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ABSTRACT

Context. The problem of automated development of evaluation programs for the neuroevolution of augmenting topologies.
Neuroevolution algorithms apply mechanisms of mutation, recombination, and selection to find neural networks with behavior that
satisfies the conditions of a certain formally defined problem. An example of such a problem is finding a neural network that imple-
ments a certain digital logic.

Objective. The goal of the work is the automated design and generation of an evaluation program for a sample neuroevolution
problem (binary multiplexer).

Method. The methods and tools of Glushkov’s algebra of algorithms and hyperscheme algebra are applied for the parameter-
driven generation of a neuroevolution evaluation program for a binary multiplexer. Glushkov’s algebra is the basis of the algorithmic
language intended for multilevel structural design and documentation of sequential and parallel algorithms and programs in a form
close to a natural language. Hyperschemes are high-level parameterized specifications intended for solving a certain class of prob-
lems. Setting parameter values and subsequent interpretation of hyperschemes allows obtaining algorithms adapted to specific condi-
tions of their use.

Results. The facilities of hyperschemes were implemented in the developed integrated toolkit for the automated design and syn-
thesis of programs. Based on algorithm schemes, the system generates programs in a target programming language. The advantage of
the system is the possibility of describing algorithm schemes in a natural-linguistic form. An experiment was conducted consisting in
the execution of the generated program for the problem of evaluating a binary multiplexer on a distributed cloud platform. The mul-
tiplexer example is included in SharpNEAT, an open-source framework that implements the genetic neuroevolution algorithm NEAT
for the .NET platform. The parallel distributed implementation of the SharpNEAT was proposed in the previous work of the authors.

Conclusions. The conducted experiments demonstrated the possibility of the developed distributed system to perform evalua-
tions on 64 cloud clients-executors and obtain an increase in 60—100% of the maximum capabilities of a single-processor local im-
plementation.

KEYWORDS: algebra of algorithms, automated program design, cloud computing, hyperscheme, neuroevolution, neural net-
work, parallel programming.

ABBREVIATIONS e is an empty word;
IDS is an Integrated toolkit for software Design and E; is a three-valued logic;
Synthesis; E, is a four-valued logic;
NEAT is NeuroEvolution of Augmenting Topologies; 4 ’
SAA is a system of algorithmic algebra; F(A,p) is a function that specifies the generation
SharpNEAT is an open-source framework written in  method for operations of AHS signature;
C# that implements the genetic neuroevolution algorithm GA is Glushkov’s algebra (system of algorithmic al-
NEAT. gebra);
NOMENCLATURE . IS is a set of states (an information set) of the opera-
tional automaton of the abstract automaton model of a

A is a nonterminal operator from set Ry ;
computer;

Aj is an operator from set Op ; L is a set of states of tape L;

AHS is algebra of hyperschemes; Lisa tape of operational automaton ®;

© Doroshenko A. Yu., Achour I. Z., Yatsenko O. A., 2023 @ @ @
DOI 10.15588/1607-3274-2023-1-8 OPEN (( ) ACCESS

80



p-ISSN 1607-3274 Pagioenextponika, inpopmatuka, ynpasminss. 2023. Ne |
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 1

m is a number of address inputs of a multiplexer;
M is a set of states of operational automaton @;

M is a stack of control automaton v,
n is a number of data inputs of a multiplexer;
Op is a set of operators of GA ;

O_p is a set of operators of AHS ;
p is an element of set P ;

P is a set of states (an information set) of the opera-
tional automaton of the abstract automaton model of the
parameter-driven generator of texts;

Po is an array length;

P, is a number of address inputs of a multiplexer
(hyperscheme parameter);

P, is a number of information inputs of a multiplexer
(hyperscheme parameter);

P; is the total number of inputs of a multiplexer
(hyperscheme parameter);

Py is a hyperscheme parameter with number Q;

Pr is a set of predicates of GA ;

Pris a set of predicates of AHS ;
Ry is a set of nonterminal operators of AHS ;

Rr is a set of terminal operators of AHS ;

S; is address input of a multiplexer;

Uk is a predicate from set Pr;

X; is a data input of a multiplexer;
y is an output of a multiplexer;

n is “not computed” value;

p is “undefined” value;

@ is an operational automaton;
V' is a control automaton;
Q ans 1s a signature of operations of AHS ;

Qgp 1s a signature of operations of GA ;
Q; is a set of logic operations included in Qga;

), is a set of operator operations included in Qga.

