УДК 004.925:539.3:62-41

Кудин А. В.¹, Чопоров С. В.²

¹Преподаватель, Запорожский национальный университет, Украина, E-mail: avk256@gmail.com
²Канд. техн. наук, доцент, Запорожский национальный университет, Украина

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ИЗГИБА КРУГЛОЙ ТРЕХСЛОЙНОЙ ПЛАСТИНЫ С ИСПОЛЬЗОВАНИЕМ АНАЛИТИЧЕСКОГО И ЧИСЛЕННОГО ПОДХОДОВ

Предложены уравнения изгиба трехслойных круглых пластин симметричного строения с изотропными наружными слоями и нелинейно-упругим заполнителем. На основе полученных уравнений разработана компьютерная модель в системе Maple. Построена трехмерная конечно-элементная модель круглой трехслойной пластинки. В качестве примера, рассмотрена задача осесимметричного поперечного изгиба трехслойной круглой пластинки в линейной постановке, а также задача осесимметричного поперечного изгиба однослойной пластины в линейной и нелинейной постановке.

Ключевые слова: компьютерная модель, круглая трехслойная пластина, аналитическое решение, метод конечных элементов.

ВВЕДЕНИЕ

Компьютерное моделирование позволяет заменить исследование физического образца вычислительным экспериментом и является одним из методов исследования сложных систем. При этом в основе компьютерной модели, как правило, лежат математические уравнения и системы уравнений. Основные подходы при получении определяющих соотношений модели: аналитический подход на базе распространенных систем компьютерной алгебры, численные исследования. Следовательно, актуальным является сопоставление результатов таких исследований. Совместное использование аналитического и численного подхода позволяет рассмотреть объект с разных сторон, используя разные гипотезы, сформировать область допустимых решений.

Трехслойные элементы конструкций широко применяются в авиа- и судостроении, космической промышленности, гражданском строительстве, радиоэлектронике и др. отраслях промышленности. Поэтому актуальной является проблема разработки эффективных методов расчета напряженно-деформированного состояния трехслойных элементов конструкций, а также обобщения классических теорий с применением уточненных моделей, отражающих поведение современных материалов.

В настоящей работе приводится вариант уравнений изгиба трехслойных пластин симметричного строения с изотропными наружными слоями и нелинейно-упругим по [1] материалом заполнителя; построена компьютерная модель на базе пакета символьных вычислений Maple (аналитическая модель).

Предложена трехмерная конечно-элементная модель трехслойной пластинки, на основе которой получены численные оценки параметров состояния трехслойной конструкции. На примере задачи осесимметричного поперечного изгиба трехслойной круглой пластинки проводится сравнение полученных моделей с известны-

ми работами [2, 3, 4]. В качестве частного случая решена задача осесимметричного поперечного изгиба однослойной пластины в линейной и нелинейной постановке; результаты сравниваются с работами [1, 5].

1 АНАЛИТИЧЕСКАЯ МОДЕЛЬ

Рассмотрим круглую трехслойную пластинку, которая подвергается воздействию поперечной нагрузки q(r), распределеной симметрично относительно оси, проходящей через центр пластины. Внешние слои пластинки толщиной δ изготовлены из изотропного материала, подчиняющегося закону Гука. Средний слой пластины толщиной 2h выполнен из нелинейно-упругого по [1] изотропного материала.

Деформированное состояние пластинки определяется радиальным перемещением u(r) и прогибом w(r).

Дифференциальные уравнения равновесия круглой трехслойной пластины в общем случае произвольной нагрузки приведены в [5]. Принимая во внимание симметрию деформированного состояния пластины и отсутствие угловых перемещений в данной постановке задачи, нелинейные дифференциальные уравнения равновесия с переменными коэффициентами имеют вид

$$\begin{split} A_{11}w_{,rrr} + A_{12}w_{,rr} + A_{13}u_{,rr} + A_{14}w_{,r} + A_{15}u_{,r} + \\ & + A_{16}u(r) + \Phi_1(u^3, w^3, \ldots) = 0 \;, \\ A_{21}w_{,rrrr} + A_{22}w_{,rrr} + A_{23}u_{,rrr} + A_{24}w_{,rr} + A_{25}u_{,rr} + \\ & + A_{26}w_{,r} + A_{27}u_{,r} + A_{28}u(r) - rq + \Phi_2(u^3, w^3, \ldots) = 0 \;. \end{split}$$

