1, we obtain the decomposition
procedure of the ordinary permanent. If we set the
condition of the presence of “stream” elements in the
SDR and the arbitrary configuration of the structure of the
incidence matrix, the decomposition procedure must be
modified.

The paper evaluates the complexity of the PD-
algorithm for generating permutation and shows that it is
equal to O (n!). Such complexity is in the fastest
algorithms, such as lexicographic, Johnson-Trotter.
However, in practice PD-algorithm will obviously work
slower, in particular due to the large number of memory
operations and data coping. However, the recursive PD
algorithm can easily be modified to generate much more
complex objects, while the mentioned known approaches
exclusively use the specifics of permutations.

The scientific novelty of this paper lies in the fact
that in the work it was possible to use the algebraic
properties of special modifications of matrices permanets
to construct efficient algorithms for generating
combinatorial objects.

The practical significance of obtained results is that
the software realizing the proposed methods is developed,
as well as experiments to study their properties are
conducted. The PD-algorithm can be used in software
development where the generation of combinatorial
objects is used, in particular, in information security
systems.

Prospects for further research are to study the
proposed methods for a broad class of scheduler
problems, job-shop problem (JSP), the nurse operations
research problem .
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AJITOPUTM JEKOMITO3HAIII MIEPMAHEHTY JIJISI TEHEPAIII KOMBIHATOPHUX OB’EKTIB

Typ6an 0. B. — n-p TexH. Hayk, npodecop Kadeapu KOMIT'IOTEpHHX HAayK Ta NPHUKIANHOI MareMaTHku HamioHambHOTrO
YHIBEPCHTETY BOAHOIO FOCIIOAPCTBA Ta IPUPOIOKOPHUCTYBaHHs, PiBHe, YkpaiHa.

Baonu C. B. — Buknanau Bigminenns Ilporpamysannsi, PiBHeHcbkoro ®axosoro Komemxy HamioHanbHoro yHiBepcHTETy
6iopecypciB i mpupogoKopucTyBaHHs YKpainu, PiBue, Ykpaina.

Kynaneup H. E. — 1-p Hayk i3 couianpHuX KOMyHikawii, npodecop xadenpu [HpopmauiiiHux cucteM Ta Mepex, [HCTHTYTY
KOMIT'IOTEpHHX HayK Ta iHpopMaIiifHuX TexHouorii, HamionaneHoro yHiBepcuteTy «JIbBiBChKa moliTexHika», JIbBiB, YKpaiHa.

AHOTAULIA

AKTyanbHicTb. PO3risigaeThes 3a/1a4a reHEpyBaHHsS BEKTOPIB, IO CKIAJAIOTHCSA 3 PI3HHUX MPEJCTABHHKIB 3aJaHOT MHOXKHHH.
Taki mpoGyieMn BUHHUKAIOTh, 30KpEMa, B TeOpii CKIagaHHs PO3KIIAJiB, IPH IDTaHyBaHHI 3ycTpidell. OKkpeMHUM BHIIaKOM i€l 3a1adi €
3a7a4a TeHepyBaHHs IIEPECTaHOBOK. MeTa poO0oTH — PO3TIISIHYTH NPOOJIEMy 3 TOUKH 30pY ITOCTIHHOTO Ta 3araJlbHOBIIOMOTO MiIXO0.Y,
BUXOJISTYU 3 KOHIICTIIT ICKCUKOTpadigHOTro MOPSIIKY .

Meton. Y 0araTbox 3aBJaHHSX BHHHMKAE HEOOXIJHICTh T'eHEpYBaTH PI3HOMaHITHI KOMOIHATOpHI 00’€KTH: IEepPecTaHOBKH,
KOMOiHawLii 3 MOBTOPEHHSAMH i 03 HUX, PI3HOMAHITHI MiAMHOXHHH. Y Iiif poOOTI pO3MIsAacThCs HOBUIl MiAXim 10 reHeparii
KOMOIHAaTOPHUX 00 €KTIB, SIKMH 0a3y€ThCsI HA MPOLEAYPi MOCTiHHOI Aekommo3uLii. [lepmaneHT OyayeThes AJs CHeliadbHOi MaTpHIli
iHmuaeHTHOCcTi. OCHOBHA iies IBOTO MiAXOAY MOJATae B BKIIOYCHHI 0 TMpolecy anreOpaidHoi mepMaHEHTHOI JEKOMITO3MIIT 3a
JIOTIOMOTOI0 T0aTKOBOI (DYHKIIi psaKa UIs 3alHCy iIeHTH(IKaTOPIB CTOBIIIB y BIINOBIAHI CTPYKTYPH JaHUX. Y I[bOMY BHUIIAIKY
anreOpaiyHui NepMaHEHT He OOYUCIIOETHCS, a OTPHUMYEMO KOHKPETHHH PEKypCHBHHI QJITOPHTM TeHepamlii KOMOIHATOpHOTO
00’exra. [IpoananizoBaHO OOYHCITIOBAIBHY CKIIAJHICTD IIbOTO ATOPUTMY.

Pesyabratn. B Mexax PD-migxomy po3misHyTO 3a7a4i reHepailii KOMOIHATOPHHUX 00’€KTiB, 30KpeMa, MEePECTAHOBOK.
JociipkeHo 004YHCITIOBaNIbHY CKJIAJHICTh 3alIPOIIOHOBAHUX AITOPUTMIB y TIOPIBHSHHI 3 BIIOMUMH miaronamu. Po3risHyTo BapiaHT
porpaMHo]l peaiizailii po3po0IeHHX aIrOPUTMIB.

BucHoBkn. Y po0OTi po3risiHyTO HOBHE MiAXiA 10 TeHepalii CKIaAHUX KOMOIHATOPHUX O0’€KTIB, IO TPYHTYEThCS Ha
MpoLeaypl AEKOMIO3UIii MOAM(IKOBAHOTO MEPMAHEHTY MATPHUIll iHIMACHTHOCTI 3a PSAAKOM 13 3amaM’sSTOBYBaHHSIM EJIEMEHTIB
ingekcy. Crnenndika pOTo MIXOMy MOJSATaE B TOMY, IO TIEBHI JOAAaTKOBI YMOBH, IO HAKJIAJAIOTHCS HA BIIMOBIIHI CHCTEMH Pi3HHX
MIPEICTaBHUKIB, BPaXOBYIOThCS Ha €Talli Iporeayp AekoMno3umii. JlocmimKeHo CKIafHICTh PO3IIIIHYTHX aJlTOPUTMIB. Y pa3i OuIbIn
CKJIQJHUX BapiaHTIB MAaTpHIll IHIUJICHTHOCTI IIPOIIOHYETHCS BIANIOBiAHA MOAMMIKAIS IOHATTSA IEpMaHEHTy 1, BiIIOBITHO,
npoleaypa Horo JeKOMIO3HIIIT .
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