INTRODUCTION

One of the promising directions in the development
and research of parallel and distributed computing
systems is the construction of software abstractions in the
form of algebraic-algorithmic languages and models,
which aims to develop architecture- and language-
independent programming tools for multiprocessor
computing systems and networks. In [1], authors
proposed a theory, methodology, and software tools for
the automated design of parallel programs based on high-
level algebraic formalization and automation of program
transformations based on rewriting rules. In particular, an
instrumental system of programming automation called
the integrated toolkit for software design and synthesis
(IDS) was developed. One of the important problems
within the algebra-algorithmic approach is increasing the
adaptability of programs to the specific conditions of their

© Doroshenko A. Yu., Achour I. Z., Yatsenko O. A., 2023
DOI 10.15588/1607-3274-2023-1-8

use. In particular, it can be solved by using the method of
parameter-driven generation of algorithm schemes based
on higher-level specifications named hyperschemes.

In this paper, the developed algebra-algorithmic facili-
ties are applied to the field of neuroevolution algorithms.
Neuroevolution is a promising approach for solving com-
plex problems of machine learning, the development of
artificial neural networks, adaptive control, multi-agent
systems, and evolutionary robotics [2]. The main advan-
tage of neuroevolution is that it can be used more widely
than supervised learning algorithms, which require a pro-
gram of correct input-output pairs. Neuroevolution only
requires evaluating the performance of the network when
performing a task. It uses evolutionary algorithms to train
a neural network and belongs to the category of rein-
forcement learning methods. All evolutionary algorithms
develop a set (“population”) of solutions (“individuals”).
Individuals are represented by their genotype, which is
expressed in the form of a phenotype, with which quality,
“adaptability” is associated. There are a large number of
neuroevolutionary algorithms, divided into two groups.
The first includes algorithms that perform the evolution of
weights for a given network topology, the second includes
algorithms that, in addition to the evolution of weights,
also perform the evolution of the network topology. Evo-
lutionary algorithms manipulate a set of genotypes, which
are a representation of a neural network. In a direct cod-
ing scheme, the genotype is equivalent to the phenotype,
and neurons and connections are directly specified in the
genotype. Conversely, in the scheme with indirect coding,
the rules and structures for creating a neural network are
specified in the genotype.

The object of study is the automated development of
evolutionary algorithms.

One of the implementations of evolutionary algo-
rithms is SharpNEAT [3], an open-source framework
developed in the C# language. It implements the genetic
neuroevolution algorithm NEAT (NeuroEvolution of
Augmenting Topologies) for the .NET platform. The al-
gorithm uses the evolutionary mechanisms of mutation,
recombination, and selection to find neural networks with
behavior that satisfies the conditions of a certain formally
defined problem. Examples of such problems are control-
ling the movements of a robot’s limbs, flying a rocket, or
finding a neural network that implements a certain digital
logic (for example, a multiplexer).

Despite the strengths of the NEAT method, such as
the possibility of its application in tasks where it is diffi-
cult to choose the cost function and neural network topol-
ogy, one of the problems is the slow convergence to op-
timal results, especially in the case of complex environ-
ments. The distributed implementation of the NEAT eval-
uation method was proposed in the previous work of the
authors [5]. It allows to radically speed up finding optimal
configurations of neural networks in the presence of suffi-
cient computing resources.
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The subject of study is the automated design and
generation of evaluation programs for neuroevolution
algorithms.

The purpose of the work is to apply algorithm alge-
bra and hyperschemes [1, 6] for the parameter-driven
generation of an evaluation program for a sample
neuroevolution problem.

Hyperschemes are parameterized specifications in-
tended for solving a certain class of problems. Setting
specific values of parameters and subsequent interpreta-
tion of hyperschemes allows obtaining algorithms adapted
to specific conditions of their use. The generator of algo-
rithms based on hyperschemes is one of the components
of the above-mentioned IDS toolkit [1]. Algorithm
schemes being designed in the toolkit are presented in
Glushkov’s system of algorithmic algebra (SAA).

The approach to the parameter-driven generation of
programs is illustrated on generating the source code of
the evaluation procedure for the binary multiplexer prob-
lem example included in SharpNEAT [4]. The results of
the execution of multi-threaded and distributed versions
of the generated procedure on a multicore processor and a
cloud platform are given.