Нелинейные члены уравнений (1.4) $\Phi_1(u^3, w^3,...)$ и $\Phi_2(u^3, w^3,...)$, а также коэффициенты $A_{11}..A_{16}$, $A_{21}..A_{28}$ приведены в [6], здесь не приводятся ввиду их громоздкости.

Граничные условия для свободного опирания имеют следующий вид [4]:

$$w(r) = 0$$
, $w_{,rr} + \frac{\mu}{r}w_{,r} = 0$, $u_{,r} + \frac{\mu}{r}u(r) = 0$ при $r = R$.

Граничные условия при защемлении на контуре имеют следующий вид [4]:

$$w(r) = 0$$
, $w_{,r} = 0$, $u(r) = 0$ при $r = R$.

Одним из подходов к решению системы нелинейных уравнений (1) является метод разложения по малому параметру [1, 7, 8], который позволяет рассматривать нелинейные задачи как последовательность уточняющих друг друга решений систем линейных уравнений. В свою очередь, рассматриваемые системы линейных уравнений в данном случае могут быть сведены к уравнению Бесселя, решение которого известно [2].

Построение компьютерной модели с помощью пакета Maple проводилось в несколько этапов: описание напряженного состояния пластины; описание деформированного состояния пластины; получение функционала энергии; вывод дифференциальных уравнений равновесия на основе принципа Лагранжа аналогично [9]. Приведем команды пакета Maple, описывающие напряженное состояние пластины.

Закон Гука для внешних слоев пластины [10]:

$$\begin{split} & sigma[1,r]{:=}E/(1-mu^2)*(epsilon[1,r]+mu*epsilon[1,phi]);\\ & sigma[1,phi]{:=}E/(1-mu^2)*(epsilon[1,phi]+mu*epsilon[1,r]);\\ & tau[1,rphi]{:=}G12*epsilon[1,rphi];\\ & sigma[2,r]{:=}E/(1-mu^2)*(epsilon[2,r]+mu*epsilon[2,phi]);\\ & sigma[2,phi]{:=}E/(1-mu^2)*(epsilon[2,phi]+mu*epsilon[2,r]);\\ \end{split}$$

Закон упругости для среднего слоя [4]:

tau[2,rphi]:=G12*epsilon[2,rphi];

tau[3,rphi]:=G[3]*gamma1*epsilon[3,rphi];

tau[3,rz]:=G[3]*gamma1*epsilon[3,rz]; tau[3,phiz]:=G[3]*gamma1*epsilon[3,phiz];

sigma[3,r]=3*K[3]*chi1*epsilon[0]+2*G[3]*gamma1*(epsilon[3,r]-epsilon[0]);

sigma[3,phi]=3*K[3]*chi1*epsilon[0]+2*G[3]*gamma1*(epsilon[3,phi]epsilon[0]);

Использование системы компьютерной алгебры Maple существенно упрощает оперирование с громозд-кими выражениями и позволяет автоматизировать процесс получения дифференциальных уравнений задачи из основных уравнений теории упругости.

2 КОНЕЧНО-ЭЛЕМЕНТНАЯ МОДЕЛЬ

Рассмотрим решение задачи исследования напряженно-деформированного состояния равномерно нагруженной круглой трехслойной пластинки в конечно-элементной постановке. Учитывая симметричность поставленной задачи достаточно исследовать лишь сектор пластинки (рис. 1), у которого для узлов, соответствующих грани OA, запрещено перемещение в направлении 2, а узлам на гране OB запрещено перемещение в на-

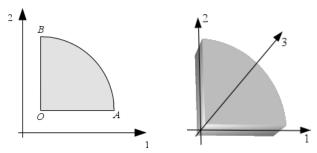


Рис. 1. Геометрическая модель пластинки

правлении 1. При этом учет кусочной неоднородности (слоистости) пластинки приводит к необходимости исследования конструкции в трехмерной постановке.