1 PROBLEM STATEMENT

The problem consists in designing a high-level
parameterized specification in the algebra of hyper-
schemes [1, 6] that is applied to generate classes of evalu-
ation schemes for a binary multiplexer (Binary
MultiplexerEvaluator) example [4] depending on the
multiplexer parameters, followed by the automated syn-
thesis of code in C# language for the SharpNEAT frame-
work.

A multiplexer is a device that has several data inputs
X, (i=0,..,n—1), address inputs s; ( j=0,..m-1),
and one output Yy . The device transmits a signal from one
of the data inputs to the output; at the same time, the
selection of the desired input is carried out by applying
the appropriate combination of control signals to the
address inputs. The number of data inputs n and the
number of address inputs m are related by the ratio:
n=2". The conditional scheme of the multiplexer with
11 inputs is shown in Fig. 1.

X ——>»
X ——>
X2 ——
X3 ——
Xg—
X5 ——
X ——
X7 ——>

111

So &1 &2

Figure 1 — The conditional scheme of a multiplexer with 11
inputs
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The parameters of the hyperscheme are the number P,
of address inputs of the multiplexer, the number P, of its
information inputs and the total number of inputs
P; =P, + P,. All inputs accept binary values (0 or 1). A
binary address is applied to the address inputs,
representing the selection of one of the input values for
data. The evaluation consists of exhaustively testing the
neural network on each of the 27 possible input
combinations [4]. The output value of the neural network
must match the value of one of the data inputs, which is
represented by a binary address from the address inputs.
An output value less than 0.5 is considered a binary zero,
and an output value greater than or equal to 0.5 is a binary
one. The value of the assessment (suitability) is calculated
additively as a result of the comprehensive check.

Depending on the values of the hyperscheme
parameters, a specific scheme of an algorithm in SAA [1]
is to be generated, representing a multiplexer evaluation
scheme with a specific number of inputs. The examples of
parameter values are shown in Table 1. The SAA schemes
are the basis for the generation of C# programming code.

Table 1 — The values of the hyperscheme parameters (P—P3)
for generating multiplexer evaluation schemes

Corresponding values of]
hyperscheme parameters
Number of
multiplexer inputs P P2 Ps
3 1 2 3
6 2 4 6
11 3 8 11

2 REVIEW OF THE LITERATURE

This paper is related to works on the automated gen-
eration of programs from specifications
[7-10] and neuroevolution of augmenting topologies [2,
11, 12].

In particular, paper [7] presents a tool for the auto-
matic generation of C++ programs from Isabelle (high-
order logic theorem prover) specifications. In [8], a com-
bination of code and test generation based on the specifi-
cation language of the Temporal Logic of Actions (TLA)
is proposed. Work [9] presents a tool for generating C++
code from abstract state machine models. Paper [10] pro-
poses an automated technique that generates executable
tests from structured natural language specifications.

The peculiar feature of our approach to program gen-
eration consists in using algebra of algorithms and hyper-
schemes [6]. Algorithms and programs are constructed
using high-level algebra-algorithmic schemes represented
in a natural linguistic form. The developed tools provide
automated generation of sequential and parallel code in
C++ and Java languages from the schemes. In this paper,
we apply these algebra-algorithmic facilities for the au-
tomated design of an evaluation procedure for a
neuroevolution algorithm.

Neuroevolution of augmenting topologies is a genetic
algorithm for finding artificial neural networks through
evolution (neuroevolutionary method) [2]. HyperNEAT
(Hypercube-based NeuroEvolution of Augmenting To-
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pologies) is an extension of NEAT that uses a form of
indirect encoding called Compositional Pattern-Producing
Networks (CPPNs) [11]. The implementations of NEAT
and HyperNEAT are part of a package called SharpNEAT
developed in C# by Colin Green [12]. The peculiarity of
NEAT and SharpNEAT is that they search both the struc-
ture of the neural network (nodes and connections) and
the weight parameters of connections between nodes. The
parallel distributed version of SharpNEAT was proposed
by the authors in [5].

In this work, the distributed version is applied for
evaluating the performance of the code generated for bi-
nary multiplexer problem example on a cloud platform.

3 MATERIALS AND METHODS

In this section, we consider the system of algorithmic
algebra and hyperschemes, which are the basis of the al-
gebra-algorithmic approach to algorithm design and syn-
thesis. The software tools for the automated generation of
algorithm schemes and programs are also described.

Glushkov’s SAA is focused on the analytical form of
algorithm representation and formalized transformation of
these specifications, in particular, with the aim of optimiz-
ing the algorithms according to specified criteria [1]. SAA

is the two-sorted algebra GA= ({Pr,Op};QGA>, where
sorts are a set Pr of predicates and a set Op of operators

defined on information set IS. The operators are map-
pings (possibly partial) of IS to itself. The predicates
take values of the three-valued logic E; ={0,1,u}. The
signature Qg =Q; U Q, consists of system Q; of logic
operations (conjunction, disjunction, negation, and prog-
nosis) that take values in set Pr, and system Q, of op-

erator operations (composition, branching, loop, and
other) that take values in set Op and are considered fur-

ther in more detail.

SAA is the basis of the algorithmic language SAA/1,
designed for multilevel structural design and documenta-
tion of sequential and parallel algorithms and programs.
The advantage of its use is the possibility of describing
algorithms in a natural-linguistic form. The operators rep-
resented in the SAA/1 language are called SAA schemes.
Identifiers of predicates in this language are enclosed in
single quotes, and operators — in double ones. Predicates
and operators in SAA/1 can be basic or compound. Basic
elements are elementary atomic abstractions in algorithm
schemes. Compound conditions and operators are built
from basic ones using the operations from the SAA signa-
ture.

Some operator operations of SAA used in this paper
are the following (represented in a natural-linguistic
form):

— composition (sequential execution) of operators:
“operatorl”; “operator2”;

— branching: IF ‘condition” THEN “operatorl” ELSE
“operator2” END IF;
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— for loop: FOR (counter FROM start TO fin) “opera-
tor” END OF LOOP;

— parallel processing of a list:
FOR EACH (elem IN list)(“operator(elem)”).

The algebraic facilities for generation of algorithm
schemes are based on SAA and the abstract automaton
model of the parameter-driven text generator [1, 6]. The
generator works according to a feedback principle (see

PARALLEL

Fig. 2). The automaton ¥ with stack M is used as a
control automaton, and the automaton @ with tape L is

used as an operational one. Tape L is intended for writ-
ing the text of an SAA scheme being generated.

A.f =
v @

Uy

-
-

i

Figure 2 — The abstract automaton model of the
parameter-driven text generator

Set M of states of automaton ® is associated with
parameters that control the generation of schemes. The

elements of the information set P =M x L are called the
states of the operational structure. At each step of the au-
tomaton’s work, a set of values of logical conditions

Pr= {u,} defined on set P is sent from the operational
to the control automaton. Depending on these values and

contents of stack M , the control automaton initiates the
execution of some operator. The set of operators

O_p= {Aj} is divided into two disjoint sets — terminal
operators Ry and nonterminal operators Ry . Execution
of the terminal operator from set Ry consists in changing
the current state of the operational structure, which, in

particular, can be writing some text on tape L . The exe-
cution of operator Ae Ry at current state peP con-

sists in writing some term F(A, p) to stack M and its
further interpretation by the control automaton. The term
F (A, p) is an analog of the concepts of macro definition,
procedure, routine, etc. Stack M is used at processing
nested and recursive terms. The generated text is the con-

tent of tape L in the final state of the operational struc-
ture

The considered abstract automaton model is matched
with the algebra of hyperschemes intended for the formal-
ization of algorithms for the parameter-driven generation
of SAA schemes [6]. It is the two-sorted algebra

AHS = <{ﬁ,0_p};£2 AHS >, where predicates from set Pr

are defined on information set P and take values of the
four-valued logic E4 ={0,1, u,m}; operators from set Op

oXores
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are defined on and take values in set P .
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The set of predicates is associated with parameters
that control the process of SAA scheme generation. The
operations of the signature Q ppg are similar to the SAA

operations. The difference from SAA is that the predi-
cates from set Pr map information set P to set E4 with
additional value n, which is used to indicate that the val-

ue of a predicate cannot be computed due to a lack of
information about the values of hyperscheme parameters.

The application of operator AcOp at state peP
leads to the transition of operational structure @ to a new
state A(p) € P and writing some (possibly empty) frag-
ment F(A, p) of a scheme being generated to tape L .
The function F(A, p) specifies the generation method for

all operations of the algebra of hyperschemes and is de-
fined in detail in [6].
In particular,

function F(A,p) for

generates

operation

“operatorl”; ‘“‘operator2”
operation without changes.