Используя аппарат теории R-функций В. Л. Рвачева [11, 12] геометрическая модель может быть формализована при помощи выражения

$$f\left(x,y,z\right) = \left(r^2 - x^2 - y^2\right) \wedge x \wedge y \wedge (z+h+\delta_1) \wedge \left(h+\delta_2 - z\right),$$

где r — радиус пластинки; x,y,z — пространственные координаты; операция $x_1 \wedge x_2 \equiv x_1 + x_2 - \sqrt{x_1^2 + x_2^2}$ — R-коньюнкция.

Функция $f\left(x,y,z\right)$ принимает значения больше нуля во внутренних точках сектора пластинки, равна нулю на его границе и меньше нуля во внешних точках (боковые грани ограничены плоскостями x=0 и y=0, нижняя грань плоскостью $z=-(h+\delta_2)$, а верхняя $z=h+\delta_1$). Следовательно, $f\left(x,y,z\right)$ может быть использована в качестве предиката (управляющей функции) для автоматической генерации системы конечных элементов.

Для обеспечения большей точности моделирования при построении дискретной модели необходимо учесть структуру слоев: границы слоев должны аппроксимироваться границами элементов (т. е. вдоль границы слоя материала должна проходить граница слоя конечных элементов). Удовлетворение этого требования совместно с учетом ограничения на соотношение размеров сторон при построении сетки шестигранных элементов [13–15] приводит к относительно большому числу конечных элементов. Например, при $r=0,4,\ \delta_1=\delta_2=0,001$ и 2h=0,016 сетка состоит из 102277 узлов и 94032 конечных элементов. Опытным путем установлено, что если соотношение сторон элементов превышает 10, то вычислительный процесс дает значительно большую погрешность.

С учетом трехслойности, формула для вычисления локальной матрицы жесткости [K^e] примет вид

$$\left[K^{e}\right] = \iiint B^{T} DB dx dy dz,$$

где

$$B = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \end{bmatrix} \times$$

$$\times \begin{bmatrix} H_1 & H_2 & \dots & H_8 & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & H_1 & H_2 & \dots & H_8 & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & H_1 & H_2 & \dots & H_8 \end{bmatrix},$$

$$D = \frac{E(1-\mu)}{(1+\mu)(1-2\mu)} \times$$

$$\begin{bmatrix}
1 & \frac{\mu}{1-\mu} & \frac{\mu}{1-\mu} & 0 & 0 & 0 \\
\frac{\mu}{1-\mu} & 1 & \frac{\mu}{1-\mu} & 0 & 0 & 0 \\
\frac{\mu}{1-\mu} & \frac{\mu}{1-\mu} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)}
\end{bmatrix}$$

$$E = \begin{cases} E_{12} \text{, } z \geq h \text{ или } z \leq -h, \\ \tilde{E} \text{, } -h \leq z \leq h, \end{cases} \qquad \mu = \begin{cases} \mu_{12} \text{, } z \geq h \text{ или } z \leq -h, \\ \tilde{\mu}, -h \leq z \leq h, \end{cases}$$

где E_{12} и μ_{12} — модуль упругости и коэффициент Пуассона внешних слоев; \tilde{E} и $\tilde{\mu}$ — модуль упругости и коэффициент Пуассона внутреннего слоя.

Матрица жесткости вычисляется для каждого конечного элемента и затем производится ее ансамблирование (суммирование по специальным правилам) в глобальную матрицу жесткости, которая совместно с вектором узловых нагрузок определяет СЛАУ для вычисления перемещений в узлах.

При этом найденные перемещения в третьем направлении будут соответствовать прогибам пластинки.