For the operation of branching, the generation func-
tion is

the composition

"operatorl", if 'condition'=1;

"operator 2", if 'condition'= 0;

IF 'condition' THEN "operatorl" ELSE
"operator2" END, if 'condition'=n;

F(A p)=
e, if 'condition'= ,

where e is an empty word.

The result of the interpretation of this operation is the
text of the first operator at the true value of the condition,
and the text of the second operator at the false value. The
whole text of the branch operation is generated at a not
computed value of the condition. An empty text is a result
in the case if there was an error during the interpretation
process.

Representations of operators in AHS are called hy-

perschemes. Each hyperscheme A applied at state p e P
generates an SAA scheme F(A,p). Hyperscheme A

defines the class of SAA schemes {F(A, p)| p e P}.

The processing of basic conditions and operators of a
hyperscheme consists in computing expressions with
hyperscheme parameters and substituting them into the
text of these basic elements.

The considered approach to the generation of algo-
rithm schemes is implemented in the integrated toolkit for
software design and synthesis [1]. Hyperschemes are de-
signed in an automated way by detailing the language
constructs of the hyperscheme algebra. The constructs are
selected from a list and added to the algorithm design
tree. At each step of the design process, the system offers
a list of algebra operations depending on the type of tree
node selected. A hyperscheme is used for further genera-

tion of an SAA scheme of an algorithm (see Fig. 3) and
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synthesis of a program in a target programming language
(C, C++, Java, and other).

To facilitate processing, the parameters are written in
the text of the basic and other elements of a hyperscheme
in the form By, (q=0,1,2,..). Expressions with hyper-

scheme parameters are enclosed in square or curly brack-
ets.

Example. Consider the use of the hyperscheme facili-
ties for designing a fragment of the hybrid sorting algo-
rithm.

Hyperscheme

Generator of
| SAA schemes

h 4

SAA scheme

Generator of
programs

Program code

Figure 3 — The sequence of generation of algorithms and
programs in the IDS toolkit

In the SAA scheme below, one of the sorting algo-
rithms (insertion, sequential, or parallel merge sort) is
selected depending on the length P of the array.

“Hybrid sort (array)” ===
=IF [Py <=200]’
THEN
“Insertion sort (array)”
ELSE
IF [Py <= 10007
THEN
“Sequential merge sort (array)”
ELSE
“Parallel merge sort (array)”
END IF
END IF

Let it be known in advance that the algorithm
represented by the scheme will be applied in conditions
when Py >500, then the given SAA scheme becomes
redundant. Considering it as a hyperscheme, we can
assume that at the stage of generation of an SAA scheme,
the condition ‘[P <=200]" takes the value “false”, while
‘[Po<=1000]" takes the value “not computed”. As a
result of the generation of text according to the
hyperscheme, we will get the shortened SAA scheme:

“Hybrid sort (array)” ===
=IF ‘[P, <=1000]" THEN
“Sequential merge sort (array)”
ELSE
“Parallel merge sort (array)”

END IF
OPEN a ACCESS
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4 EXPERIMENTS

In this paper, we apply the facilities of hyperschemes
for generating classes of SAA schemes intended for the
evaluation of a binary multiplexer (BinaryMultiplexer
Evaluator) [4].

The hyperscheme constructed using the IDS toolkit is
given below. Its parameters P, P,, P; were described in
Section 1. In the scheme, curly brackets {P;} indicate the
parameter that needs to be replaced with the
corresponding number written in words, that is, if the
value of P;=11, the text “Eleven” will be inserted.
Square brackets (for example, [P;] or [P;—1]) indicate
parameters or arithmetic expressions to be replaced by the
corresponding number. So, for the loop FOR (i FROM 0
TO [Pow(2,P;)—1]) at the value of the parameter
P;=11, the text FOR (i FROM 0 TO 2047) will be
generated.

SCHEME
BINARY {P;}MULTIPLEXEREVALUATOR ===
“Binary {P;}-multiplexer evaluator scheme”
END OF COMMENTS

“Binary {P;} MultiplexerEvaluator” ==
=NAME SPACE
SharpNeat.Domains.Binary {P;} Multiplexer
(
CLASS Binary{P;}MultiplexerEvaluator OF
TYPE public INHERITS
IPhenomeEvaluator<IBlackBox>

“Declare a constant (StopFitness) of type
(double) = (10E + [P{])”;

“Declare a variable (_evalCount) of type
(ulong)”;

“Declare a variable (_stopConditionSatisfied)
of type (bool)”;

REGION IPhenomeEvaluator<IBlackBox>
Members

PROPERTY public ulong EvaluationCount
GET
(

“Return value (_evalCount)”

)
END OF PROPERTY

PROPERTY public bool
StopConditionSatisfied

GET

(

“Return value (_stopConditionSatisfied)”

)
END OF PROPERTY

METHOD public FitnessInfo
Evaluate(IBlackBox box)

“Declare a variable (fitness) of type
© Doroshenko A. Yu., Achour I. Z., Yatsenko O. A., 2023
DOI 10.15588/1607-3274-2023-1-8

(double) = (0.0)”;

“Declare a variable (success) of type

(bool) = (true)”;

“Declare a variable (output) of type
(double)”;

“Declare a variable (inputArr) of type
(ISignalArray) = (box.InputSignalArray)”;

“Declare a variable (outputArr) of type
(ISignalArray) = (box.OutputSignal Array)”;

“Increase (_evalCount) by (1)”;

FOR (i FROM 0 TO [Pow(2, P;) — 1])

LOOP
“Declare a variable (tmp) of type
(int) = (i)";
FOR (j FROM 0 TO [P; - 1))
LOOP

(inputArr[j] = tmp&0x1);
(tmp :=tmp >> 1)
END OF LOOP;
“Activate the black box (box)”;
“Read output signal (output)(outputArr)”;
IF (((1 << ([P1] + (i&0x[P; — 1])))&i) !=0)
THEN
(fitness := fitness + 1.0 — ((1.0 — output) *
(1.0 — output)));
IF (output < 0.5)
THEN (success := false)
END IF
ELSE
(fitness := fitness + 1.0 — (output *
output));
IF (output >=0.5)
THEN (success := false)
END IF
END IF;
“Reset black box state ready for next test
case (box)”
END OF LOOP;
IF success
THEN (fitness := fitness + 10E + [P,])
END IF;
IF (fitness >= StopFitness)
THEN (_stopConditionSatisfied := true)
END IF;
“Return value (new
FitnessInfo(fitness, fitness))”
END OF METHOD

METHOD public void Reset()
“Empty operator”
END OF METHOD
END OF REGION

END OF CLASS
)

END OF SCHEME
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Based on the hyperscheme, SAA schemes for
evaluating multiplexers with three, six, and 11 inputs
were generated using the IDS toolkit. Further, C#
program code for the SharpNEAT framework was
generated according to the schemes.

The scheme of the parallel multi-threaded evaluation
procedure for the multiplexer example, implemented in
SharpNEAT, looks like this:

METHOD private void
Evaluate Caching(IList<TGenome> genomeList)
PARALLEL FOR EACH (genome IN genomeList)
(
“Get (phenome) for (genome)”;
IF (phenome = null)
THEN “Decode the (phenome) and store a
reference against the (genome)”
END IF;
IF (phenome = null)
THEN
“Set (genome) fitness to (0.0)”;
“Set (genome) auxiliary fitness info to (null)
ELSE
“Evaluate (phenome) and get fitness
(fitnessInfo)”;
“Set (genome) fitness to (fitnessInfo. fitness)”;
“Set (genome) auxiliary fitness info to
(fitnessInfo. auxFitnessArr)”
END IF

)
END OF METHOD

2

In [5], the distributed version of this procedure was
developed for execution on a cloud computing platform.

In this work, the experiments with multithreaded and
distributed implementations of neuroevolution of aug-
menting topology were carried out. A multiplexer with 11
inputs was selected as an example.

The following configurations were chosen as the
execution environments for single-process and distributed
implementation:

1) local environment, Intel Core 19-9900K CPU
(3.60 GHz — 5.00 GHz), 8 cores, 16 logic processors, 32.0
GB RAM, one process, 16 threads;

2) local environment, Intel Core 19-9900K CPU (3.60
GHz - 5.00 GHz), 8 cores, 16 logic processors, 32.0 GB
RAM, distributed implementation, 16 local -clients-
executors;

3) cloud environment, 3rd Gen AMD EPYC Amazon
EC2 Cé6a.large, 3.60 GHz, 2 cores, 4.0 GB RAM, up to
12.5 Gbit/s of network bandwidth, and up to 6600 Mbit/s
of storage bandwidth, distributed implementation, 16 lo-
cal clients-executors;

4) the same cloud environment, but with 32 cloud cli-
ent executors;

5) the same cloud environment but with 64 cloud cli-
ent executors.
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5 RESULTS

This section gives the results of executing the multi-
plexer example in the computing environments described
above.