3 СОПОСТАВЛЕНИЕ ЗНАЧЕНИЙ ПОПЕРЕЧНО-ГО ИЗГИБА КРУГЛЫХ ОДНОСЛОЙНЫХ ПЛАСТИН

В качестве частного случая рассмотрим поперечный изгиб круглой однослойной пластины (толщина пластинки $h=18\cdot 10^{-3}$ м, радиус R=0,4 м; модуль сдвига и коэффициент Пуассона материала — $G=8\cdot 10^4$ МПа и $\mu=0,27$ соответственно) и сопоставим полученные значения с решением Тимошенко [5] для равномерно нагруженной круглой пластинки. В табл. 1 приводятся результаты такого сопоставления. Через $w_{\rm max}$ обозначен максимальный прогиб в центре пластины; q — величина равномерно распределенной поперечной нагрузки. Модели, используемые при расчетах, обозначены в табл. 1 следующим образом: 1 — аналитическая модель, 2 — конечно-элементная модель, 3 — модель Тимошенко круглой однослойной пластины [5].

Из сопоставления значений прогибов в табл. 1 можно сделать вывод о соответствии построенных моделей решению Тимошенко [5]. Прогибы, полученные по аналитической модели, с точностью до шестого знака после запятой совпадают с прогибами модели Тимошенко. Для свободного опирания отклонения прогибов конечно-элементной модели от прогибов Тимошенко находятся в пределах 2.7% - 2.8%; для защемления -3.7% -3,9 %. Полученные результаты позволяют сделать вывод об адекватности построенных моделей модели Тимошенко и возможности их применения для дальнейшего исследования прогибов слоистых пластин. Разница численных значений прогибов конечно-элементной модели и модели [5] объясняется использованием гипотезы Кирхгофа-Лява в модели Тимошенко, в отличие от конечноэлементной модели.

Рассмотрим задачу изгиба однослойной круглой пластины из нелинейно-упругого материала. Сравним полученные значения с результатами Каудерера [1]. Примем следующие параметры пластины: толщина пластинки $h=18\cdot 10^{-3}$ м, радиус пластинки R=0,4 м; модуль

Таблица 1. Изгиб круглой однослойной пластинки в линейной постановке

q , МПа	$w_{\text{max}} = w(0), 10^{-3} \text{ M}$							
	Тип закрепления							
	Свобод	цное опи	рание	Защемление				
		Модель		Модель				
	1	2	3	1	2	3		
0,05	0,779	0,800	0,779	0,188	0,195	0,188		
0,07	1,090	1,121	1,090	0,263	0,273	0,263		
0,09	1,402	1,441	1,402	0,338	0,351	0,338		
0,11	1,714	1,761	1,714	0,413	0,429	0,413		

сдвига и модуль объемной деформации материала — $G=2,77\cdot 10^4$ МПа, $K=6\cdot 10^4$ МПа, параметр $\gamma_2=-3,878\cdot 10^5$ [1,16]. Вычисления производятся для случая защемления контура пластинки. Модели, используемые при расчетах, обозначены в табл. 2 следующим образом: 1 — аналитическая модель, 2 — решение Каудерера [1].

Таблица 2. Изгиб круглой однослойной пластинки в нелинейной постановке

q ,	$w_{\text{max}} = w(0), 10^{-3} \text{ M}$				
МПа	Модель				
	1	2			
0,05	0,529	0,523			
0,07	0,756	0,740			
0,09	1,000	0,977			
0,11	1,275	1,329			

При вычислении значений прогибов табл. 2 учитывались три приближения в разложении по методу малого параметра.

Как видно из табл. 2, отклонения значений прогибов аналитической модели от прогибов [1] находятся в пределах 1%-4%, что говорит о возможности применения аналитической модели для решения нелинейных задач теории пластин.

4 СОПОСТАВЛЕНИЕ ЗНАЧЕНИЙ ПОПЕРЕЧНО-ГО ИЗГИБА КРУГЛЫХ ТРЕХСЛОЙНЫХ ПЛАСТИН

Поскольку нулевое приближение дает наиболее существенный вклад в разложение искомых перемещений по малому параметру, исследуем далее задачу о поперечном изгибе круглой трехслойной пластины в линейной постановке и проведем сравнительный анализ полученных решений с известными результатами.