Fig. 4 shows the graph of the dependence of the
evaluation speed (the number of evaluations per second)
on the generation number for local configurations of the
environment.
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Figure 4 — The graph of the dependence of the evaluation speed

on the generation number for local environment configurations
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Fig. 5 shows a graph of the evaluation speed on the
generation number for the cloud-based environment
configurations.
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Figure 5 — The graph of the dependence of the evaluation speed
on the generation number for cloud environment configurations

6 DISCUSSION

As seen from the graph in Fig. 4, the distributed im-
plementation is expected to show worse results compared
to the single-process implementation due to the overhead
of interaction between processes. As the complexity of
the evaluation task increases (the size of the generated
neural network increases), the efficiency of the single-
process and local distributed implementation is leveled
off, since the overhead costs of computing resources be-
come prohibitively lower than the evaluation costs.

As shown in Fig. 5, the distributed cloud
implementation is expected to show worse results (for the
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same number of client-executors) compared to the single-
process and local distributed implementation due to the
overhead of interaction between the processors of many
computers, clients-executors. However, with the growth
of the number of executors, we can neglect the constant
value of the overhead and obtain a linear increase in the
efficiency of the distributed system.

The results of the experiment demonstrated the ability
of the distributed system to conduct evaluations on 64
cloud clients-executors and obtain an increase of 60—
100% from the maximum capabilities of a single-
processor local implementation.

CONCLUSIONS

The scientific novelty of obtained results is that the
facilities of hyperscheme algebra are firstly applied for
the automated generation of parametric neuroevolution
evaluation algorithms on the example of the evaluation
problem for a binary multiplexer. A hyperscheme is a
high-level parameterized algorithm for solving a certain
class of problems. Setting parameter values and subse-
quent interpretation of the hyperscheme allows obtaining
algorithm schemes adapted to specific conditions of their
use.

The practical significance of obtained results is that
the means of hyperschemes are implemented in the devel-
oped integrated toolkit of automated design and synthesis
of programs. Based on algorithm schemes, the system
generates programs in a target programming language.
The advantage of the system is the possibility of describ-
ing algorithm schemes in a natural-linguistic form. An
experiment was conducted consisting in execution of the
generated program for the problem of evaluating a binary
multiplexer on a distributed cloud platform, which dem-
onstrated the possibility of the developed distributed sys-
tem to perform evaluations on 64 cloud clients-executors
and obtain an increase in 60—100% of the maximum ca-
pabilities of a single-processor local implementation.

Prospects for further research are to apply the alge-
bra-algorithmic method and tools for the automated de-
velopment of the parallel implementation of evolutionary
algorithm evaluation procedure on a graphics processing
unit.
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Amyp I. 3. — acnipasT kadenpu iHGopMamiiHUX CHCTEM Ta TeXHOIOrii HarioHalipHOTrO TEXHIYHOTO yHIBEpCHTETy YKpaiHu
«KwuiBcekuii nonitexHivnuid iHcTUTYT iMeHi [ropst Cikopcbkoro», Kuis, Ykpaina.

SAnenko O. A. — kanx. ¢i3.-Mar. HayK, cCTapIIMi HAYKOBUH CIIBPOOITHHMK Biiiny Teopil KOMII'IOTEpPHHX O0UYMCIeHb [HCTUTYTY
nporpaMuux cucteM HAH Ykpainu, Kuis, Ykpaina.

AHOTAIIA

AKTYyaJbHicTb. Po3risHyTO 33124y aBTOMAaTH30BaHOI PO3pOOKH MPOTpaM OLIHKH ATl aJITOPHUTMIB HEHPOESBOIIOLIi HApOCTAr0u0i
ToroJorii. EBosromiifHi anropuTMu 3acTOCOBYIOTH MEXaHi3MH MyTallii, pekoMOiHamii Ta CeJeKIil AT MONUIyKy HEHPOHHUX MEpex 3
TIOBEIIHKOIO, SIKa 3aI0BOJIBHSIE yMOBaM IIeBHOI (popManbHO BU3HaUeHOT 3anadi. [Ipukianom Takol 3aadi € 3HaXOMKEHHS HEHPOHHOT
Mepexi, [0 peatizye MeBHy HU(POBY JIOTIKy.

Meta po60oTH — aBTOMAaTH30BaHE MPOCKTYBAHHs Ta TeHEpallis MPOrpaMu OIIHKU IS 3a7a4i HEHPOEBOMIOIIT Ha MPHUKIIaIi IBik-
KOBOT'O MYJIBTHILIEKCODA.

Metoa. Metoau Ta iHCTpyMeHTaJbHI 3aco0u anreOpy anroput™MiB [nyikoBa Ta ajareOpu rinepcxeM 3acTOCOBAHO sl MapameT-
PpHUYHO-KEpOBaHOI TeHepalii MporpaMy OLIHKH aJrpopuTMy HEWpoeBOMoLii s OiHapHOTO MyJbTHILIEKcOpa. Anrebpa [mymkosa
MOKJIAJICHa B OCHOBY aJITOPUTMIYHOI MOBH, IIPU3HAUCHOI Ul OAraTOpiBHEBOTO CTPYKTYPHOTO IPOCKTYBAaHHS Ta JIOKYMEHTYBaHHS
MOCJILTOBHUX 1 MapaJeNbHUX aJITOPUTMIB Ta IIporpam y (opmi, HaGIvbKeHil 1o npupoaaoi MoBH. ['imepcxeMu € mapaMeTpH30BaHIMHI
BHCOKOPIBHEBUMH crenudikariisiMy, Mpu3HadeHUIMH JUISL BUPIIICHHS IEBHOTO KJIacy 3amad. 3agaBaHHsS 3HA4eHb ITapaMeTpiB i rmoja-
JIbIlIa {HTepIIpeTaLis rinepcxeM J03BOJISIE OTPUMATH aJrOPUTMH, aJaTOBaHI 10 KOHKPETHUX YMOB X BUKOPHCTAaHHS.

Pe3yasTaTn. 3acobu rinepcxem peanizoBaHO B po3po0JIeHOMY iHTEIPOBaHOMY IHCTpyMEHTapil aBTOMaTH30BaHOI'O IPOCKTYBaH-
HS Ta CHHTE3y nporpaM. Ha OCHOBI cxeM alNropuTmiB cHCTEMa IeHepye NpOorpaMy LiJIbOBOI0 MOBOIO IporpamyBaHHs. IlepeBaroto
IHCTPYMEHTApII0 € MOXKJIMBICTD OMUCY CXEM AITOPUTMIB Y MPUPOAHO-IIHrBicTHYHIN (opmi. [IpoBeeHO eKCIEpUMEHT 3 BUKOHAHHS
3TeHEepPOBaHOI MPOTpaMy AJIs 33/1a4i OI[iHKH JBIHKOBOTO MYJIBTHILICKCOPA HA PO3MOAUICHIN XMapHil ruiaTgopmi. 3rajaHa mporpama
BxoauTh A0 ckiany SharpNEAT — cucteMu 3 BiZKpUTHM KOZOM, IO peaji3ye alropuTM reHetuyHoi HerpoeBomromii NEAT ms
miatdopmu .NET. ITapanensna posnoainena peanizamis SharpNEAT Oyia 3anponoHoBaHa B IonepeiHii po6oTi aBTopiB.

BucnoBku. Pe3ynbTaTté IpoBeIeHNX €KCIEPUMEHTIB IIPOAEMOHCTPYBAIN MOXKIUBICTE PO3POOIICHOI PO3IOIIICHOI CHCTEMH BH-
KOHYBAaTH OLIIHIOBaHHS Ha 64 XMapHHUX KIJIi€HTaX-BUKOHyBa4yax Ta OTpUMyBaTH mpupict y 60—100 % Bix MakCUMaJIBHUX MOXIIMBOC-
Teil OHOMPOIIECOPHOT JIOKATBHOT peatizartii.

KJIFOYOBI CJIOBA: anredpa ajaropuTMiB, aBTOMaTH30BaHe MPOSKTYBAaHHS IIPOrpaM, XMapHi 00YHCIICHHSI, Tinepcxema, Heil-
POEBOJIIOLiS, HEHPOHHA MeperKa, MapaielibHe NPOrpaMyBaHHS.
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