Рассмотрим поперечный изгиб круглой трехслойной пластины со следующими параметрами: толщина среднего слоя $2h = 16 \cdot 10^{-3}$ м, толщина внешних слоев $\delta = 1 \cdot 10^{-3}$ м, радиус пластинки R = 0, 4 м; модуль сдвига и коэффициент Пуассона внешних слоев – $G = 8 \cdot 10^4$ МПа

и $\mu=0,27$ соответственно, модуль сдвига и модуль объемной деформации заполнителя — $\tilde{G}=2,77\cdot 10^4\,$ МПа, $\tilde{K}=6\cdot 10^4\,$ МПа. Тангенциальные напряжения изменяются линейно по толщине среднего слоя.

В табл. 3 приводятся значения максимального прогиба в центре пластины в линейной постановке при различных граничных условиях. Значения максимального прогиба в центре пластинки, полученные из работ [2–4], сопоставляются со значениями прогибов полученными из решения уравнений (1) и прогибами конечно-элементной модели. Модели, используемые при расчетах, обозначены в табл. 3 следующим образом: 1 – аналитическая модель, 2 – конечно-элементная модель; 3 – модель И. А. Михайлова [3], 4 – модель А.П. Прусакова [4], 5 – модель А. Г. Горшкова и др. [2].

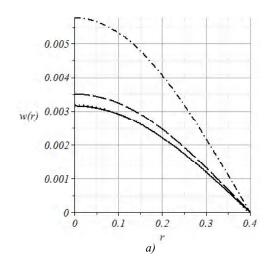
Из сравнения полученных значений максимальных прогибов приведенных в табл. 3 можно сделать вывод о соответствии результатов полученных на основе построенных в работе аналитической и конечно-элементной моделей результатам известных моделей [2–4]. В силу различных упрощающих гипотез значения прогибов табл. 3 можно рассматривать как разные оценки области точного решения. Наблюдаются следующие значения отклонений рассматриваемых моделей: аналитическая модель и конечно-элементная модель — 8 % —11 %; модель И. А. Михайлова [3] —1 %—45 %; модель А. П. Прусакова — 30 %—80 %; модель А. Г. Горшкова [2] — 16%—55% для случая защемления.

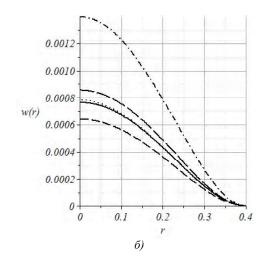
На рис. 2 приведены прогибы срединной плоскости трехслойной пластинки для случая свободного опирания (рис. 2, a) и для случая защемления на контуре (рис. 2, δ); значение нагрузки принимается q = 0.11 МПа.

Отклонения табл. 3 объясняются тем, что при построении аналитической модели и моделей [2–4] применялись различные упрощающие гипотезы и как следствие, в тензорах напряжений и деформаций учитывалось различное количество компонент. Так, при построении конечно-элементной модели учитывались все компоненты тензора напряжений и тензора деформаций (трехмерная постановка задачи), а в аналитической модели — в зависимости от слоя от (трех до пяти).

Таблица 3. Изгиб трехслойной круглой пластинки в линейной постановке

	$w_{\text{max}} = w(0), 10^{-3} \text{ M}$								
	Тип закрепления								
q , МПа	Свободное опирание				Защемление				
	Модель				Модель				
	1	2	3	4	1	2	3	4	5
0,05	1,606	1,449	1,430	2,621	0,388	0,357	0,348	0,635	0,291
0,07	2,248	2,029	2,001	3,670	0,543	0,499	0,487	0,889	0,407
0,09	2,891	2,609	2,573	4,718	0,698	0,642	0,626	1,142	0,523
0,11	3,533	3,188	3,145	5,767	0,853	0,784	0,765	1,396	0,639





— — — – аналитическая модель, · · · · – конечно-элементная модель, — — – модель Михайлова, · · · · – · – модель

Прусакова, — — — – модель Горшкова

Рис. 2. Прогиб срединной плоскости в случае распределенной нагрузки

выводы

Разработана компьютерная модель на базе нового варианта дифференциальных уравнений равновесия круглых трехслойных пластин. Пластины считаются симметричными по толщине с изотропными наружными слоями и нелинейно-упругим по [1] материалом заполнителя. Построена трехмерная конечно-элементная модель.

В качестве примера рассмотрена задача осесимметричного поперечного изгиба однослойной круглой пластинки в линейной и нелинейной постановке. Также рассмотрена задача осесимметричного поперечного изгиба трехслойной круглой пластинки в линейно-упругой постановке.

Отметим, что приведенные в табл. 3 модели используют различные упрощающие гипотезы, чем обусловливается разница полученных значений прогибов. Так, при построении конечно-элементной модели использовалась трехмерная постановка задачи. В модели А. Г. Горшкова [2] и И. А. Михайлова [3] для внешних слоев принимается гипотеза Кирхгофа-Лява, для заполнителя же принимаются различные гипотезы о распределении тангенциальных напряжений по толщине слоя. Существенные отклонения результатов расчетов по уравнениям модели А. П. Прусакова [4] объясняются тем, что здесь заполнитель считается легким, в отличие от других вышеупомянутых моделей.

Сравнение полученных значений прогибов на основе аналитической и конечно-элементной моделей с работами [1–5] свидетельствует об адекватности построенных моделей и возможности решения на их основе более широкого класса задач статики и динамики трехслойных пластин.

На основе аналитической модели могут быть получены компактные расчетные формулы для применения в инженерной практике. В дальнейшем, при решении систем дифференциальных уравнений первого и последующего приближений разложения по малому параметру, становится возможным учет влияния нелинейной упругости материала заполнителя на деформированное состояние трехслойной пластинки.

Недостатком трехмерной конечно-элементной модели является требование относительно большого объема вычислений, по сравнению с приведенными аналитическими моделями. Однако такой подход может использоваться для расчета многослойных пластин нестандартной формы и для проверки моделей использующих упрощающие гипотезы. Сравнение результатов аналитических решений с численными позволяет делать заключение о правильности выбранных гипотез.

Перспективы дальнейшего исследования связаны с рассмотрением задач нелинейной устойчивости и динамики трехслойных элементов конструкций, а также созданием гибридных аналитико-вычислительных подходов на базе конечных элементов.

СПИСОК ЛИТЕРАТУРЫ

- 1. $\mathit{Kaydepep}$, $\mathit{\Gamma}$. Нелинейная механика / Каудерер $\mathit{\Gamma}$. ; пер. с нем. М. : Изд-во иностр. лит., 1961. 777 с.
- 2. *Горшков, А. Г.* Механика слоистых вязкоупругопластических элементов конструкций / А. Г. Горшков, Э. И. Старовойтов, А. В. Яровая. М.: ФИЗМАТЛИТ, 2005. 576 с.

- Михайлов, И. П. Некоторые задачи осесимметричного изгиба круглых трехслойных пластин с жестким заполнителем // Труды Ленинградского кораблестроительного института. 1969. Вып. 66. С. 125–131.
- Прусаков, А. П. Некоторые задачи изгиба круглых трехслойных пластин с легким заполнителем // Тр. конф. по теор. пластин и оболочек. – 1961. – № 1. – С. 293–297.
- Тимошенко, С. П. Пластинки и оболочки / С. П. Тимошенко, С. Войновский-Кригер. – М.: Физматгиз, 1964. – 636 с.
- Кудин, А. В. Применение метода малого параметра при моделировании изгиба симметричных трехслойных пластин с нелинейно-упругим заполнителем / А. В. Кудин, Ю. Н. Тамуров // Вісник Східноукраїнського національного університету імені Володимира Даля. – 2011. – № 11 (165). – С. 32–40.
- Тамуров, Ю. Н. Вариант обобщенной теории трехслойных пологих оболочек с учетом обжатия физически нелинейного заполнителя // Прикладна механика. – 1990. – Т. 26, № 12. – С. 39–45.
- 8. *Тамуров, Ю. Н.* Уравнения изгиба и устойчивости трехслойных оболочек с ортотропными и нелинейно-упругими свойствами материалов // Исслед. по теор. пластин и оболочек. 1990. № 20. С. 102–112.
- 9. *Liu, Renhuai* Nonlinear Bending of Circular Sandwich Plates / Liu Renhuai // Applied Mathematics and Mechanics. English Edition. 1981. Vol. 2, No. 2. P. 189–208.

- Амбарцумян, С. А. Теория анизотропных пластин: Прочность, устойчивость и колебания. 2-е изд., перераб. и доп. М.: Наука, 1987. 360 с.
- Рвачев, В. Л. Новые подходы к построению уравнений трехмерных локусов с помощью R-функций / [Рвачев В. Л., Толок А. В., Уваров Р. А., Шейко Т. И.] // Вісник Запорізького державного університету. 2000. № 2. С. 119—130.
- Рвачев, В. Л. Введение в теорию R-функций / В. Л. Рвачев, Т. И. Шейко // Проблемы машиностроения. 2001. Т. 4, № 1–2. С. 46–58.
- 13. *Гоменюк, С. И.* Дискретизация трехмерных областей, заданных R функциями, на шестигранные конечные элементы / С. И. Гоменюк, С. В. Чопоров // Вестник Херсонского национального технического университета. 2011. № 3 (42). С. 146—153.
- 14. *Schneiders, R.* A Grid-based Algorithm for the Generation of Hexahedral Element Meshes / R. Schneiders // Engineering with Computers. 1996. No. 12. P. 168 177.
- Schneiders, R. Octree-based Generation of Hexahedral Element Element Meshes / R. Schneiders, R. Schindler, F. Weiler // 5th Annual International Meshing Roundtable. – 1996. – P. 205–216.
- 16. *Цурпал, И. А.* Расчет элементов конструкций из нелинейно-упругих материалов. К.: Техника, 1976. – 176 с.

Стаття надійшла до редакції 28.03.2014.

Кудін О. В.¹, Чопоров С. В.²

¹Викладач, Запорізький національний університет, Україна

²Канд. техн. наук, доцент Запорізький національний університет, Україна

КОМП'ЮТЕРНЕ МОДЕЛЮВАННЯ ВИГИНУ КРУГЛОЇ ТРИШАРОВОЇ ПЛАСТИНИ З ВИКОРИСТАННЯМ АНАЛІТИЧНОГО ТА ЧИСЕЛЬНОГО ПІДХОДІВ

Запропоновано рівняння вигину тришарових круглих пластин симетричної будови з ізотропними зовнішніми шарами і нелінійно-пружним заповнювачем. На основі отриманих рівнянь розроблено комп'ютерну модель у системі Марlе. Побудована тривимірна скінченно-елементна модель круглої тришарової пластинки. В якості прикладу, розглянуто задачу вісісиметричного поперечного вигину тришарової круглої пластинки в лінійній постановці, а також задача вісісиметричного поперечного вигину одношарової пластини в лінійній і нелінійній постановці.

Ключові слова: комп'ютерне моделювання, кругла тришарова пластина, аналітичний розв'язок, метод скінченних елементів.

Kudin A. V.1, Choporov S. V.2

¹Assistant Professor, Zaporizhzhya National University, Ukraine

²Ph.D., Associate professor, Zaporizhzhya National University, Ukraine

$COMPUTER\,SIMULATION\,OF\,BENDING\,CIRCULAR\,SANDWICH\,PLATES\,USING\,ANALYTICAL\,AND\,NUMERICAL\,APPROACHES$

The paper describes equations of circular symmetrical sandwich plates bending for plates with isotropic outer layers and nonlinear elastic filler. Two computer models of circular sandwich plates are proposed: 1) analytical model on the basis of Maple CAS, 2) three-dimensional FEM-model. We compare results of analytical model with results of numerical simulation using two problems: 1) the problem of axisymmetric transverse bending of a sandwich plate, 2) the problem of axisymmetric transverse bending of a single-layer plate with linear and nonlinear formulation.

The first section of the article describes basic differential equations and analytical model constructing method. FEM-model is described in the second section. Numerical results of computer simulation are showed in the last section of the article.

Keywords: computer simulation, sandwich symmetrical plate, circular plate, nonlinear-elastic core, axisymmetric bending, FEM-model.

REFERENCES

- Kauderer G. Nelinejnaya mexanika, Per. s nem. Moscow, Izd-vo inostr. lit., 1961, 777 p.
- Gorshkov A. G., Starovojtov E'. I., Yarovaya A. V. Mexanika sloistyx vyazkouprugoplasticheskix e'lementov konstrukcij. Moscow, FIZMATLIT, 2005, 576 p.
- 3. Mixajlov I. P. Nekotorye zadachi osesimmetrichnogo izgiba kruglyx trexslojnyx plastin s zhestkim zapolnitelem, *Trudy Leningradskogo korablestroitel'nogo instituta*, Vyp. 66, 1969, pp. 125–131.
- Prusakov A. P. Nekotorye zadachi izgiba kruglyx trexslojnyx plastin s legkim zapolnitelem, *Tr. konf. po teor. plastin i obolochek*, 1961, No. 1, pp. 293–297.
- Timoshenko S. P., Vojnovskij-Kriger S. Plastinki i obolochki. Moscow, Fizmatgiz, 1964, 636 p.
- Kudin A. V., Tamurov Yu. N. Primenenie metoda malogo parametra pri modelirovanii izgiba simmetrichnyx trexslojnyx plastin s nelinejno-uprugim zapolnitelem, *Visnik* Sxidnoukraïns'kogo nacional'nogo universitetu imeni Volodimira Dalya. 2011, No. 11(165), pp. 32–40.
- Tamurov Yu. N. Variant obobshhyonnoj teorii tryoxslojnyx pologix obolochek s uchyotom obzhatiya fizicheski nelinejnogo zapolnitelya, *Prikl. mexanika*, 1990, Vol. 26, No. 12, pp. 39–45.
- Tamurov Yu. N. Uravneniya izgiba i ustojchivosti trexslojnyx obolochek s ortotropnymi i nelinejno-uprugimi svojstvami

- materialov, *Issled. po teor. plastin i obolochek*, 1990, No. 20, pp. 102–112.
- Liu Renhuai Nonlinear Bending of Circular Sandwich Plates, *Applied Mathematics and Mechanics*, English Edition, 1981, Vol. 2, pp. 189–208.
- Ambarcumyan S. A. Teoriya anizotropnyx plastin: Prochnost', ustojchivost' i kolebaniya. 2-e izd., pererab. i dop. Moscow, Nauka, 1987, 360 p.
- 11. Rvachev V. L., Tolok A. V., Uvarov R. A., Shejko T. I. Novye podxody k postroeniyu uravnenij trexmernyx lokusov s pomoshh'yu R funkcij, Visnik Zaporiz'kogo derzhavnogo universitetu, 2000, No. 2, pp. 119–130.
- Rvachev V. L., Shejko T. I. Vvedenie v teoriyu R-funkcij, Problemy mashinostroeniya, 2001, Vol. 4, No. 1–2, pp. 46–58.
- 13. Gomenyuk S. I., Choporov S. V. Diskretizaciya trexmernyx oblastej, zadannyx R funkciyami, na shestigrannye konechnye e'lementy, *Vestnik Xersonskogo nacional nogo texnicheskogo universiteta*, 2011, No. 3(42), pp. 146–153.
- Schneiders R. A Grid-based Algorithm for the Generation of Hexahedral Element Meshes, *Engineering with Computers*, 1996, No. 12, pp. 168 177.
- 15. Schneiders R., Schindler R., Weiler F. Octree-based Generation of Hexahedral Element Element Meshes, *5th Annual International Meshing Roundtable*, 1996, pp. 205–216.
- Curpal I.A. Raschet e'lementov konstrukcij iz nelinejnouprugix materialov. Kiev, Texnika, 1976, 176 p.